首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 317 毫秒
1.
The complete nucleotide sequence of chloroplast DNA from a liverwort, Marchantia polymorpha has made clear the entire gene organization of the chloroplast genome. Quite a few genes encoding components of photosynthesis and protein synthesis machinery have been identified by comparative computer analysis. Other genes involved in photosynthesis, respiratory electron transport, and membrane-associated transport in chloroplasts were predicted by the amino acid sequence homology and secondary structure of gene products. Thirty-three open reading frames in the liverwort chloroplast genome remain unidentified. However, most of these open reading frames are also conserved in the chloroplast genomes of two species, a liverwort, Marchantia polymorpha, and tobacco, Nicotiana tabacum, indicating their active functions in chloroplasts.Abbreviations bp base pair - kDa kilodalton - IR inverted repeat - ORF open reading frame - DALA -aminolevulinate  相似文献   

2.
The entire nucleotide sequences of the rice, tobacco and liverwort chloroplast genomes have been determined. We compared all the chloroplast genes, open reading frames and spacer regions in the plastid genomes of these three species in order to elucidate general structural features of the chloroplast genome. Analyses of homology, GC content and codon usage of the genes enabled us to classify them into two groups: photosynthesis genes and genetic system genes. Based on comparisons of homology, GC content and codon usage, unidentified ORFs can also be assigned to each of these groups such that it is possible to speculate about the functions of products which may be produced by these ORFs. The spacer regions and intron sequences were compared and found to have no obvious homology between rice and liverwort or between tobacco and liverwort.  相似文献   

3.
Chloroplast genome organization, gene order, and content are highly conserved among land plants. We sequenced the chloroplast genome of Trachelium caeruleum L. (Campanulaceae), a member of an angiosperm family known for highly rearranged genomes. The total genome size is 162,321 bp, with an inverted repeat (IR) of 27,273 bp, large single-copy (LSC) region of 100,114 bp, and small single-copy (SSC) region of 7,661 bp. The genome encodes 112 different genes, with 17 duplicated in the IR, a tRNA gene (trnI-cau) duplicated once in the LSC region, and a protein-coding gene (psbJ) with two duplicate copies, for a total of 132 putatively intact genes. ndhK may be a pseudogene with internal stop codons, and clpP, ycf1, and ycf2 are so highly diverged that they also may be pseudogenes. ycf15, rpl23, infA, and accD are truncated and likely nonfunctional. The most conspicuous feature of the Trachelium genome is the presence of 18 internally unrearranged blocks of genes inverted or relocated within the genome relative to the ancestral gene order of angiosperm chloroplast genomes. Recombination between repeats or tRNA genes has been suggested as a mechanism of chloroplast genome rearrangements. The Trachelium chloroplast genome shares with Pelargonium and Jasminum both a higher number of repeats and larger repeated sequences in comparison to eight other angiosperm chloroplast genomes, and these are concentrated near rearrangement endpoints. Genes for tRNAs occur at many but not all inversion endpoints, so some combination of repeats and tRNA genes may have mediated these rearrangements.  相似文献   

4.
Identification of functional open reading frames in chloroplast genomes   总被引:7,自引:0,他引:7  
K H Wolfe  P M Sharp 《Gene》1988,66(2):215-222
We have used a rapid computer dot-matrix comparison method to identify all DNA regions which have been evolutionarily conserved between the completely sequenced chloroplast genomes of tobacco and a liverwort. Analysis of these regions reveals 74 homologous open reading frames (ORFs) which have been conserved as to length and amino acid sequence; these ORFs also have an excess of nucleotide substitutions at silent sites of codons. Since the nonfunctional parts of these genomes have become saturated with mutations and show no sequence similarity whatsoever, the homologous ORFs are almost certainly functional. A further four pairs of ORFs show homology limited to only a short part of their putative gene products. Amino acid sequence identities range between 50 and 99%; some chloroplast proteins are seen to be among the most slowly evolving of all known proteins. A search of the nucleotide and amino acid sequence databanks has revealed several previously unidentified genes in chloroplast sequences from other species, but no new homologies to prokaryotic genes.  相似文献   

5.
Summary The vestigial plastid genome of Epifagus virginiana (beechdrops), a nonphotosynthetic parasitic flowering plant, is functional but lacks six ribosomal protein and 13 tRNA genes found in the chloroplast DNAs of photosynthetic flowering plants. Import of nuclear gene products is hypothesized to compensate for many of these losses. Codon usage and amino acid usage patterns in Epifagus plastic genes have not been affected by the tRNA gene losses, though a small shift in the base composition of the whole genome (toward A + T -richness) is apparent. The ribosomal protein and tRNA genes that remain have had a high rate of molecular evolution, perhaps due to relaxation of constraints on the translational apparatus. Despite the compactness and extensive gene loss, one translational gene (infA, encoding initiation factor 1) that is a pseudogene in tobacco has been maintained intact in Epifagus.Offprint requests to: J.D. Palmer  相似文献   

6.
Summary The entire set of transferred chloroplast DNA sequences in the mitochondrial genome of rice (Oryza sativa cv. Nipponbare) was identified using clone banks that cover the chloroplast and mitochondrial genomes. The mitochondrial fragments that were homologous to chloroplast DNA were mapped and sequenced. The nucleotide sequences around the termini of integrated chloroplast sequences in the rice mtDNA revealed no common sequences or structures that might enhance the transfer of DNA. Sixteen chloroplast sequences, ranging from 32 bases to 6.8 kb in length, were found to be dispersed throughout the rice mitochondrial genome. The total length of these sequences is equal to approximately 6% (22 kb) of the rice mitochondrial genome and to 19% of the chloroplast genome. The transfer of segments of chloroplast DNA seems to have occurred at different times, both before and after the divergence of rice and maize. The mitochondrial genome appears to have been rearranged after the transfer of chloroplast sequences as a result of recombination at these sequences. The rice mitochondrial DNA contains nine intact tRNA genes and three tRNA pseudogenes derived from the chloroplast genome.  相似文献   

7.
The tobacco cultivar Nicotiana tabacum is a natural amphidiploid that is thought to be derived from ancestors of Nicotiana sylvestris and Nicotiana tomentosiformis. To compare these chloroplast genomes, DNA was prepared from isolated chloroplasts from green leaves of N. sylvestris and N. tomentosiformis, and subjected to whole-genome shotgun sequencing. The N. sylvestris chloroplast genome comprises of 155,941 bp and shows identical gene organization with that of N. tabacum, except one ORF. Detailed comparison revealed only seven different sites between N. tabacum and N. sylvestris; three in introns, two in spacer regions and two in coding regions. The chloroplast DNA of N. tomentosiformis is 155,745 bp long and possesses also identical gene organization with that of N. tabacum, except four ORFs and one pseudogene. However, 1,194 sites differ between these two species. Compared with N. tabacum, the nucleotide substitution in the inverted repeat was much lower than that in the single-copy region. The present work confirms that the chloroplast genome from N. tabacum was derived from an ancestor of N. sylvestris, and suggests that the rate of nucleotide substitution of the chloroplast genomes from N. tabacum and N. sylvestris is very low. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

8.
9.
10.
A gene, frxC, which is unique to the chloroplast genome of the liverwort Marchantia polymorpha, has sequence similarity to nifH, the product of which is an iron protein of a nitrogenase. Although frxC is expressed to produce a protein in liverwort chloroplasts, its function is not known. Using a probe of liverwort chloroplast DNA, a 10.1-kb region containing a gene cluster consisting of open reading frames (ORF278-frxC-ORF469–0RF248) was isolated from the cyanobacterium Synechocystis PCC6803. In this region, frxC and ORF469 showed sequence similarities to liverwort chloroplast frxC (83%) and immediately downstream ORF465 (74%), respectively. Synechocystis frxC showed 31% amino acid sequence identity with nifHl from Clostridium pasteurianum. Additionally, Synechocystis ORF469 showed a sequence similarity (19% identity) to C. pasteurianum nifK product, which is the β subunit of a molybdenum-iron protein of a nitrogenase complex. Conservation of the gene arrangement between liverwort and Synechocystis suggests that the liverwort chloroplast frxC-ORF465 cluster may have evolved from an ancestor common to Synechocystis, and that these two genes may have been transferred to the nuclear genome in tobacco and rice during evolution.  相似文献   

11.
A cosmid library and physical maps of mitochondrial DNA (mtDNA) from a liverwort, Marchantia polymorpha, were constructed using the cosmid clones. Electrophoresis profile and the physical maps indicated that the liverwort mtDNA was approximately 183 kb long, the smallest among plant mtDNAs, and that it consisted of a single circular molecule. Southern hybridization analysis showed that genes typical to the mitochondrial genome existed in a single copy, and also that there was no incorporation of chloroplast DNA fragments into the mitochondrial genome.  相似文献   

12.
Summary Eight transfer RNA (tRNA) genes which were previously mapped to five regions of the Pisum sativum (pea) chloroplast DNA (ctDNA) have been sequenced. They have been identified as tRNAVal(GAC), tRNAAsn(GUU), tRNAArg(ACG), tRNALeu(CAA), tRNATyr(GUA), tRNAGlu(UUC), tRNAHis(GUG), and tRNAArg(UCU) by their anticodons and by their similarity to other previously identified tRNA genes from the chloroplast DNAs of higher plants or from E. gracilis. In addition,two other tRNA genes, tRNAGly (UCC) and tRNAIle(GAU), have been partially sequenced. The tRNA genes are compared to other known chloroplast tRNA genes from higher plants and are found to be 90–100% homologous. In addition there are similarities in the overall arrangement of the individual genes between different plants. The 5 flanking regions and the internal sequences of tRNA genes have been studied for conserved regions and consensus sequences. Two unusual features have been found: there is an apparent intron in the D-loop of the tRNAGly(UCC), and the tRNAGlu(UUC) contains GATTC in its T-loop.  相似文献   

13.
Genomic, proteomic, phylogenetic and evolutionary aspects of a novel gene encoding a putative chloroplast-targeted sulfate permease of prokaryotic origin in the green alga Chlamydomonas reinhardtii are described. This nuclear-encoded sulfate permease gene (SulP) contains four introns, whereas all other known chloroplast sulfate permease genes lack introns and are encoded by the chloroplast genome. The deduced amino acid sequence of the protein showed an extended N-terminus, which includes a putative chloroplast transit peptide. The mature protein contains seven transmembrane domains and two large hydrophilic loops. This novel prokaryotic-origin gene probably migrated from the chloroplast to the nuclear genome during evolution of C. reinhardtii. The SulP gene, or any of its homologues, has not been retained in vascular plants, e.g. Arabidopsis thaliana, although it is encountered in the chloroplast genome of a liverwort (Marchantia polymorpha). A comparative structural analysis and phylogenetic origin of chloroplast sulfate permeases in a variety of species is presented.  相似文献   

14.
The chloroplast genome contains information that is applicable in many scientific fields, such as plant systematics, phylogenetic reconstruction and biotechnology, because its features are highly conserved among species. To date, several complete green algal chloroplast genomes have been sequenced and assembled. In this study, the nucleotide sequence of the chloroplast genome (cpDNA) of Chlorella sorokiniana SAG 211-8k is reported and compared for the first time to the chloroplast genomes of 10 Chlorellaceae. The recently updated Chlorella sorokiniana cpDNA sequence, assembled as a circular map of 109?811 bp, encodes 113 genes. Similar to other Chlorella strains, this chloroplast genome does not show a quadripartite structure and lacks the large rRNA operon-encoding Inverted Repeat (IR). The Chlorella sorokiniana plastid encodes the tRNA(Ile)-lysidine synthetase (tilS), which is responsible for modifying the CAU anticodon of a unique tRNA. Gene ordering and clustering highlight the close relationships among Chlorella clade members and the preservation of crucial gene clusters in photosynthetic strains. The features of Chlorella sorokiniana presented here reinforce the monophyletic character of Chlorellaceae and provide important information that sheds light on chloroplast genome evolution among species of Chlorella.  相似文献   

15.
Mitochondrial genomes of plants are much larger than those of mammals and often contain conserved open reading frames (ORFs) of unknown function. Here, we show that one of these conserved ORFs is actually the gene for ribosomal protein L10 (rpl10) in plant. No rpl10 gene has heretofore been reported in any mitochondrial genome other than the exceptionally gene-rich genome of the protist Reclinomonas americana. Conserved ORFs corresponding to rpl10 are present in a wide diversity of land plant and green algal mitochondrial genomes. The mitochondrial rpl10 genes are transcribed in all nine land plants examined, with five seed plant genes subject to RNA editing. In addition, mitochondrial-rpl10-like cDNAs were identified in EST libraries from numerous land plants. In three lineages of angiosperms, rpl10 is either lost from the mitochondrial genome or a pseudogene. In two of them (Brassicaceae and monocots), no nuclear copy of mitochondrial rpl10 is identifiably present, and instead a second copy of nuclear-encoded chloroplast rpl10 is present. Transient assays using green fluorescent protein indicate that this duplicate gene is dual targeted to mitochondria and chloroplasts. We infer that mitochondrial rpl10 has been functionally replaced by duplicated chloroplast counterparts in Brassicaceae and monocots.  相似文献   

16.
A pseudogene, nad7, which has significant sequence similarity (66.7% amino acid identity) with the bovine nuclear gene for a 49 kDa subunit of the NADH dehydrogenase (NADH:ubiquinone oxidoreductase, EC 1.6.99.3), has been identified on the mitochondrial genome of the liverwort Marchantia polymorpha. The predicted coding region, which includes six termination codons, is actively transcribed into RNA molecules of 16 and 9.6 kb in length, but RNA splicing products were not detected in the liverwort mitochondria. Genomic DNA blot analysis and RNA blot analysis using poly(A)+ RNA suggest that a structurally related nuclear gene encodes the mitochondrial ND7 polypeptide. These results imply that this nad7 is a relic of a gene transfer event from the mitochondrial genome into the nuclear genome during mitochondrial evolution in M. polymorpha.Communicated by R. G. Herrmann  相似文献   

17.
The rpl33-rps18 gene cluster of the maize chloroplast genome has been mapped and sequenced. The derived amino acid sequence of the S18 protein shows a 7-fold repeat of a hydrophilic heptapeptide domain, S K Q P F R K, in the N-terminal region. Such a sequence is absent in the E. coli S18 and in the chloroplast S18 of the lower plant liverwort. In tobacco and rice chloroplast S18 it is present 2 and 6 times, respectively. Thus a long N-terminal repeat (resembling in composition the large C-terminal heptapeptide repeat in the eukaryotic pol II) appears to be characteristic of monocot cereal S18.  相似文献   

18.
A simple method has been developed for DNA isolation from purified chloroplasts of Marchantia polymorpha L. (liverwort) cell suspension cultures. Purified chloroplasts exhibited ribulose-bisphosphate carboxylase activity comparable to that of Fraction 1 protein obtained from Nicotiana tabacum. Fraction 1 protein isolated from purified chloroplasts clearly showed large and small subunits when subjected to isoelectric focussing. These results indicate that the purified chloroplasts are intact. DNA isolated from purified chloroplasts showed a covalently closed circular form, and restriction endonuclease digestions of the chloroplast DNA showed clear fragmentation indicating that the DNA was sufficiently free from those of other organelles.  相似文献   

19.
A pseudogene, ψnad7, which has significant sequence similarity (66.7% amino acid identity) with the bovine nuclear gene for a 49 kDa subunit of the NADH dehydrogenase (NADH:ubiquinone oxidoreductase, EC 1.6.99.3), has been identified on the mitochondrial genome of the liverwort Marchantia polymorpha. The predicted coding region, which includes six termination codons, is actively transcribed into RNA molecules of 16 and 9.6 kb in length, but RNA splicing products were not detected in the liverwort mitochondria. Genomic DNA blot analysis and RNA blot analysis using poly(A)+ RNA suggest that a structurally related nuclear gene encodes the mitochondrial ND7 polypeptide. These results imply that this ψnad7 is a relic of a gene transfer event from the mitochondrial genome into the nuclear genome during mitochondrial evolution in M. polymorpha.  相似文献   

20.
It is generally believed that bryophytes are the earliest land plants. However, the phylogenetic relationships among bryophytes, including mosses, liverworts and hornworts, are not clearly resolved. To obtain more information on the earliest land plants, we determined the complete nucleotide sequence of the chloroplast genome from the hornwort Anthoceros formosae. The circular double-stranded DNA of 161 162 bp is the largest genome ever reported among land plant chloroplasts. It contains 76 protein, 32 tRNA and 4 rRNA genes and 10 open reading frames (ORFs), which are identical with the chloroplast genome of the other green plants analyzed. The major difference is a larger inverted repeat than that of the liverwort Marchantia, Anthoceros contains an excess of ndhB and rps7 genes and the 3′ exon of rps12. The genes matK and rps15, commonly found in the chloroplast genomes of land plants, are pseudogenes. The intron of rrn23 is the first finding in the known chloroplast genomes of land plants. A striking feature of the hornwort chloroplast is that more than half of the protein-coding genes have nonsense codons, which are converted into sense codons by RNA editing. Maximum-likelihood (ML) analysis, based on 11 518 amino acid sites of 52 proteins encoded in the chloroplast genomes of the green plants, placed liverworts as the sister to all other land plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号