首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Klebsiella aerogenes adapted to a chemically-defined mineral salts medium with glucose orp-hydroxybenzoate as sole source of carbon and energy possessed constitutive decarboxylases for gentisate (2,5-dihydroxybenzoate), protocatechuate (3,4-dihydroxybenzoate) and gallate (3,4,5-trihydroxybenzoate) whose pH optima were respectively 5.9, 5.6 and 5.8. A decarboxylase for PHB was induced by PHB in both growing and resting cells; the induction was delayed or inhibited by chloramphenicol and by ultrasonic disruption of the bacteria. Crude ultrasonic preparations of PHB decarboxylase had an optimum pH of 6.0, a Michaelis constant of 4mm and an activation energy of 25,500 cal mole–1 at 28 – 38 C. All four decarboxylations proceeded without O2 and for every mole of phenolic acid decomposed one mole of CO2 and one mole of the corresponding phenol were produced. The effects of ultrasonic disruption of the bacteria suggested that permeability barriers limited the rate of decarboxylation of PHB and 2,5-DHB but not of 3,4-DHB or 3,4,5-THB. During ultrasonic disintegration PHB and 3,4-DHB decarboxylases were retained solely by insoluble centrifugeable particles, whereas 2,5-DHB and 3,4,5-THB decarboxylases were gradually released into solution.The decarboxylation of protocatechuic acid is an essential stage in the assimilation ofp-hydroxybenzoic acid byK. aerogenes, whereas the decarboxylation ofp-hydroxybenzoate itself is an injurious side reaction.We wish to thank Mr. P. J. Wragg for technical assistance.  相似文献   

2.
Summary Two 4-hydroxybenzoate decarboxylase activities and a phenol carboxylase activity were found in cell-free extracts of a defined, 4-hydroxybenzoate- or phenol-grown consortium. Both decarboxylase activities were loosely membrane-associated and required K+ but a different pH and ion strength. Loss of activity of both decarboxylases by EDTA could be compensated by Zn2+ ions. The K m values for 4-hydroxybenzoate and K+ of the decarboxylase activities with pH optima at 6.4 or 7.8 were 0.02 and 2.5 or 0.004 and 0.5 mm, respectively. 3,4-Dihydroxybenzoate, 3,4,5-tridydroxybenzoate, 3,5-dimethoxy-4-hydroxybenzoate and 3-chloro-4-hydroxybenzoate were also decarboxylated by both enzyme activities. The phenol carboxylase was a soluble enzyme with its pH optimum at 6.5. It required K+, Rb+ or NH inf4 sup+ as monovalent, Zn2+, Mg2+, Mn2+ or Ni2+ as divalent cations and catalysed the carboxylation of phenol if 2,4-,2,3,4- or 2,4,6-hydroxybezoates were absent. The three enzyme activities were not influenced by Avidin and thus were probably not biotin-dependent enzymes. Offprint requests to: J. Winter  相似文献   

3.
Abstract Pseudomonas sp. strain RW611 utilized the ammonium salt of 2-sulfobenzoate as sole source of carbon, sulfur, nitrogen, and energy. The xenobiotic sulfo substituent was dioxygenolytically eliminated as sulfite, which was then slowly oxidized to sulfate. 2,3-Dihydroxybenzoate, which resulted from desulfonation underwent meta -cleavage, mediated by 2,3-dihydroxybenzoate 3,4-dioxygenase activity. This enzyme was inhibited by 3-chlorocatechol and 2,3,4-trihydroxybenzoate.  相似文献   

4.
Corynebacterium glutamicum assimilated phenol, benzoate, 4-hydroxybenzoate p-cresol and 3,4-dihydroxybenzoate. Ring cleavage was by catechol 1,2-dioxygenase when phenol or benzoate was used and by protocatechuate 3,4-dioxygenase when the others were used as substrate. The locus ncg12319 of its genome was cloned and expressed in Escherichia coli. Enzyme assays showed that ncg12319 encodes a catechol 1,2-dioxygenase. This catechol 1,2-dioxygenase was purified and accepted catechol, 3-, or 4-methylcatechols, but not chlorinated catechols, as substrates. The optimal temperature and pH for catechol cleavage catalyzed by the enzyme were 30 degrees C and 9, respectively, and the Km and Vmax were determined to be 4.24 micromol l(-1) and 3.7 micromol l(-1) min(-1) mg(-1) protein, respectively.  相似文献   

5.
We found the occurrence of thermophilic reversible γ-resorcylate decarboxylase (γ-RDC) in the cell extract of a bacterium isolated from natural water, Rhizobium sp. strain MTP-10005, and purified the enzyme to homogeneity. The molecular mass of the enzyme was determined to be about 151 kDa by gel filtration, and that of the subunit was 37.5 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; in other words, the enzyme was a homotetramer. The enzyme was induced specifically by the addition of γ-resorcylate to the medium. The enzyme required no coenzyme and did not act on 2,4-dihydroxybenzoate, 2,5-dihydroxybenzoate, 3,4-dihydroxybenzoate, 3,5-dihydroxybenzoate, 2-hydroxybenzoate, or 3-hydroxybenzoate. It was relatively thermostable to heat treatment, and its half-life at 50°C was estimated to be 122 min; furthermore, it catalyzed the reverse carboxylation of resorcinol. The values of kcat/Km (mΜ−1·s−1) for γ-resorcylate and resorcinol at 30°C and pH 7 were 13.4 and 0.098, respectively. The enzyme contains 327 amino acid residues, and sequence identities were found with those of hypothetical protein AGR C 4595p from Agrobacterium tumefaciens strain C58 (96% identity), 5-carboxyvanillate decarboxylase from Sphingomonas paucimobilis (32%), and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylases from Bacillus cereus ATCC 10987 (26%), Rattus norvegicus (26%), and Homo sapiens (25%). The genes (graA [1,230 bp], graB [888 bp], and graC [1,056 bp]) that are homologous to those in the resorcinol pathway also exist upstream and downstream of the γ-RDC gene. Judging from these results, the resorcinol pathway also exists in Rhizobium sp. strain MTP-10005, and γ-RDC probably catalyzes a reaction just before the hydroxylase in it does.  相似文献   

6.
We found the occurrence of 4-hydroxybenzoate decarboxylase in Enterobacter cloacae P240, isolated from soils under anaerobic conditions, and purified the enzyme to homogeneity. The purified enzyme was a homohexamer of identical 60 kDa subunits. The purified decarboxylase catalyzed the nonoxidative decarboxylation of 4-hydroxybenzoate without requiring any cofactors. Its K m value for 4-hydroxybenzoate was 596 μM. The enzyme also catalyzed decarboxylation of 3,4-dihydroxybenzoate, for which the K m value was 6.80 mM. In the presence of 3 M KHCO3 and 20 mM phenol, the decarboxylase catalyzed the reverse carboxylation reaction of phenol to form 4-hydroxybenzoate with a molar conversion yield of 19%. The K m value for phenol was calculated to be 14.8 mM. The gene encoding the 4-hydroxybenzoate decarboxylase was isolated from E. cloacae P240. Nucleotide sequencing of recombinant plasmids revealed that the 4-hydroxybenzoate decarboxylase gene codes for a 475-amino-acid protein. The amino acid sequence of the enzyme is similar to those of 4-hydroxybenzoate decarboxylase of Clostridium hydroxybenzoicum (53% identity), VdcC protein (vanillate decarboxylase) of Streptomyces sp. strain D7 (72%) and 3-octaprenyl-4-hydroxybenzoate decarboxylase of Escherichia coli (28%). The hypothetical proteins, showing 96–97% identities to the primary structure of E. cloacae P240 4-hydroxybenzoate decarboxylase, were found in several bacterial strains.  相似文献   

7.
Organisms present in methanogenic freshwater lake sediments from the vicinity of Athens, Georgia, were adapted to mineralize 2,4-dichlorophenol. Repeated addition of 0.5 to 2.7 mmol/liter of phenol, and later of 0.5–6.2 mmol/liter p-hydroxybenzoate (p-OHB), to such enrichments led to the conversion of p-OHB to phenol at a rate of up to 100 mmol p-OHB per liter per day. Subsequently, a spore-forming, obligately anaerobic bacterium, strain JW/Z-1, was isolated which transformed p-OHB to phenol and 3,4-dihydroxybenzoate (3,4-OHB) to catechol (1,2-dihydroxybenzene) stoichiometrically without further metabolism of the phenols. The strain did not transform benzoate, 4-chlorophenol, 2,4-dichlorophenol, 4-chlorobenzoate, o- and m-hydroxybenzoate, 2,4- and 3,5-dihydroxybenzoate, 2,3,4- and 3,4,5-trihydroxybenzoate, or 4-aminobenzoate. Yeast extract was required for growth of strain JW/Z-1 and only high concentrations of casein hydrolysate or tryptone could substitute it, to some extent. Except for sodium acetate, and some amino acids together with a 20-fold increased concentration of vitamins, no single carbohydrate or defined organic compound has been found to support growth of this strain in the presence (or in the absence) of 0.2 to 0.5% (w/v) yeast extract. The fermentation products during growth on yeast extract indicated that the metabolism of amino acid degradation was the major source for growth. The decarboxylating activity was inducible by p-OHB for the decarboxylation of p-OHB, and at a lower rate for 3,4-OHB, and by 3,4-OHB only for 3,4-OHB, suggesting that two different enzyme systems exist. The addition of the aromatic amino acids phenol or benzoate did not induce the decarboxylation activity in cultures growing with yeast extract. Growth was observed at temperatures ranging from 12–41°C (Topt, 33–34°C) and at pH-values ranging from 6.0–10.0 (pHopt, 7.2–8.2). The shortest doubling time observed for strain JW/Z-1 was 3.2 hours.  相似文献   

8.
A novel flavoprotein monooxygenase, 4-hydroxybenzoate 1-hydroxylase (decarboxylating), from Candida parapsilosis CBS604 was purified to apparent homogeneity. The enzyme is induced when the yeast is grown on either 4-hydroxybenzoate, 2,4-dihydroxybenzoate, or 3,4-dihydroxybenzoate as the sole carbon source. The purified monooxygenase is a monomer of about 50 kDa containing flavin adenine dinucleotide as weakly bound cofactor. 4-Hydroxybenzoate 1-hydroxylase from C. parapsilosis catalyzes the oxidative decarboxylation of a wide range of 4-hydroxybenzoate derivatives with the stoichiometric consumption of NAD(P)H and oxygen. Optimal catalysis is reached at pH 8, with NADH being the preferred electron donor. By using (18)O2, it was confirmed that the oxygen atom inserted into the product 1,4-dihydroxybenzene is derived from molecular oxygen. 19F nuclear magnetic resonance spectroscopy revealed that the enzyme catalyzes the conversion of fluorinated 4-hydroxybenzoates to the corresponding hydroquinones. The activity of the enzyme is strongly inhibited by 3,5-dichloro-4-hydroxybenzoate, 4-hydroxy-3,5-dinitrobenzoate, and 4-hydroxyisophthalate, which are competitors with the aromatic substrate. The same type of inhibition is exhibited by chloride ions. Molecular orbital calculations show that upon deprotonation of the 4-hydroxy group, nucleophilic reactivity is located in all substrates at the C-1 position. This, and the fact that the enzyme is highly active with tetrafluoro-4-hydroxybenzoate and 4-hydroxy-3-nitrobenzoate, suggests that the phenolate forms of the substrates play an important role in catalysis. Based on the substrate specificity, a mechanism is proposed for the flavin-mediated oxidative decarboxylation of 4-hydroxybenzoate.  相似文献   

9.
The reaction of molecular oxygen with the complex of reduced p-hydroxybenzoate hydroxylase and 2,4-dihydroxybenzoate has been followed by rapid reaction techniques. During the reaction, which produces stoichiometric amounts of oxidized enzyme and the hydroxylated product, 2,3,4-trihydroxybenzoate, three spectroscopically distinguishable intermediates have been detected and characterized.  相似文献   

10.
Crude soluble extracts of Corynebacterium cyclohexanicum, grown on cyclohexanecarboxylic acid, were found to contain 4-hydroxybenzoate 3-hydroxylase which functions with NADH as well as NADPH. The purified enzyme preparation was electrophoretically homogeneous and contained FAD as prosthetic group. The relative molecular mass of the enzyme was estimated to be about 47000 by native and denaturated acrylamide gel electrophoresis, indicating that it is monomeric. The enzyme was stable at 60 degrees C for 10 min. The enzyme was highly specific for p-hydroxybenzoate. The activity was inhibited by several aromatic analogues of p-hydroxybenzoate such as p-aminobenzoate, p-fluorobenzoate, o-hydroxybenzoate, m-hydroxybenzoate, 2,4-dihydroxygenzoate, and 2,5-dihydroxybenzoate. The Km value for NADH was fairly constant, about 45 microM, in the pH range 7.0-8.4, whereas the Km value for NADPH increased from 63 microM to 170 microM as the pH rose from 7.0 to 8.4. V values in the same pH range, however, were approximately constant in both cases; about 30 mumol min-1 mg-1 for NADH, and 26 mumol min-1 mg-1 for NADPH. Mg2+ was required for full activity of the enzyme in low concentrations of phosphate buffer. The enzyme was inhibited by C1- which was non-competitive with respect to NADH, NADPH and p-hydroxybenzoate.  相似文献   

11.
Arthrobacter sp. strain ATCC 33790 was grown with pentachlorophenol (PCP) as the sole source of carbon and energy. Crude extracts, which were prepared by disruption of the bacteria with a French pressure cell, showed no dehalogenating activity with PCP as the substrate. After sucrose density ultracentrifugation of the crude extract at 145,000 x g, various layers were found in the gradient. One yellow layer showed enzymatic conversion of PCP. One chloride ion was released per molecule of PCP. The product of the enzymatic conversion was tetrachlorohydroquinone. NADPH and oxygen were essential for this reaction. EDTA stimulated the enzymatic activity by 67%. The optimum pH for the enzyme activity was 7.5, and the temperature optimum was 25 degrees C. Enzymatic activity was also detected with 2,4,5-trichlorophenol, 2,3,4-trichlorophenol, 2,4,6-trichlorophenol, and 2,3,4,5-tetrachlorophenol as substrates, whereas 3,4,5-trichlorophenol, 2,4-dichlorophenol, 3,4-dichlorophenol, and 4-chlorophenol did not serve as substrates.  相似文献   

12.
In the crystal structure of native p-hydroxybenzoate hydroxylase, Ser212 is within hydrogen bonding distance (2.7 A) of one of the carboxylic oxygens of p-hydroxybenzoate. In this study, we have mutated residue 212 to alanine to study the importance of the serine hydrogen bond to enzyme function. Comparisons between mutant and wild type (WT) enzymes with the natural substrate p-hydroxybenzoate showed that this residue contributes to substrate binding. The dissociation constant for this substrate is 1 order of magnitude higher than that of WT, but the catalytic process is otherwise unchanged. When the alternate substrate, 2,4-dihydroxybenzoate, is used, two products are formed (2,3,4-trihydroxybenzoate and 2,4, 5-trihydroxybenzoate), which demonstrates that this substrate can be bound in two orientations. Kinetic studies provide evidence that the intermediate with a high extinction coefficient previously observed in the oxidative half-reaction of the WT enzyme with this substrate is composed of contributions from both the dienone form of the product and the C4a-hydroxyflavin. During the reduction of the enzyme-2,4-dihydroxybenzoate complex by NADPH with 2, 4-dihydroxybenzoate, a rapid transient increase in flavin absorbance is observed prior to hydride transfer from NADPH to FAD. This is direct evidence for movement of the flavin before reduction occurs.  相似文献   

13.
Summary Two strains of Rhodotorula rubra, isolated by enrichment from soil contaminated with oil using 4-hydroxybenzoate as sole carbon and energy source, grew only on benzenoid compounds hydroxylated in the 4-position. Both yeasts contained two inducible NADH-requiring hydroxylase enzymes, one specific for 4-hydroxybenzoate and the second specific for 3,4-dihydroxybenzoate. Additionally, intradiol ring-cleavage enzymes for both 3,4-dihydroxybenzoate and 1,3,4-trihydroxybenzene were detected in cell-free extracts of the strains. Although the thermal stability and pH optima of the ring-cleavage enzymes differ between the two yeasts, both yeasts have been established as simultaneously possessing both ring-cleavage activities, which has hitherto not been reported. Offprint requests to: C. Ratledge  相似文献   

14.
The ascomycetous yeast Candida parapsilosis CBS604 catabolizes 4-hydroxybenzoate through the initial formation of hydroquinone (1, 4-dihydroxybenzene). High levels of hydroquinone hydroxylase activity are induced when the yeast is grown on either 4-hydroxybenzoate, 2,4-dihydroxybenzoate, 1,3-dihydroxybenzene or 1, 4-dihydroxybenzene as the sole carbon source. The monooxygenase constitutes up to 5% of the total amount of protein and is purified to apparent homogeneity in three chromatographic steps. Hydroquinone hydroxylase from C. parapsilosis is a homodimer of about 150 kDa with each 76-kDa subunit containing a tightly noncovalently bound FAD. The flavin prosthetic group is quantitatively resolved from the protein at neutral pH in the presence of chaotropic salts. The apoenzyme is dimeric and readily reconstituted with FAD. Hydroquinone hydroxylase from C. parapsilosis catalyzes the ortho-hydroxylation of a wide range of monocyclic phenols with the stoichiometric consumption of NADPH and oxygen. With most aromatic substrates, no uncoupling of hydroxylation occurs. Hydroxylation of monofluorinated phenols is highly regiospecific with a preference for C6 hydroxylation. Binding of phenol highly stimulates the rate of flavin reduction by NADPH. At pH 7.6, 25 degrees C, this step does not limit the rate of overall catalysis. During purification, hydroquinone hydroxylase is susceptible towards limited proteolysis. Proteolytic cleavage does not influence the enzyme dimeric nature but results in relatively stable protein fragments of 55, 43, 35 and 22 kDa. N-Terminal peptide sequence analysis revealed the presence of two nick sites and showed that hydroquinone hydroxylase from C. parapsilosis is structurally related to phenol hydroxylase from Trichosporon cutaneum. The implications of these findings for the catalytic mechanism of hydroquinone hydroxylase are discussed.  相似文献   

15.
The three genes encoding the 4-chlorobenzene dehalogenase polypeptides were excised from a Pseudomonas sp. CBS-3 DNA fragment and separately cloned and expressed in Escherichia coli. The three enzymes were purified from the respective subclones by using an ammonium sulfate precipitation step followed by one or two column chromatographic steps. The 4-chlorobenzoate:coenzyme A ligase was found to be a homodimer (57-kDa subunit size), to require Mg2+ (Co2+ and Mn2+ are also activators) for activity, and to turn over MgATP (Km = 100 microM), coenzyme A (Km = 80 microM), and 4-chlorobenzoate (Km = 9 microM) at a rate of 30 s-1 at pH 7.5 and 25 degrees C. Benzoate, 4-bromobenzoate, 4-iodobenzoate, and 4-methylbenzoate were shown to be alternate substrates while 4-hydroxybenzoate, 4-aminobenzoate, 2-aminobenzoate, 2,3-dihydroxybenzoate, 4-coumarate, palmate, laurate, caproate, butyrate, and phenylacetate were not substrate active. The 4-chlorobenzoate-coenzyme A dehalogenase was found to be a homotetramer (30 kDa subunit size) to have a Km = 15 microM and kcat = 0.3 s-1 at pH 7.5 and 25 degrees C and to be catalytically inactive toward hydration of crotonyl-CoA, alpha-methylcrotonyl-CoA, and beta-methylcrotonyl-CoA. The 4-hydroxybenzoate-coenzyme A thioesterase was shown to be a homotetramer (16 kDa subunit size), to have a Km = 5 microM and kcat = 7 s-1 at pH 7.5 and 25 degrees C, and to also catalyze the hydrolyses of benzoyl-coenzyme A and 4-chlorobenzoate-coenzyme A. Acetyl-coenzyme A, hexanoyl-coenzyme A, and palmitoyl-coenzyme A were not hydrolyzed by the thioesterase.  相似文献   

16.
Growth of Klebsiella pneumoniae M5a1 on 3-hydroxybenzoate leads to the induction of 3-hydroxybenzoate monooxygenase, 2,5-dihydroxybenzoate dioxygenase, maleylpyruvate isomerase and fumarylpyruvate hydrolase. Growth in the presence of 2,5-dihydroxybenzoate also induces all of these enzymes including the 3-hydroxybenzoate monooxygenase which is not required for 2,5-dihydroxybenzoate catabolism. Mutants defective in 3-hydroxybenzoate monooxygenase fail to grow on 3-hydroxybenzoate but grow normally on 2,5-dihydroxybenzoate. Mutants lacking maleylpyruvate isomerase fail to grow on 3-hydroxybenzoate and 2,5-dihydroxybenzoate. Both kinds of mutants grow normally on 3,4-dihydroxybenzoate. Mutants defective in maleylpyruvate isomerase accumulate maleylpyruvate when exposed to 3-hydroxybenzoate and growth is inhibited. Secondary mutants that have additionally lost 3-hydroxybenzoate monooxygenase are no longer inhibited by the presence of 3-hydroxybenzoate. The 3-hydroxybenzoate monooxygenase gene (mhbM) and the maleylpyruvate isomerase gene (mhbI) are 100% co-transducible by P1 phage.  相似文献   

17.
The expression vector containing the full-length cDNA of human aromatic L-amino acid decarboxylase (EC 4.1.1.28) was transfected in COS cells by a modified calcium phosphate coprecipitation method. The cells transfected with plasmids that had a true direction of the cDNA gave a major immunoreactive band at 50 kDa. This expressed enzyme catalyzed the decarboxylation of L-3,4-dihydroxyphenylalanine (L-DOPA), L-5-hydroxytryptophan (L-5-HTP) and L-threo-3,4-dihydroxyphenylserine. The optimal pH of the enzyme activity with L-DOPA as a substrate was 6.5, whereas the enzyme had a broad pH optimum when L-5-HTP was used as a substrate. Addition of pyridoxal phosphate to the incubation mixture greatly enhanced the activity for both L-DOPA and L-5-HTP.  相似文献   

18.
A nonoxidative decarboxylase, 2,6-dihydroxybenzoate decarboxylase, was found in Agrobacterium tumefaciens IAM12048. The enzyme activity was induced specifically by 2,6-dihydroxybenzoate. The purified enzyme was a homotetramer of identical 38 kDa subunits. The purified decarboxylase catalyzed the nonoxidative decarboxylation of 2,6-dihydroxybenzoate and 2,3-dihydroxybenzoate without requiring any cofactors. In the presence of KHCO3, the enzyme also catalyzed the regioselective carboxylation of 1,3-dihydroxybenzene into 2,6-dihydroxybenzoate at a molar conversion ratio of 30%.  相似文献   

19.
When grown at the expense of 3,4,5-trimethoxyphenylacetic acid, a species of Arthrobacter readily oxidized 3,4-dihydroxy-5-methoxyphenylacetic acid, but other structurally related aromatic acids were oxidized only slowly. Cell extracts contained a dioxygenase for 3,4-dihydroxy-5-methoxyphenylacetate, and the corresponding trihydroxy acid, which was not attacked by the enzyme, inhibited oxidation of this ring-fission substrate. Cell suspensions did not release carbon dioxide from 3,4-[methoxyl-14C]dihydroxy-5-methoxyphenylacetate but accumulated 1 mol of methanol per mol of 3,4,5-trimethoxyphenylacetate oxidized. A cell extract converted the ring-fission substrate into stoichiometric amounts of pyruvate and acetoacetate, formed from 3-ketoglutarate by the action of an induced decarboxylase. 3-Ketoglutaric acid served as sole source of carbon for many soil isolates.  相似文献   

20.
The phytopathogenic fungus Colletotrichum gloeosporioides was analyzed for chitinase activity, the best production occurring at the fourth day. A 43 kDa endochitinase with specific activity of 413 U microg(-1) protein was purified corresponding to a 75% yield. The optima of temperature and pH for the enzyme were 50 degrees C and pH 7.0, respectively. The enzyme showed a high stability at 50 degrees C and pH 7.0. Values of pH from 5.0 up to 7.0 gave, at least, 50% of maximum activity, suggesting a biotechnological application. Further studies are in progress to determine the possible use of this endochitinase in biological control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号