首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Browsing by exotic mule deer on Santa Catalina Island (SCI) off the coast of southern California may diminish the post-fire resilience of native shrublands. To assess this, deer exclosures were established following a wildfire to monitor post-fire recovery of three dominant, native shrub species (Heteromeles arbutifolia, Rhus integrifolia, and Rhamnus pirifolia). Post-fire resprout growth, mortality, and tissue water status as well as pre- and post-fire shrub density and cover were measured inside and outside of deer exclosures. We found that deer browsing significantly limited post-fire resprout growth and led to increased mortality of resprouting H. arbutifolia shrubs (88 % mortality outside compared to 11 % inside exclosures). Post-fire resprouts maintained favorable water status during the study despite drought conditions, indicating that water stress was not a proximate cause of resprout mortality. Deer browsing resulted in a >93 % reduction in canopy coverage of dominant shrub species. The dramatic reduction of native shrubs at this site may create opportunities for displacement by exotic species, resulting in eventual vegetation-type conversion. The observed link between intense browsing and post-fire shrub mortality provides much needed information concerning the environmental impact of exotic deer on SCI and illustrates the interaction between exotic herbivores and fire on an island system.  相似文献   

2.
For four consecutive years, following the fires in November 1993, temporal variations in species richness, cover and biomass of component plant groups in early post-fire chaparral succession were monitored on different aspects at the Stunt Ranch Santa Monica Mountains Reserve, southern California. Plant groups were categorized based on growth form, life form, ability to fix nitrogen, geographic origin and regeneration strategies. North-facing slopes exhibited higher species richness, higher species turnover rate over time and faster vegetation recovery in terms of biomass accumulation and return to pre-fire species composition. This was probably due to higher species richness and biomass of nitrogen-fixing species found on north-facing slopes in comparison to south-facing slopes. On both north- and south-facing slopes, annuals had the highest species turnover rate, followed by herbaceous perennials and shrubs. In the first four post-fire years, annual species were the largest floristic group, but herbaceous perennials and shrubs were the major contributors to community biomass. Nitrogen-fixing species and exotics contributed significantly to early post-fire community structure. Although the general trends in post-fire succession are clear in terms of temporal changes in the relative proportions of different plant groups, environmental variation and the nature of plant life histories of component species, especially dominant species, could alter such trends significantly.  相似文献   

3.
Question. Can strategic burning, targeting differing ecological characteristics of native and exotic species, facilitate restoration of native understorey in weed‐invaded temperate grassy eucalypt woodlands? Location. Gippsland Plains, eastern Victoria, Australia. Methods. In a replicated, 5‐year experimental trial, the effects of repeated spring or autumn burning were evaluated for native and exotic plants in a representative, degraded Eucalyptus tereticornis grassy woodland. Treatments aimed to reduce seed banks and modify establishment conditions of exotic annual grasses, and to exhaust vegetative reserves of exotic perennial grasses. Treatments were applied to three grassland patch types, dominated by the native grass Austrodanthonia caespitosa, ubiquitous exotic annuals, or the common exotic perennial grass Paspalum dilatatum. Results. The dominant native grass Austrodanthonia caespitosa and native forbs were resilient to repeated fires, and target exotic annuals and perennials were suppressed differentially by autumn and spring fires. Exotic annuals were also suppressed by drought, reducing the overall treatment effects but indicating important opportunities for restoration. The initially sparse exotic geophyte Romulea rosea increased in cover with fire and the impact of this species on native forbs requires further investigation. There was minimal increase in diversity of subsidiary natives with fire, probably owing to lack of propagules. Conclusions. While fire is often considered to increase ecosystem invasibility, our study showed that strategic use of fire, informed by the relative responses of available native and exotic taxa, is potentially an effective step towards restoration of weed‐invaded temperate eucalypt woodlands.  相似文献   

4.
Summary Regeneration methods for coastal sage srub vegetation after fire were studied in the coastal Santa Monica Mountains of southern California. Six sites were sampled two years after a large fire of fall, 1978. The intensity of fire varied. Foliar cover and flowering incidence were recorded for individuals regenerating by resprouting or from seed. Resprouting plants contributed most to post-fire recovery, comprising 95% of the relative foliar shrub cover; 84% of resprout and 47% of seedling cover had flowered. An ANOVA of reproductive mode and fire intensity indicates that resprout total cover and individual size are significantly greater than those of seedlings, regardless of fire intensity. Among sites the average foliar cover of resprouts exceeded that of seedlings by factors ranging from 9 to 63. All coastal sage species examined resprout, although the potential vigor of resprouting appears to vary widely within genera (e.g. Encelia, Eriogonum, and Salvia) and even within species. In the second growing season following fire seedling density increased due to seeds shed by resprouted shrubs. Most of the cover on these stands of coastal sage scrub is destined to be either crown-sprouted individuals or their progeny.  相似文献   

5.
The 2002 Hayman Fire burned with mixed severity across 55,800 ha of montane Colorado forest, including pre-existing plots that were originally measured for understory plant composition and cover in 1997. We examined the influence of the Hayman Fire on exotic plants by remeasuring these plots annually from 2003 to 2007. We found that (1) exotic richness and cover generally increased as fire severity and time since fire increased; (2) the exotic species present in a plot before the fire were also largely present in the plot postfire, regardless of fire severity; (3) most of the new postfire species in a plot were present elsewhere in the study area before the fire, although some new species were truly new invaders that were not found in prefire surveys; (4) lightly burned riparian forests were not more susceptible to exotic invasion than surrounding uplands that burned with similar severity; and (5) native and exotic richness and cover were positively correlated or uncorrelated for all fire severities and years. Our findings indicate that exotics were stimulated by the Hayman Fire, especially in severely burned areas. However, exotic richness and cover remain low as of 2007, and correlations between native and exotic richness and cover suggest that exotics have not yet interfered with native understory development. Therefore, we conclude that exotic plants are not a major ecological threat at present, but recommend that monitoring be continued to evaluate if they will pose a threat in future years.  相似文献   

6.
Succession of chaparral shrubs was studied for the first 4 years after fire on the four major slope faces at three elevations in southern California. Although total cover fluctuated from year to year, shrub cover increased annually through the third year. There was little or no increase in shrub cover between the third and fourth years. Four years after fire the shrubs covered 55% ground surface at the highest elevation site but only 28% at the lowest elevation site. Shrub cover was similar between slope faces with one exception; at the lowest elevation site shrub cover was twice as great on the north and east-facing slopes as on the south and west-facing slopes. Post-fire recovery of shrubs was by seedlings and/or resprouts. Yucca whipplei was an exception in that it did not resprout once the aboveground parts were killed nor did seedlings establish after fire, however the aboveground parts of many Y. whipplei survived the fire. Species which reproduced entirely by seed did so in the first post-fire year from soil-stored seed with the exception of Ceanothus greggii at the highest elevation site. This species was entirely absent the first year after fire but abundant in the second year. Species producing both resprouts and seedlings varied from site to site in the proportion of resprouts:seedlings. Between 83–100% of the post-fire populations of Cercocarpus betuloides, Arctostaphylos glandulosa, and Xylococcus bicolor were resprouts whereas 12–13% of Ceanothus tomentosus were resprouts. For Adenostoma fasciculatum, resprouts constituted 27–54% of the population at the lowest elevation and 65–94% at the highest elevation; whereas, the Quercus dumosa population was 100% resprouts at the lowest elevation and 31–67% resprouts at the highest elevation. Data are presented on the height of resprouts and seedlings for all species at the end of the first post-fire year.  相似文献   

7.
Woody plant encroachment into open grasslands occurs worldwide and causes multiple ecological and management impacts. Prescribed fire could be used to conserve grassland habitat but often has limited efficacy because many woody plants resprout after fire and rapidly reestablish abundance. If fire‐induced mortality could be increased, prescribed fire would be a more effective management tool. In California's central coast, shrub encroachment, especially of Baccharis pilularis (coyote brush), is converting coastal prairie into shrub‐dominated communities, with a consequent loss of native herbaceous species and open grassland habitat. B. pilularis has not been successfully controlled with single prescribed fire events because the shrub resprouts and reestablishes cover within a few years. We investigated whether two consecutive annual burns would control B. pilularis by killing resprouting shrubs, without reducing native herbaceous species or encouraging invasive plants. As expected, resprouting did occur; however, 2 years after the second burn, B. pilularis cover on burned plots was only 41% of the cover on unburned plots. Mortality of B. pilularis more than doubled following the second burn, likely maintaining a reduction in B. pilularis cover for longer than a single burn would have. Three native coastal prairie perennial grasses did not appear to be adversely affected by the two burns, nor did the burns result in increased cover of invasive species. Managers wanting to restore coastal prairie following B. pilularis encroachment should consider two consecutive annual burns, especially if moderate fire intensity is achievable.  相似文献   

8.
Keeley JE  Brennan TJ 《Oecologia》2012,169(4):1043-1052
Disturbance plays a key role in many alien plant invasions. However, often the main driver of invasion is not disturbance per se but alterations in the disturbance regime. In some fire-adapted shrublands, the community is highly resilient to infrequent, high-intensity fires, but changes in the fire regime that result in shorter fire intervals may make these communities more susceptible to alien plant invasions. This study examines several wildfire events that resulted in short fire intervals in California chaparral shrublands. In one study, we compared postfire recovery patterns in sites with different prefire stand ages (3 and 24 years), and in another study we compared sites that had burned once in four years with sites that had burned twice in this period. The population size of the dominant native shrub Adenostoma fasciculatum was drastically reduced following fire in the 3-year sites relative to the 24-year sites. The 3-year sites had much greater alien plant cover and significantly lower plant diversity than the 24-year sites. In a separate study, repeat fires four years apart on the same sites showed that annual species increased significantly after the second fire, and alien annuals far outnumbered native annuals. Aliens included both annual grasses and annual forbs and were negatively correlated with woody plant cover. Native woody species regenerated well after the first fire but declined after the second fire, and one obligate seeding shrub was extirpated from two sites by the repeat fires. It is concluded that some fire-adapted shrublands are vulnerable to changes in fire regime, and this can lead to a loss of native diversity and put the community on a trajectory towards type conversion from a woody to an herbaceous system. Such changes result in alterations in the proportion of natives to non-natives, changes in functional types from deeply rooted shrubs to shallow rooted grasses and forbs, increased fire frequency due to the increase in fine fuels, and changes in carbon storage.  相似文献   

9.
Community changes following shrub invasion of grassland   总被引:8,自引:0,他引:8  
Summary We studied the development of the shrub Baccharis pilularis ssp consanguinea and its effects on herbs of the annual grassland in Northern California. A series of shands of Baccharis was sampled of ages ranging from 1 yr to>9 yr, representing most of the life cycle of the shrub. In each stand we examined shrub biomass, structure and litterfall. We also determined cover and biomass of all herbaceous species and estimated seed production, seed rain and storage of seed in the soil. Abundances of all herbaceous species declined greatly after Baccharis formed a closed canopy at 2–3 yr, and little seed of herbaceous species was either dispersed into shrub stands or stored in the soil. Exclosures suggested that herbivory by small mammals in the closed shrub stands may be important in reducing the abundance of herbaceous species following shrub invasion of grassland.  相似文献   

10.
Abstract. Grass and herb cover, and woody plant densities were measured on 25 native and 25 exotic grassland plots in southeastern Arizona between 1984 and 1990. At least 40 yr previously, the exotic plots had been seeded with two species of lovegrasses (Eragrostis spp.) native to southern Africa. A 1987 wildfire burned 11 native and 11 exotic plots. The fire reduced cover of both native and African grasses for two post-fire growing seasons. Herb cover as a whole increased after the fire for 2 yr, although there were important differences among species. One of two dominant shrubs (Haplopappus tenuisectus) was killed by the fire, while the other (Baccharis pteronioides) was little affected. Mesquite trees (Prosopis juliflora) were killed to the ground by the fire, but 62 of 66 trees had re-sprouted to an average 48% of pre-burn height by 1990. Native and exotic grasses appeared equally tolerant of fire, probably because both evolved in fire-type ecosystems. There was no evidence that fire can be used to permanently restore the diverse native flora to species-poor plantations of the South African exotics.  相似文献   

11.
Increased fire frequency has been shown to promote alien plant invasions in the western United States, resulting in persistent vegetation type change. Short interval fires are widely considered to be detrimental to reestablishment of shrub species in southern California chaparral, facilitating the invasion of exotic annuals and producing “type conversion”. However, supporting evidence for type conversion has largely been at local, site scales and over short post-fire time scales. Type conversion has not been shown to be persistent or widespread in chaparral, and past range improvement studies present evidence that chaparral type conversion may be difficult and a relatively rare phenomenon across the landscape. With the aid of remote sensing data covering coastal southern California and a historical wildfire dataset, the effects of short interval fires (<8 years) on chaparral recovery were evaluated by comparing areas that burned twice to adjacent areas burned only once. Twelve pairs of once- and twice-burned areas were compared using normalized burn ratio (NBR) distributions. Correlations between measures of recovery and explanatory factors (fire history, climate and elevation) were analyzed by linear regression. Reduced vegetation cover was found in some lower elevation areas that were burned twice in short interval fires, where non-sprouting species are more common. However, extensive type conversion of chaparral to grassland was not evident in this study. Most variables, with the exception of elevation, were moderately or poorly correlated with differences in vegetation recovery.  相似文献   

12.
Soil seed banks are important to many plant communities and are recognized as an important component of management plans. Understanding seed bank composition and density is especially important when communities have been invaded by exotic species and must be managed to promote desirable species. We examined germinable soil seed banks in southern California coastal sage scrub (CSS) that is heavily invaded by exotic grasses and in adjacent exotic grassland. Soils from both communities had similar seed banks, dominated by high densities of exotic grass and forb species. Up to 4,000 exotic grass seeds and at least 400 exotic forb seeds/m2 were found in most soils, regardless of aboveground vegetation type. Native forbs averaged 400 seeds/m2 in grass-dominated areas and about 800 in shrub-dominated soils. Shrub seed density was <1 and <10 seeds/m2 in grass- and shrub-dominated areas, respectively, indicating that the shrub seed bank is not persistent compared to annuals. We also compared pre- and post-burn soil seed banks from one location that burned in October 2003. Late-season burning in both grass- and CSS-dominated areas disproportionately reduced exotic grass seed densities relative to native seed densities. The similarity of the seed banks in adjacent grass and shrub communities suggests that without intervention, areas currently dominated by CSS may become more similar to grass-dominated areas in terms of aboveground vegetation. In such areas, the first growing season following a wildfire is a window of opportunity for increasing native diversity at a time when density of exotic grass seeds is low. At time of research, Robert D. Cox was graduate student.  相似文献   

13.
One goal of post‐fire native species seeding is to increase plant community resistance to exotic weed invasions, yet few studies address the impacts of seeding on exotic annual establishment and persistence. In 2010 and 2011, we investigated the influence of seedings on exotic annuals and the underlying microbial communities. The wildfire site in northern Utah was formerly dominated by Artemisia tridentata ssp. wyomingensis, but burned in September 2008. Experimental seeding treatments were installed in November 2008 to examine strategies for establishing native species using two drills, hand broadcasts and different timing of seed applications (resulting in 13 seeding treatments). We collected aboveground biomass of invasive annuals (Halogeton glomeratus, Salsola kali, and Bromus tectorum), other volunteer plants from the extant seed bank, and seeded species from all treatments in the second and third years after fire. We sampled soils within microsites beneath native perennial bunchgrass and exotic annuals to characterize underlying soil microbial communities. High precipitation following seeding led to strong seedling establishment and we found few differences between seeding treatments established with either drill. All seeded treatments reduced exotic biomass by at least 90% relative to unseeded controls. Soil microbial communities (phospholipid fatty acid analysis), beneath B. tectorum, Poa secunda, and Pseudoroegneria spicata microsites differed little 3 years after fire. However, microbial abundance beneath P. spicata increased from June to July, suggesting that microbial communities beneath successful seedings can vary greatly within a single growing season.  相似文献   

14.
Woody plant expansion is a global phenomenon that alters the spatial distribution of nutrients, biomass, and fuels in affected ecosystems. Altered fuel patterns across the landscape influences ecological processes including fire behavior, fire effects, and can impact post-fire plant germination and establishment. The purpose of this study was to determine how accumulations of ground fuels beneath western juniper (Juniperus occidentalis ssp. occidentalis) canopies, composed of litter and duff, affect post-fire species response in sagebrush steppe and to quantify fuel loading patterns. Field sampling and analysis was conducted across environmental gradients following the 2007 Tongue-Crutcher Wildfire in southwestern Idaho to determine conditions that were most influential in post-fire vegetation recovery patterns. Duff depth and fire severity were determined to be the most influential factors affecting post-fire vegetation response. Decreasing species richness and native perennial grass cover was represented along the increasing duff depth gradient. Species response grouped by fire severity revealed significant presence of cheatgrass (Bromus tectorum) in low severity sites and a dominance of snowbrush ceanothus (Ceanothus velutinus) in higher severity sites. Determining sub-crown surface fuel characteristics offers the potential to predict future patterns and processes as they relate to burn severity and vegetation recovery components in developing woodlands.  相似文献   

15.
Seed densities, estimated from germinations under glasshouse conditions, were determined for fire-treated and control soils sampled from north and south facing stands of mixedAdenostoma fasciculatum-Ceanothus greggii chaparral that last burned 10, 17, 36, 62 and 86 years before 1987. A total of 53 species was recorded. Total germinable seed density was not influenced by aspect nor by an experimental fire treatment, however, densities varied significantly, but not predictably, over the time since fire sequence. Species diversity was significantly lower in the 86 year old stand, but neither diversity or richness was influenced by the fire treatment. Soils from north facing slopes supported a higher species diversity overall, and seed densities of six species were significantly higher on north than on south slopes.We identify two functional groups in the seed bank on the basis of the direct effects of fire on seed densities: a fire-dependent group, comprising 6 species and about 21% of the total seed bank, in which germinable densities increased after the fire treatment, and a fire-independent group, made up of 11 species and almost two-thirds of the seed bank. The fire-independent group is further separated into two: a shrub-centred sub-group (Crassula erecta, Filago californica, Pterostegia drymarioides, Streptanthus heterophyllus andCryptantha intermedia) maintained larger seed banks in older stands and was associated with shrub cover; and an opportunistic sub-group (Camissonia hirtella, Gnaphalium chilense, Mimulus pilosus andSenecio vulgaris) tended to have larger seed banks in younger stands and was associated with canopy gaps.Overall, the soil seed assemblage from this mixed chaparral does not appear to be tightly coupled to fire-generated opportunities for recruitment. The reason for this is that the fire-dependent group represents only 6 species. In addition, among the fire-independent species, the shrub-centred group of 5 annuals made up almost 40% of total soil seed density. This group shows ecological and taxonomic affinities with desert annuals.  相似文献   

16.
Aim We tested the hypothesis that anthropogenic fires favour the successful establishment of alien annual species to the detriment of natives in the Chilean coastal matorral. Location Valparaíso Region, central Chile. Methods We sampled seed rain, seedbank emergence and establishment of species in four paired burned and unburned areas and compared (using GLMM) fire resistance and propagule arrival of alien and native species. To assess the relative importance of seed dispersal and seedbank survival in explaining plant establishment after fire, we compared seed rain and seedbank structure with post‐fire vegetation using ordination analyses. Results Fire did not change the proportion of alien species in the coastal matorral. However, fire increased the number of annual species (natives and aliens) of which 87% were aliens. Fire reduced the alien seedbank and not the native seedbank, but alien species remained dominant in burned soil samples (66% of the total species richness). Seed rain was higher for alien annuals than for native annuals or perennials, thus contributing to their establishment after fire. Nevertheless, seed rain was less important than seedbank survival in explaining plant establishment in burned areas. Main conclusions Anthropogenic fires favoured alien and native annuals. Thus, fire did not increase the alien/native ratio but increased the richness of alien species. The successful establishment of alien annuals was attributable to their ability to maintain rich seedbanks in burned areas and to the greater propagule arrival compared to native species. The native seedbank also survived fire, indicating that the herbaceous community has become highly resilient after centuries of human disturbances. Our results demonstrate that fire is a relevant factor for the maintenance of alien‐dominated grasslands in the matorral and highlight the importance of considering the interactive effect of seed rain and seedbank survival to understand plant invasion patterns in fire‐prone ecosystems.  相似文献   

17.
Abstract. We studied the interactions between woody perennial species and native and non-native annual species in a number of vegetation types within a nature reserve in the Western Australian wheatbelt. In particular, we examined the responses of annuals to perennial canopy removal, fire, soil disturbance and nutrient additions, and the effects of removal of annuals on perennial seedling regeneration. Experimental shrub removal significantly increased the abundance of annuals in a dense shrubland dominated by Allocasuarina campestris, but had no effect in a more open species-rich sandplain heath. Soil disturbance and nutrient addition in the heath area had no significant influence on annual abundance until three years after treatment. Fire had no clear effect on annual abundance in the heath within the reserve, but promoted a large increase in non-native species within an adjacent roadverge. A pattern of increased soil nutrient levels was accompanied by greatly increased non-native annual abundance beneath individual trees of Santalum spicatum. Exploratory laboratory bioassay experiments indicated that several woody perennials produced leachates that were capable of reducing the germination or growth of the introduced grass Avena fatua, indicating that allelopathy may be an important component of the interaction between the annual and perennial components. Within a woodland community, fire temporarily reduced the abundance of annual species and increased the establishment of perennial seedlings. Field experiments showed that annuals significantly reduced the survival of seedlings of the shrub Allocasuarina campestris. Our results indicate that intact native vegetation canopies effectively prevent invasion by non-native annuals, and that regeneration by native perennials is likely to be inhibited by the presence of an abundant annual cover.  相似文献   

18.
Shrub encroachment generally causes the loss of native species in herbaceous‐dominated communities. The ability of the original ecosystem to return to its pre‐encroachment state (i.e. its ecological resilience) will be partially contingent on the capacity of these species to regenerate from soil‐stored seed. Coast Tea Tree (Leptospermum laevigatum) has formed a dense scrub in many areas previously dominated by grassy woodland, and hence, managers need guidance about the effectiveness of strategies designed to recover the pre‐encroachment vegetation. In this context, we ask: what is the potential of species stored in the soil seed bank to return following Tea Tree removal? A germination experiment was undertaken using soil collected from dense stands of Tea Tree that had been long established. Heat/smoke was applied to soils to simulate the effects of a fire on the soil seed bank, while leaf litter treatments were used to mimic both undisturbed stands and stands where shrubs have been slashed where litter creates a physical barrier to emergence. We found the soil seed bank was dominated by exotic forbs (83% of all germinants) and contained few grasses. Heat and smoke decreased total species density but increased species diversity through the suppression of common exotics. Our data suggest that slashing would result in germination being dominated by exotic flora, but using fire would likely reduce that dominance. However, we conclude that recovery by much of the original flora after site occupation by Coast Tea Tree may be contingent on mechanisms other than soil‐stored seeds.  相似文献   

19.
Post-fire nutrient flushes are an important precursor to secondary succession in fire-driven boreal forest. We studied the magnitude of changes in post-fire soil nutrient status across a chronosequence of ericaceous shrub-dominated boreal forest stands in eastern Newfoundland, Canada. The chronosequence comprised nine stands burned between 1 and 38 years prior to the study. These sites have resisted tree reestablishment following forest fire-induced mortality of black spruce and a concomitant increase in dominance of the ericaceous dwarf shrub Kalmia angustifolia L. Our objectives were: (1) to identify the factors driving soil nutrient status in these post-fire stands dominated by ericaceous plants, and (2) to test hypotheses that specific relationships exist among environmental factors, dominant vegetation and indicators of soil nutrient status. Macronutrients such as NH4+, total organic N and mineral soil P concentrations showed non-linear declines with time since fire. These parameters were also negatively associated with cover of ericaceous plants. Potential phytotoxins such as total phenolics and aluminium concentrations increased with increasing cover of K. angustifolia. Variability in net ammonification, total P and total phenolic acids in organic soils were strongly related to ericaceous dominance even when the effect of time since fire was partialled out using regression analysis. These findings suggest a strong capacity for ericaceous vegetation to have top-down effects on soil chemical property particularly in the organic horizon with the increase in its post-fire dominance.  相似文献   

20.
Non‐native crested wheatgrasses (Agropyron cristatum and A. desertorum) were used historically within the Great Basin for the purpose of competing with weed species and increasing livestock forage. These species continue to be used in some areas, especially after wildfires occurring in low elevation/precipitation, formerly Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis)/herbaceous communities. Seeding native species in these sites is often unsuccessful, and lack of establishment results in invasion and site dominance by exotic annuals. However, crested wheatgrass often forms dense monocultures that interfere competitively with the establishment of desirable native vegetation and do not provide the plant structure and habitat diversity for wildlife species equivalent to native‐dominated sagebrush plant communities. During a 5‐year study, we conducted trials to evaluate chemical and mechanical methods for reducing crested wheatgrass and the effectiveness of seeding native species into these sites after crested wheatgrass suppression. We determined that discing treatments were ineffective in reducing crested wheatgrass cover and even increased crested wheatgrass density in some cases. Glyphosate treatments initially reduced crested wheatgrass cover, but weeds increased in many treated plots and seeded species diminished over time as crested wheatgrass recovered. We concluded that, although increases in native species could possibly be obtained by repeating crested wheatgrass control treatments, reducing crested wheatgrass opens a window for invasion by exotic weed species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号