首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rice (Oryza sativa ssp. indica) is an important economic crop in many countries. Although a variety of conventional methods have been developed to improve this plant, manipulation by genetic engineering is still complicated. We have established a system of multiple shoot regeneration from rice shoot apical meristem. By use of MS medium containing 4 mg L−1 thidiazuron (TDZ) multiple shoots were successfully developed directly from the meristem without an intervening callus stage. All rice cultivars tested responded well on the medium and regenerated to plantlets that were readily transferred to soil within 5–8 weeks. The tissue culture system was suitable for Agrobacterium-mediated transformation and different factors affecting transformation efficiency were investigated. Agrobacterium strain EHA105 containing the plasmid pCAMBIA1301 was used. The lowest concentration of hygromycin B in combined with either 250 mg L−1 carbenicillin or 250 mg L−1 cefotaxime to kill the rice shoot apical meristem was 50 mg L−1 and carbenicillin was more effective than cefotaxime. Two-hundred micromolar acetosyringone had no effect on the efficiency of transient expression. Sonication of rice shoot apical meristem for 10 s during bacterial immersion increased transient GUS expression in three-day co-cultivated seedlings. The gus gene was found to be integrated into the genome of the T0 transformant plantlets.  相似文献   

2.
Agrobacterium tumefaciens-mediated transformation system for perilla (Perilla frutescens Britt) was developed. Agrobacterium strain EHA105 harboring binary vector pBK I containing bar and γ-tmt cassettes or pIG121Hm containing nptII, hpt, and gusA cassettes were used for transformation. Three different types of explant, hypocotyl, cotyledon and leaf, were evaluated for transformation and hypocotyl explants resulted in the highest transformation efficiency with an average of 3.1 and 2.2%, with pBK I and pIG121Hm, respectively. The Perilla spp. displayed genotype-response for transformation. The effective concentrations of selective agents were 2 mg l−1 phosphinothricin (PPT) and 150 mg l−1 kanamycin, respectively, for shoot induction and 1 mg l−1 PPT and 125 mg l−1 kanamycin, respectively, for shoot elongation. The transformation events were confirmed by herbicide Basta spray or histochemical GUS staining of T0 and T1 plants. The T-DNA integration and transgene inheritance were confirmed by PCR and Southern blot analysis of random samples of T0 and T1 transgenic plants.  相似文献   

3.
We developed an efficient gene transfer method mediated by Agrobacterium tumefaciens for introgression of new rice for Africa (NERICA) cultivars, which are derivatives of interspecific hybrids between Oryza glaberrima Steud. and O. sativa L. Freshly isolated immature embryos were inoculated with A. tumefaciens LBA4404 that harbored binary vector pBIG-ubi::GUS or pIG121Hm, which each carried a hygromycin-resistance gene and a GUS gene. Growth medium supplemented with 500 mg/l cefotaxime and 20 mg/l hygromycin was suitable for elimination of bacteria and selection of transformed cells. Shoots regenerated from the selected cells on MS medium containing 20 g/l sucrose, 30 g/l sorbitol, 2 g/l casamino acids, 0.25 mg/l naphthaleneacetic acid, 2.5 mg/l kinetin, 250 mg/l cefotaxime, and 20 mg/l hygromycin. The shoots developed roots on hormone-free MS medium containing 30 mg/l hygromycin. Integration and expression of the transgenes were confirmed by PCR, Southern blot analysis, and histochemical GUS assay. Stable integration, expression, inheritance, and segregation of the transgenes were demonstrated by molecular and genetic analyses in the T0 and T1 generations. Most plants were normal in morphology and fertile. The transformation protocol produced stable transformants from 16 NERICA cultivars. We also obtained transformed plants by inoculation of calluses derived from mature seeds, but the frequency of transformation was lower and sterility was more frequent.  相似文献   

4.
This paper reports on the successful Agrobacterium-mediated transformation of oat, and on some factors influencing this process. In the first step of the experiments, three cultivars, two types of explant, and three combinations of strain/vectors, which were successfully used for transformation of other cereals were tested. Transgenic plants were obtained from the immature embryos of cvs. Bajka, Slawko and Akt and from leaf base explants of cv. Bajka after transformation with A. thumefaciens strain LBA4404(pTOK233). The highest transformation rate (12.3%) was obtained for immature embryos of cv. Bajka. About 79% of the selected plants proved to be transgenic; however, only 14.3% of the T0 plants and 27.5% of the T1 showed GUS expression. Cell competence of both types of explant differed in terms of their transformation ability and transgene expression. The next step of the study was to test the suitability for oat transformation of the pGreen binary vector combined with different selection cassettes: nptII or bar under the nos or 35S promoter. Transgenic plants were selected in combinations transformed with nos::nptII, 35S::nptII and nos::bar. The highest transformation efficiency (5.3%) was obtained for cv. Akt transformed with nos::nptII. A detailed analysis of the T0 plants selected from a given callus line and their progeny revealed that they were the mixture of transgenic, chimeric-transgenic and non-transgenic individuals. Southern blot analysis of T0 and T1 showed simple integration pattern with the low copy number of the introduced transgenes.  相似文献   

5.
Four amino acids were variable between the ‘active’ indica-type and ‘inactive’ japonica-type soluble starch synthase IIa (SSIIa) of rice plants; Glu-88 and Gly-604 in SSIIa of indica-cultivars IR36 and Kasalath were replaced by Asp-88 and Ser-604, respectively, in both japonica cultivars Nipponbare and Kinmaze SSIIa, whereas Val-737 and Leu-781 in indica SSIIa were replaced by Met-737 in cv. Nipponbare and Phe-781 in cv. Kinmaze SSIIa, respectively. The SSIIa gene fragments shuffling experiments revealed that Val-737 and Leu-781 are essential not only for the optimal SSIIa activity, but also for the capacity to synthesize indica-type amylopectin. Surprisingly, however, a combination of Phe-781 and Gly-604 could restore about 44% of the SSIIa activity provided that Val-737 was conserved. The introduction of the ‘active’ indica-type SSIIa gene enabled the japonica-type cv. Kinmaze to synthesize indica-type amylopectin. The starch in the transformed japonica rice plants exhibited gelatinization-resistant properties that are characteristic of indica-rice starch. Transformed lines expressing different levels of the IR36 SSIIa protein produced a variety of starches with amylopectin chain-length distribution patterns that correlated well with their onset temperatures of gelatinization. The present study confirmed that the SSIIa activity determines the type of amylopectin structure of rice starch to be either the typical indica-type or japonica-type, by playing a specific role in the synthesis of the long B1 chains by elongating short A and B1 chains, notwithstanding the presence of functional two additional SSII genes, a single SSI gene, two SSIII genes, and two SSIV genes in rice plants.  相似文献   

6.
A reproducible and highly efficient protocol for Agrobacterium tumefaciens-mediated transformation of indica rice (Oryza sativa L. subsp. indica cv. ADT 43) was established. Prior to transformation, embryogenic callus were induced from mature seeds incubated on Linsmaier and Skoog (LS) medium supplemented with 2.5 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.0 mg l−1 thiamine-HCl. Callus, intact mature seeds, and other in vitro derived explants (leaf bases, leaf blades, coleoptiles, and root-tips) were immersed in a bacterial suspension culture of A. tumefaciens strain EHA 105, OD600 of 0.8, and co-cultivated on LS medium for 2 days in the dark at 25 ± 2°C. Based on GUS expression analysis, 10 min incubation time of explants on a co-cultivation medium containing 100 μM acetosyringone was optimum. Following β-glucuronidase (GUS) assay and polymerase chain reaction (PCR) analysis, transformants were identified. Stable integration of the transgene was confirmed in four putatively transformed T0 plants by Southern blot analysis. The copy number of the transgene in these lines, one to two, was then determined. Among the observations made, necrosis of co-cultivated explants was a problem, as well as sensitivity of callus to Agrobacterium infection. Levels of necrosis could be minimized following co-cultivation of explants in a medium consisting of 30% LS and containing 10 g l−1 (14), polyvinyl pyrrolidone, 10% coconut water, and 250 mg l−1 timentin (15:1). This latter medium also increased the final transformation efficiency to 15.33%.  相似文献   

7.
Leaf piece explants of five Brassica juncea (L.) Czern. cultivars were transformed with an Agrobacterium tumefaciens strain EHA105 harboring the plasmid pCAMBIA1301, which contains the β-glucuronidase (uidA) and hygromycin phosphotransferase (hpt) genes under the control of cauliflower mosaic virus 35S (CaMV35S) promoter. Transgenic plants were regenerated on Murashige and Skoog (MS) medium fortified with 8.87 μM 6-benzylaminopurine, 0.22 μM 2,4-dichlorophenoxyacetic acid, and 20 μM silver nitrate in the presence of 30 mg/l hygromycin. When co-culture took place in the presence of 100 μM acetosyringone, the efficiency of stable transformation was found to be approximately 19% in the T 0 generation, with the transgenic plants and their progeny showing constitutive GUS expression in different plant organs. Southern blot hybridization of uidA and hpt genes confirmed transgene integration within the genome of transformed plants of each cultivar. Inheritance of hpt gene for single copy T-DNA inserts showed a 3:1 pattern of Mendelian segregation in progeny plants through germination of T 1 seeds on MS medium containing 30 mg/l hygromycin. The protocol described here reports superior transformation efficiency over previously published protocols and should contribute to enhanced biotechnology applications in B. juncea.  相似文献   

8.
A simple and reproducible Agrobacterium-mediated transformation protocol for a recalcitrant legume plant, lentil (Lens culinaris M.) is reported. Application of wounding treatments and efficiencies of three Agrobacterium tumefaciens strains, EHA105, C58C1, and KYRT1 were compared for T-DNA delivery into lentil cotyledonary node tissues. KYRT1 was found to be on average 2.8-fold more efficient than both EHA105 and C58C1 for producing transient β-glucuronidase (GUS) gene (gus) expression on cotyledonary petioles. Wounding of the explants, use of an optimized transformation protocol with the application of acetosyringone and vacuum infiltration treatments in addition to the application of a gradually intensifying selection regime played significant roles in enhancing transformation frequency. Lentil explants were transformed by inoculation with Agrobacterium tumefaciens strain, KYRT1 harboring a binary vector pTJK136 that carried neomycin phosphotransferase gene (npt-II) and an intron containing gusA gene on its T-DNA region. GUS-positive shoots were micrografted on lentil rootstocks. Transgenic lentil plants were produced with an overall transformation frequency of 2.3%. The presence of the transgene in the lentil genome was confirmed by GUS assay, PCR, RT-PCR and Southern hybridization. The transgenic shoots grafted on rootstocks were successfully transferred to soil and grown to maturity in the greenhouse. GUS activity was detected in vegetative and reproductive organs of T0, T1, T2 and T3 plants. PCR assays of T1, T2 and T3 progenies confirmed the stable transmission of the transgene to the next generations.  相似文献   

9.
Genetic transformation of creeping bentgrass mediated by Agrobacterium tumefaciens has been achieved. Embryogenic callus initiated from seeds (cv. Penn-A-4) was infected with an A. tumefaciens strain (LBA4404) harboring a super-binary vector that contained an herbicide-resistant bar gene driven either by the CaMV 35S promoter or a rice ubiquitin promoter. Plants were regenerated from 219 independent transformation events. The overall stable transformation efficiency ranged from 18% to 45%. Southern blot and genetic analysis confirmed transgene integration in the creeping bentgrass genome and normal transmission and stable expression of the transgene in the T1 generation. All independent transformation events carried one to three copies of the transgene, and a majority (60–65%) contained only a single copy of the foreign gene with no apparent rearrangements. We report here the successful use of Agrobacterium for the large-scale production of transgenic creeping bentgrass plants with a high frequency of a single-copy transgene insertion that exhibit stable inheritance patterns.Abbreviations 2,4-D: 2,4-Dichlorophenoxyacetic acid - bar: Bialaphos resistance gene - GUS: -Glucuronidase - PPT: Phosphinothricin - ubi: Ubiquitin Communicated by J.M. Widholm  相似文献   

10.
Cotton transgenics for resistance against cotton leaf curl disease using antisense movement protein gene (AV2) were developed in an Indian variety (F846) via Agrobacterium-mediated transformation using the protocol developed previously. A binary vector pPZP carrying the antisense AV2 (350 bp) gene along with the nptII gene was used. Transgenic nature of the putative transgenics was confirmed by molecular analysis. Shoots were induced on selection medium and subcultured on rooting medium containing IBA and 75 mg l–1 kanamycin. Transgenic plants were recovered in 12–16 weeks from the time of gene transfer to establishment in pots. Preliminary analysis of the field-established plantlets was conducted by PCR. T1 plants were obtained from T0 seeds, the presence of the AV2 and nptIIgenes in the transgenic plants was verified by PCR and integration of T-DNA with AV2 into the plant genome of putative transgenics was further confirmed by Southern blot analysis. Several T1 lines were maintained in the greenhouse. Progeny analysis of these plants by PCR analysis showed a classical Mendelian pattern of inheritance.  相似文献   

11.
An Agrobacterium tumefaciens-based transformation procedure was developed for the desiccation tolerant species Lindernia brevidens. Leaf explants were infected with A. tumefaciens strain GV3101 harbouring a binary vector that carried the hygromycin resistance gene and an eGFP reporter gene under the control of a native dehydration responsive LEA promoter (Lb2745pro). PCR analysis of the selected hygromycin-resistant plants revealed that the transformation rates were high (14/14) and seeds were obtained from 13/14 of the transgenic lines. A combination of RNA gel blot and microscopic analyses demonstrated that eGFP expression was induced upon dehydration and ABA treatment. Comparison with existing procedures used to transform the well studied resurrection plant and close relative, Craterostigma plantagineum, revealed that the transformation process is both rapid and leads to the production of viable seed thus making L. brevidens a candidate species for functional genomics approaches to determine the genetic basis of desiccation tolerance.  相似文献   

12.
Xanthomonas oryzae pv. oryzae is the pathogen that causes bacterial leaf blight in rice. Bacterial leaf blight is the main cause for severe rice underproduction in many countries. However, with conventional methods it is difficult to quickly and reliably distinguish this pathogen from other closely related pathogenic bacteria, especially X. oryzae pv. oryzicola, the causal organism of bacterial leaf streak in rice. We have developed a novel and highly sensitive real-time method for the identification of this specific bacteria based on a TaqMan probe. This probe is designed to recognize the sequence of a putative siderophore receptor gene cds specific to X. oryzae pv. oryzae, and can be identified from either a bacterial culture or naturally infected rice seeds and leaves in only 2 h. The sensitivity of the method is 100 times higher than that of the current polymerase chain reaction (PCR) gel electrophoresis method for diagnosis.  相似文献   

13.
Fourteen phytopathogenic fungi were tested for their ability to transform the major ginsenosides to the active minor ginsenoside Rd. The transformation products were identified by TLC and HPLC, and their structures were assigned by NMR analysis. Cladosporium fulvum, a tomato pathogen, was found to transform major ginsenoside Rb1 to Rd as the sole product. The following optimum conditions for transforming Rd by C. fulvum were determined: the time of substrate addition, 24 h; substrate concentration, 0.25 mg ml−1; temperature, 37°C; pH 5.0; and biotransformation period, 8 days. At these optimum conditions, the maximum yield was 86% (molar ratio). Further, a preparative scale transformation with C. fulvum was performed at a dose of 100 mg of Rb1 by a yield of 80%. This fungus has potential to be applied on the preparation for Rd in pharmaceutical industry.  相似文献   

14.
The dwarf pomegranate (Punica granatum L. var. nana) is a dwarf ornamental plant that has the potential to be the model plant of perennial fruit trees because it bears fruits within 1 year of seedling. We established an Agrobacterium-mediated transformation system for the dwarf pomegranate. Adventitious shoots regenerated from leaf segments were inoculated with A. tumefaciens strain EHA105 harboring the binary vector pBin19-sgfp, which contains neomycin phosphotransferase (npt II) and green fluorescent protein (gfp) gene as a selectable and visual marker, respectively. After co-cultivation, the inoculated adventitious shoots were cut into small pieces to induce regeneration, and then selected on MS medium supplemented with 0.5 μM α-naphthaleneacetic acid (NAA), 5 μM N6-benzyladenine (BA), 0.3% gellan gum, 50 mg/l kanamycin, and 10 mg/l meropenem. Putative transformed shoots were regenerated after 6–8 months of selection. PCR and PCR-Southern blot analysis revealed the integration of the transgene into the plant genome. Transformants bloomed and bore fruits within 3 months of being potted, and the inheritance of the transgene was confirmed in T1 generations. The advantage of the transformation of dwarf pomegranate was shown to be the high transformation rate. The establishment of this transformation system is invaluable for investigating fruit-tree-specific phenomena.  相似文献   

15.
Six pea (Pisum sativum L.) cultivars (Adept, Komet, Lantra, Olivin, Oskar, Tyrkys) were transformed via Agrobacterium tumefaciens strain EHA105 with pBIN19 plasmid carrying reporter uidA (β-glucuronidase, GUS, containing potato ST-LS1 intron) gene under the CaMV 35S promoter, and selectable marker gene nptII (neomycin phosphotransferase II) under the nos promoter. Two regeneration systems were used: continual shoot proliferation from axillary buds of cotyledonary node in vitro, and in vivo plant regeneration from imbibed germinating seed with removed testa and one cotyledon. The penetration of Agrobacterium into explants during co-cultivation was supported by sonication or vacuum infiltration treatment. The selection of putative transformants in both regeneration systems carried out on media with 100 mg dm−3 kanamycin. The presence of introduced genes was verified histochemically (GUS assay) and by means of PCR and Southern blot analysis in T0 putative transformants and their seed progenies (T1 to T3 generations). Both methods, but largely in vivo approach showed to be genotype independent, resulting in efficient and reliable transformation system for pea. The in vivo approach has in addition also benefit of time and money saving, since transgenic plants are obtained in much shorter time. All tested T0 – T3 plants were morphologically normal and fertile.This research was supported by the National Agency for Agricultural Research (grants No. QE 0046 and QF 3072) and Ministry of Education of the Czech Republic (grant No. ME 433).  相似文献   

16.
We have developed a new procedure for Agrobacterium-mediated transformation of plants in the genus Beta using shoot-base as the material for Agrobacterium infection. The frequency of regeneration from shoot bases was analyzed in seven accessions of sugarbeet (Beta vulgaris) and two accessions of B. maritima to select materials suitable for obtaining transformed plants. The frequency of transformation of the chosen accessions using Agrobacterium strain LBA4404 and selection on 150-mg/l kanamycin was found to be higher than that in previously published methods. Genomic DNA analysis and -glucuronidase reporter assays showed that the transgene was inherited and expressed in subsequent generations. In our method, shoot bases are prepared by a simple procedure, and transformation does not involve the callus phase, thus minimizing the occurrence of somaclonal variations.  相似文献   

17.
We report here an in planta method to produce transgenic Brassica napus plants. The procedure included Agrobacterium-mediated inoculation of plants at various development stages along with a vacuum infiltration step. The flowering stage appeared to be the most receptive stage for transformation and production of transgenic plants. In some cases, the flowering stage was induced either by cold treatment or by high density planting. Molecular and genetic analysis revealed that single and multiple copy events were generated and that the transgenes were transmitted to the T1 and T2 progeny in a Mendelian fashion.Abbreviations AFP Adult flowering plants - ELISA Enzyme linked immunosorbent assay - GS Germinating seedlings - GUS -Glucuronidase - ISFP Induced small flowering plants - MS Murashige and Skoog - PPO Protoporphyrinogen oxidase - TE Tris-EDTA buffer - YEP Yeast extract-peptone mediumCommunicated by W.A. Parrott  相似文献   

18.
A Sebacinales species was recovered from a clone library made from a pooled rhizosphere sample of Nicotiana attenuata plants from 14 native populations. Axenic cultures of the related species, Piriformospora indica and Sebacina vermifera, were used to examine their effects on plant performance. Inoculation of N. attenuata seeds with either fungus species stimulated seed germination and increased growth and stalk elongation. S. vermifera inoculated plants flowered earlier, produced more flowers and matured more seed capsules than did non-inoculated plants. Jasmonate treatment during rosette-stage growth, which slows growth and elicits herbivore resistance traits, erased differences in vegetative, but not reproductive performance resulting from S. vermifera inoculation. Total nitrogen and phosphorous contents did not differ between inoculated and control plants, suggesting that the performance benefits of fungal inoculation did not result from improvements in nutritional status. Since the expression of trypsin proteinase inhibitors (TPI), defensive proteins which confer resistance to attack from Manduca sexta larvae, incur significant growth and fitness costs for the plant, we examined the effect of S. vermifera inoculation on herbivore resistance and TPI activity. After 10 days of feeding on S. vermifera-inoculated plants, larval mass was 46% higher and TPI activity was 48% lower than that on non-inoculated plants. These results suggest that Sebacina spp. may interfere with defense signaling and allow plants to increase growth rates at the expense of herbivore resistance mediated by TPIs.  相似文献   

19.
Using an Agrobacterium-mediated transformation method based on wounding cultured immature seeds with carborundum (600 mesh) in liquid, auxin-regulated tobacco glutathione S -transferase (GST) (NT107) constructs were used to transform Dianthus superbusL. A 663 bp DNA band was found in the transgenic plant genome by PCR analysis using NT107-1 and NT107-2 primers, and a Southern blot analysis showed that the DIG-labelled GST gene was hybridized to the expected amplified genomic DNA fragment from transgenic D. superbus. An overexpression of NT107 led to a twofold increase in GST-specific activity compared to the non-transgenic control plants, and the GST overexpression plants showed an enhanced acclimatization in the soil. To investigate whether an increased expression of GST could affect the resistance of photosynthesis to environmental stress, these plants were subjected to drought and various light intensities from 100 to 3000 mol m–2s–1. Copper accumulation and the translocation rate were also analysed in the transgenic lines, and the GST overexpression plants were found to synthesize phytochelatin (PC), which functions by sequestering and detoxifying excess copper ions.These two authors contributed equally to this work  相似文献   

20.
The Agrobacterium-mediated transformation was done in rice (Oryza sativa L. var. indica) cv. HKR126 and elite cross-bred cv. Pusa Basmati1 (PB1), using strain LBA4404 containing pCAMBIA1300 cloned with gene cassettes; potato proteinase inhibitor and Bacillus thuringiensis endotoxin (plasmid JDW53) or mannitol-1-phosphate dehydrogenase (plasmid RKJ108). Co-cultivation with scutellar-calli derived from mature seeds showed stable and highly efficient transformation. In cvs. HKR126 and PB1, 35 % and 41 % of hygromycin resistant calli were obtained. The transformation efficiency in PB1 (22.0 %) was much higher than in HKR126 (12.5 %). Similarly, PB1 had higher plant regeneration efficiency than HKR126. The shoots regenerated per callus were, 3–4 in HKR126 and 5–6 in PB1. The transformation efficiency with pRKJ108 (18.6 %) was higher than pJDW53 (15.9 %). Polymerase chain reaction (PCR) analysis showed the presence of transgenes in regenerated transgenic plants of both cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号