共查询到20条相似文献,搜索用时 0 毫秒
1.
Pergolide is a potent, direct-acting dopamine agonist used in treating Parkinson's disease. It is an agonist found recently to have high affinity for D3 receptors. The affinity of pergolide for D1 receptors is lower than for D2 receptors, and there have been some reports that it may not interact with D1 receptors in vivo at doses used to activate D2 receptors. A growing body of evidence suggests that pergolide does occupy and activate D1 receptors in vivo, although the relevance to therapeutic efficacy in Parkinson's disease needs further study. 相似文献
2.
Photoaffinity labeling of dopamine D1 receptors 总被引:5,自引:0,他引:5
H B Niznik K R Jarvie N H Bzowej P Seeman R K Garlick J J Miller N Baindur J L Neumeyer 《Biochemistry》1988,27(20):7594-7599
A high-affinity radioiodinated D1 receptor photoaffinity probe, (+/-)-7-[125I]iodo-8-hydroxy-3-methyl-1-(4-azidophenyl)-2,3,4,5-tetra hyd ro- 1H-3-benzazepine ([125I]IMAB), has been synthesized and characterized. In the absence of light, [125I]IMAB bound in a saturable and reversible manner to sites in canine brain striatal membranes with high affinity (KD approximately equal to 220 pM). The binding of [125I]IMAB was stereoselectively and competitively inhibited by dopaminergic agonists and antagonists with an appropriate pharmacological specificity for D1 receptors. The ligand binding subunit of the dopamine D1 receptor was visualized by autoradiography following photoaffinity labeling with [125I]IMAB and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Upon photolysis, [125I]IMAB incorporated into a protein of apparent agents in a stereoselective manner with a potency order typical of dopamine D1 receptors. In addition, smaller subunits of apparent Mr 62,000 and 51,000 were also specifically labeled by [125I]IMAB in these species. Photoaffinity labeling in the absence or presence of multiple protease inhibitors did not alter the migration pattern of [125I]IMAB-labeled subunits upon denaturing electrophoresis in both the absence or presence of urea or thiol reducing/oxidizing reagents. [125I]IMAB should prove to be a useful tool for the subsequent molecular characterization of the D1 receptor from various sources and under differing pathophysiological states. 相似文献
3.
Anita Sidhu 《Molecular neurobiology》1998,16(2):125-134
Dopamine receptors are a subclass of the super family of G protein-coupled receptors, that transduce their effects by coupling
to specific G proteins. Within the dopamine receptor family, the adenylyl cyclase stimulatory receptors include the D1 and D5 subtypes. The D1 and D5 dopamine receptors are genetically distinct, sharing >80% sequence homology within the highly conserved seven transmembrane
spanning domains, but displaying only 50% overall homology at the amino acid level. When expressed in transfected GH4C1 rat pituitary cells, both D1 and D5 receptors stimulate adenylyl cyclase and have identical affinities toward dopaminergic agonists and antagonists. In order
to analyze specific signaling pathways mediated by activation of either D1 or D5 receptors, we have identified the G proteins that are coupled to these receptors. Through functional analyses and competition
binding studies, and from immunoprecipitation techniques, using antisera against the various α subunits of G proteins, we
have established that both D1 and D5 receptors couple to Gsα. In addition, D1 receptors are also coupled to Goα. Since Goα has been implicated in the regulation of Ca2+, K+, and Na+ channels, this finding would suggest that D1 receptors can mediate the functional activity of these ion channels. There is also evidence to indicate that D5 receptors couple to Gzα, a novel G protein abundantly expressed in neurons. Thus, despite similar pharmacological properties, such differential
coupling of D1 and D5 receptors to G proteins other than Gsα, indicates that dopamine can transduce varied signaling responses upon the simultaneous stimulation of both these receptors. 相似文献
4.
The interaction of beta-haloalkylamine derivatives of dopamine agonists and antagonists with 3H-spiperone binding (D2 sites) and 3H-flupenthixol binding (D1 sites) was studied. N-chloroethyl derivatives of phenothiazines and thioxanthenes were potent inhibitors of the binding of both ligands. The in vitro inhibition of binding produced by these compounds was irreversible. The drugs were however only weakly active in vivo. The results suggest that beta-haloalkylamine derivatives of neuroleptics may be useful compounds for studying dopamine receptors in vitro. 相似文献
5.
Cheĭdo MA Idova GV 《Rossi?skii fiziologicheski? zhurnal imeni I.M. Sechenova / Rossi?skaia akademiia nauk》2006,92(5):546-551
The study has shown that activation of mu-opioid receptors by a highly selective agonist DAGO (100 microg/kg) results in a significant increase of the immune response to antigen (SRBC, 5% 10(8)) in CBA mice. Haloperidol (2 mg/kg), a selective antagonist of the postsynaptic dopamine (DA) receptors, prevented immunostimulating effect of DAGO. In contrast, selective D1--antagonist SCH 23390 (1 mg/kg) did not affect on DAGO-induced enhancing of immune reactivity. At the same time, the blockade of both types of DA receptors (D1 and D2) caused similar immunosuppressing effects. These data suggest a possible differential role for D1 and D2 receptors in mu-opioidergic immunomodulation. 相似文献
6.
The biochemical properties of central nervous system (CNS) dopamine (DA) D1 and D2 receptors were examined using the specific antagonists [3H]SCH23390 and [3H]raclopride, respectively. There is a different participation of sulfhydryl (-SH) and disulfide (-SS-) groups in the binding site and/or coupling to second messenger systems of D1 and D2 receptors. The ionic studies with [3H]SCH23390 showed slight agonist and antagonist affinity shifts for the D1 receptor. On the other hand, the D2 receptor is very sensitive to cations; even if lithium and sodium influence specific [3H]raclopride binding in a similar manner, there appear to be quantitative differences between these two ions that cannot be explained by surface charge mechanisms. The distribution of D1 and D2 receptors was heterogenous in both species, with the greatest densities in the neostriatum, where the highest concentrations of DA and metabolites were measured. Regions with low endogenous DA content (cerebral cortex and hippocampus) had lower densities of DA receptors. Furthermore, these binding sites were differentially localized within the various regions, and there were substantially more D1 than D2 receptors. The functional significance and heterogeneities in the distribution of D1 and D2 receptors can be related to dopaminergic innervation and turnover. 相似文献
7.
Clark MC Baro DJ 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2006,143(3):294-301
Dopamine (DA) differentially modulates identified neurons in the crustacean stomatogastric nervous system (STNS). While the electrophysiological actions of DA have been well characterized, little is known about the dopaminergic transduction cascades operating in this system. As a first step toward illuminating the molecular underpinnings of dopaminergic signal transduction in the crustacean STNS, we have cloned and characterized two type-one DA receptors (DARs) from the spiny lobster (Panulirus interruptus): D(1alphaPan) and D(1betaPan). We found that the structure and function of these arthropod DARs are well conserved across species. Using a heterologous expression system, we determined that DA, but not serotonin, octopamine, tyramine or histamine activates these receptors. When stably expressed in HEK cells, the D(1alphaPan) receptor couples with Gs, and DA elicits an increase in [cAMP]. The D(1betaPan) receptor responds to DA with a net increase in [cAMP] that is mediated by Gs and Gz. 相似文献
8.
Dopamine is able to inhibit the epinephrine-induced aggregation of human blood platelets, but the mechanism of action has not been elucidated. In this study we report that membranes from human blood platelets possess high affinity, saturable and stereoselective binding sites for the D1 dopamine receptor antagonist (3H) SCH 23390. (3H) SCH 23390 appeared to label a single class of binding sites with a Bmax of 18.6 +/- 1.6 fmol/mg protein and a KD of 0.8 nM. The potencies of different dopaminergic antagonists and agonists in displacing (3H) SCH 23390 from blood platelet membranes were similar to those obtained for striatal membranes. Unlike the classically defined D1 receptors, e.g. those in striatum, the D1 receptor sites on platelets appeared not to be coupled to the adenylate cyclase system, hence the term "D1-like". The D1 agonist SKF 38393 was more potent than dopamine in inhibiting platelet aggregation induced by epinephrine, and the effects of dopamine and SKF 38393 were prevented by SCH 23390. These results suggest that the inhibitory action of dopamine on the epinephrine-induced platelet aggregation is mediated through these D1-like receptors. 相似文献
9.
10.
The dopamine transporter (DAT) regulates the temporal and spatial actions of dopamine by reuptaking this neurotransmitter into the presynaptic neurons. We recently generated transgenic mice overexpressing DAT (DAT-tg) that have a 3-fold increase in DAT protein levels which results in a 40% reduction of the extracellular DA concentration in the striatum. The aim of this study was to examine the effect of this reduction in dopaminergic tone on postsynaptic responses mediated by dopamine receptors. We report here that DAT-tg mice have increased levels of striatal D1 (30%) and D2 (approximately 60%) dopamine receptors with D1 receptor signaling components not significantly altered, as evidenced by unaffected basal or stimulated levels of phospho-GluR1 (Ser845) and phospho-ERK2. However, the novel D2 mediated Akt signaling is markedly altered in DAT-tg animals. In particular, there is a 300% increase in the basal levels of phospho-Akt in the striatum of DAT-tg, reflecting the reduced extracellular dopamine tone in these animals. This increase in basal pAkt levels can be pharmacologically recapitulated by partial dopamine depletion in WT mice treated with the selective tyrosine hydroxylase inhibitor alpha-methyl-para-tyrosine (alpha-MPT). Behaviorally, DAT-tg animals demonstrate an augmented synergistic interaction between up-regulated D1 and D2 receptors, which results in increased climbing behavior in transgenic mice after stimulation with either apomorphine or a co-administration of selective D1 and D2 receptor agonists. In sum, our study reveals that hypodopaminegia caused by up-regulation of DAT results in significant alterations at postsynaptic receptor function with most notable dysregulation at the level of D2 receptor signaling. 相似文献
11.
Dziedzicka-Wasylewska M Faron-Górecka A Andrecka J Polit A Kuśmider M Wasylewski Z 《Biochemistry》2006,45(29):8751-8759
Evidence for hetero-oligomerization has recently been provided for various G protein-coupled receptors. In this paper, we have studied the possibility that dopamine D(1) and D(2) receptors physically interact with each other. Human dopamine D(1) and D(2) receptors were fluorescently tagged with derivatives of green fluorescence protein and transiently coexpressed in the membrane of human embryonic kidney 293 cells. Using qualitative fluorescence spectroscopy, as well as quantitative F?rster resonance energy transfer (FRET) analysis, performed in a single cell by confocal microscopy and fluorescence lifetime microscopy, we show that dopamine D(1) and D(2) receptors can form hetero-oligomers in the plasma membrane. The degree of receptor protein-protein interaction is significantly enhanced by concomitant addition of D(1) and D(2) receptor subtype-specific agonists. Our investigations extend biochemical and electrophysiological studies and give insights into the regulation and synergistic mode of operation of dopamine receptors. 相似文献
12.
Ilani T Fishburn CS Levavi-Sivan B Carmon S Raveh L Fuchs S 《Cellular and molecular neurobiology》2002,22(1):47-56
D2 and D3 dopamine receptors belong to the superfamily of G protein-coupled receptors; they share a high degree of homology and are structurally similar. However, they differ from each other in their second messenger coupling properties. Previously, we have studied the differential coupling of these receptors to G proteins and found that while D2 receptor couples only to inhibitory G proteins, D3 receptor couples also to a stimulatory G protein, Gs. We aimed to investigate the molecular basis of these differences and to determine which domains in the receptor control its coupling to G proteins. For this purpose four chimeras were constructed, each composed of different segments of the original D2 and D3 receptors. We have demonstrated that chimeras with a third cytoplasmic loop of D2 receptor couple to Gi protein in a pattern characteristic of D2 receptor. On the other hand chimeras containing a third cytoplasmic loop of D3 receptor have coupling characteristics like those of D3 receptor, and they couple also to Gs protein. These findings demonstrate that the third cytoplasmic loop determines and accounts for the coupling of dopamine receptors D2 and D3 to G proteins. 相似文献
13.
SKF83959 selectively regulates phosphatidylinositol-linked D1 dopamine receptors in rat brain 总被引:1,自引:0,他引:1
Previously a distinct D1-like dopamine receptor (DAR) that selectively couples to phospholipase C/phosphatidylinositol (PLC/PI) was proposed. However, lack of a selective agonist has limited efforts aimed at characterizing this receptor. We characterized the in vitro and in vivo effects of SKF83959 in regulating PI metabolism. SKF83959 stimulates (EC50, 8 micro m) phosphatidylinositol 4,5-biphosphate hydrolysis in membranes of frontal cortex (FC) but not in membranes from PC12 cells expressing classical D1A DARs. Stimulation of FC PI metabolism was attenuated by the D1 antagonist, SCH23390, indicating that SKF83959 activates a D1-like DAR. The PI-linked DAR is located in hippocampus, cerebellum, striatum and FC. Most significantly, administration of SKF83959 induced accumulations of IP3 in striatum and hippocampus. In contrast to other D1 DAR agonists, SKF83959 did not increase cAMP production in brain or in D1A DAR-expressing PC12 cell membranes. However, SKF83959 inhibited cAMP elevation elicited by the D1A DAR agonist, SKF81297, indicating that the compound is an antagonist of the classical D1A DAR. Lastly, we demonstrated that SKF83959 enhances [35S]guanosine 5'-O-(3-thiotriphosphate) binding to membrane Galphaq and Galphai proteins, suggesting that PI stimulation is mediated by activation of these guanine nucleotide-binding regulatory proteins. Results indicate that SKF83959 is a selective agonist for the PI-linked D1-like DAR, providing a unique tool for investigating the functions of this brain D1 DAR subtype. 相似文献
14.
The glycoprotein nature of the ligand binding subunit of photoaffinity-labeled striatal D2 receptors was investigated. Upon photolysis, [125I]N-azidophenethylspiperone covalently incorporated into a major band of Mr 94000 with an appropriate pharmacological profile for D2 receptors as assessed by autoradiography following SDS-polyacrylamide gel electrophoresis. The exoglycosidase, neuraminidase, altered the electrophoretic mobility of the 94 kDa labeled band to 54 kDa with a slight modification in the binding affinity of [3H]spiperone. Endoglycosidase treatment (glycopeptidase-F) produced a further increase in the mobility of the 94 kDa peptide to approximately 43 kDa. A smaller specifically photolabeled D2 receptor peptide of 34 kDa does not contain terminal sialic acid but is an N-linked glycoprotein as assessed by lectin affinity chromatography and susceptibility to digestion by glycopeptidase-F to a peptide of approximately 23 kDa. 相似文献
15.
Autocrine activation of adenosine A1 receptors blocks D1A but not D1B dopamine receptor desensitization 总被引:1,自引:0,他引:1
Adenosine is known to modulate dopamine responses in several brain areas. Here, we show that tonic activation of adenosine receptors is able to impede desensitization of D1 dopamine receptors. As measured by cAMP accumulation in transfected COS-7 cells, long-term exposure to dopamine agonists promoted desensitization of D1B receptor but not that of D1A receptor. The inability of D1A receptor to desensitize was a result of the adenosine present in culture medium acting through activation of adenosine A1 receptors. Cell incubation with either adenosine deaminase, CGS-15943, a generic adenosine receptor antagonist, or the A1 antagonist DPCPX restored the long-term desensitization time-course of D1A receptors. In Ltk cells stably expressing A1 adenosine receptors and D1A dopamine receptors, pre-treatment of cells with R(-)-PIA, a full A1 receptor agonist, did not significantly inhibit the acute increase in cAMP levels induced by D1 receptor agonists, but blocked desensitization of D1A receptors. However, simultaneous activation of A1 and D1A receptors promoted a delayed D1A receptor desensitization. This suggests that functional interaction between A1 and D1A receptors may depend on the activation kinetics of components regulating D1 receptor responses, acting differentially on D1A and D1B receptors. 相似文献
16.
17.
The effect of tyrosine-alkylating agents on the ligand-binding properties of bovine striatal dopamine D1 and D2 receptors was investigated. The tyrosine-alkylating agents, p-nitrobenzenesulphonylfluoride (pNBSF) and tetranitromethane (TNM) caused a time-and dose-dependent loss of the binding of [3H]SCH-23390 and [3H]spiroperidol, ligands specific for dopamine D1 and D2 receptors, respectively. The two dopamine receptors, however, showed a differential sensitivity to inactivation by these agents. The mechanism of inhibition of the two receptors appears to be complex as treatment of membranes with pNBSF and TNM resulted in a decrease of both the Kd and the Bmax of ligand binding. Spiroperidol almost completely protected the TNM-induced inhibition of [3H]spiroperidol binding to dopamine D2 receptors whereas SCH-23390 afforded only partial protection of the [3H]SCH-23390 binding by TNM suggesting that more than one tyrosine groups may be involved in the D1 receptor binding activity. 相似文献
18.
Mammalian D1 and D2 dopamine receptors were stably expressed in Drosophila Schneider-2 (S2) cells and screened for their pharmacological properties. Saturable, dose-dependent, high affinity binding of the D1-selective antagonist [3H]SCH-23390 was detected only in membranes from S2 cells induced to express rat dopamine D1 receptors, while saturable, dose-dependent, high affinity binding of the D2-selective antagonist [3H]methylspiperone was detected only in membranes from S2 cells induced to express rat dopamine D2 receptors. No specific binding of either radioligand could be detected in membranes isolated from uninduced or untransfected S2 cells. Both dopamine D1 and D2 receptor subtypes displayed the appropriate stereoselective binding of enantiomers of the nonselective antagonist butaclamol. Each receptor subtype also displayed the appropriate agonist stereoselectivities. The dopamine D1 receptor bound the (+)-enantiomer of the D1-selective agonist SKF38393 with higher affinity than the (-)-enantiomer, while the dopamine D2 receptor bound the (-)-enantiomer of the D2-selective agonist norpropylapomorphine with higher affinity than the (+)-enantiomer. At both receptor subtypes, dopamine binding was best characterized as occurring to a single low affinity site. In addition, the low affinity dopamine binding was also found to be insensitive to GTPgammaS and magnesium ions. Overall, the pharmacological profiles of mammalian dopamine D1 and D2 receptors expressed in Drosophila S2 cells is comparable to those observed for these same receptors when they are expressed in mammalian cell lines. A notable distinction is that there is no evidence for the coupling of insect G proteins to mammalian dopamine receptors. These results suggest that the S2 cell insect G system may provide a convenient source of pharmacologically active mammalian D1 and D2 dopamine receptors free of promiscuous G protein contaminants. 相似文献
19.
Dopamine acts through two classes of G protein-coupled receptor (D1-like and D2-like) to modulate neuron activity in the brain. While subtypes of D1- and D2-like receptors are coexpressed in many neurons of the mammalian brain, it is unclear how signaling by these coexpressed receptors interacts to modulate the activity of the neuron in which they are expressed. D1- and D2-like dopamine receptors are also coexpressed in the cholinergic ventral-cord motor neurons of Caenorhabditis elegans. To begin to understand how coexpressed dopamine receptors interact to modulate neuron activity, we performed a genetic screen in C. elegans and isolated mutants defective in dopamine response. These mutants were also defective in behaviors mediated by endogenous dopamine signaling, including basal slowing and swimming-induced paralysis. We used transgene rescue experiments to show that defects in these dopamine-specific behaviors were caused by abnormal signaling in the cholinergic motor neurons. To investigate the interaction between the D1- and D2-like receptors specifically in these cholinergic motor neurons, we measured the sensitivity of dopamine-signaling mutants and transgenic animals to the acetylcholinesterase inhibitor aldicarb. We found that D2 signaling inhibited acetylcholine release from the cholinergic motor neurons while D1 signaling stimulated release from these same cells. Thus, coexpressed D1- and D2-like dopamine receptors act antagonistically in vivo to modulate acetylcholine release from the cholinergic motor neurons of C. elegans. 相似文献
20.
Devoĭno LV Al'perina EL Gevorgian MM Cheĭdo MA 《Rossi?skii fiziologicheski? zhurnal imeni I.M. Sechenova / Rossi?skaia akademiia nauk》2005,91(11):1281-1287
The analysis of the immune response changes in Wistar rats has shown that bilateral electrolytic lesions of the nucleus accumbens characterized by a high density of D1 an D2 dopamine (DA) receptors resulted in a decrease of the immune response to SRBC. Administration of selective agonists of D1 and D2 DA receptors to sham-operated animal: 20 mg/kg of SKF 38393 or 1.0 mg/kg of quinpirol, respectively, produced significant enhancement of plaque- and rosette-formation. However, the immune response level in the damaged rats did not increase following quinpirol administration, but was maintained at control values, rather. At the same time, activation of D1 DA receptors in rats with destructed nucleus accumbens did not affect the immune response level as compared to that of sham-operated animals receiving SKF 38393. The data obtained give evidence of involvement of D2 DA receptors of the nucleus accumbens in immunomodulation, although D2 DA receptors of other brain structures may also contribute to this process. D1 DA receptors of this localization seem not to play any important role in the immune response control. 相似文献