首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundPhotodynamic therapy, using porphyrins as photosensitizers (PS), has been approved in treatment of several solid tumors. However, commonly used PS induce death but also resistance pathways in cancer cells and an alteration of surrounding normal tissues. Because polyamines (PA) are actively accumulated in cancer cells by the Polyamine Transport System (PTS), they may enable PS to specifically target cancer cells. Here, we investigated whether new protoporphyrin IX-polyamine derivatives were effective PS against prostate cancer and whether PA increased PDT specificity after 630 nm irradiation.MethodsCHO and CHO-MG cells (differing in their PTS activity) were used to assess efficacy of polyamine vectorization. MTT assays were performed on human prostate non-malignant (RWPE-1) and malignant (PC-3, DU 145 and LNCaP) cell lines to test PS phototoxicity. ROS generation, DNA fragmentation and cell signalling were assessed by ELISA/EIA, western-blots and gel shift assays. Finally, PS effects were studied on tumor growth in nude mice.ResultsOur PS were more effective on cancer cells compared to non-malignant cells and more effective than PpIX alone. PpIX-PA generated ROS production involved in induction of apoptotic intrinsic pathways. Different pathways involved in apoptosis resistance were studied: PS inhibited Bcl-2, Akt, and NF-κB but activated p38/COX-2/PGE2 pathways which were not implicated in apoptosis resistance in our model. In vivo experiments showed PpIX-PA efficacy was greater than results obtained with PpIX.ConclusionsAll together, our results showed that PpIX-PA exerted its maximum effects without activating resistance pathways and appears to be a good candidate for prostate cancer PDT treatment.  相似文献   

2.
3.
Phenoxodiol is an experimental anticancer drug under development as a chemosensitizer intended to reverse multidrug resistance mechanisms in ovarian and prostate cancer cells to most standard cytotoxics. The putative molecular target of phenoxodiol is a cell-surface, tumor-specific NADH oxidase, ENOX2 (tNOX), with phenoxodiol having no apparent effect on the constitutive form of this enzyme ENOX1 (CNOX). Using ENOX2 as the target, this study was conducted to explore the temporal relationship between phenoxodiol and paclitaxel or cisplatin in achieving chemosensitization in HeLa cells which are relatively resistant to both paclitaxel and cisplatin. Sequential addition of phenoxodiol and paclitaxel or phenoxodiol and cisplatin showed greater inhibition of HeLa cell ENOX1 activity and growth compared to adding the drugs simultaneously or individually. In parallel, a similar chemosensitizing response of phenoxodiol for cisplatin was observed. ENOX1 was not affected and trans-platinum had no effect. With spent media from phenoxodiol-treated cells sensitivity was enhanced to both paclitaxel and cisplatin if the cells were first pretreated with phenoxodiol. Similar results were obtained with ENOX2-enriched preparations stripped from the surfaces of phenoxodiol-treated cells. In keeping with a speculative prion model, it seems as though the ENOX2 “remembers” the phenoxodiol and “teaches” other ENOX2 molecules to respond to paclitaxel and cisplatin as if phenoxodiol were still present.  相似文献   

4.
All active natural molecules are not fully exploited as therapeutic agents, causing delays in the advancement of anticancer drug discovery. Viridiflorol is a natural volatile element that may work as anti-cancer compound. We tested the anticancer properties of viridiflorol at different concentrations ranging from 0.03 to 300 μM in vitro on three cancer cells including breast (MCF-7), lung (A549) and brain (Daoy). The cancer cells responses were documented after treatment using MTT and Annexin V assays. Viridiflorol showed cytotoxic effects against all tested cell lines, reducing cell viability in a concentration-dependent manner with variable IC50 values. Daoy and A549 cell lines were more sensitive to viridiflorol when compared with temozolomide and doxorubicin, respectively. Viridiflorol demonstrated the highest anticancer activity against the Daoy cells with an estimated IC50 of 0.1 µM followed by MCF-7 at 10 µM, and A549 at 30 µM. In addition, upon exposure to concentrations ranging from 30 µM to 300 µM of viridiflorol, early and late apoptotic cell death was induced in a concentration dependent manner in Daoy (55.8%-72.1%), MCF-7 (36.2%-72.7%) and A459 (35%-98.9%) cell lines, respectively. In conclusion, viridiflorol demonstrates cytotoxic and apoptotic ability in three different cancer cell lines (brain, breast and lung).  相似文献   

5.
Radiation therapy plays an important role in the management of prostate carcinoma. However, the problem of radioresistance and molecular mechanisms by which prostate carcinoma cells overcome cytotoxic effects of radiation therapy remains to be elucidated. In order to investigate possible intracellular mechanisms underlying the prostate carcinoma recurrences after radiotherapy, we have established three radiation-resistant prostate cancer cell lines, LNCaP-IRR, PC3-IRR, and Du145-IRR derived from the parental LNCaP, PC3, and Du145 prostate cancer cells by repetitive exposure to ionizing radiation. LNCaP-IRR, PC3-IRR, and Du145-IRR cells (prostate carcinoma cells recurred after radiation exposure (IRR cells)) showed higher radioresistance and cell motility than parental cell lines. IRR cells exhibited higher levels of androgen and epidermal growth factor (EGF) receptors and activation of their downstream pathways, such as Ras-mitogen-activated protein kinase (MAPK) and phosphatidyl inositol 3-kinase (PI3K)-Akt and Jak-STAT. In order to define additional mechanisms involved in the radioresistance development, we determined differences in the proteome profile of parental and IRR cells using 2-D DIGE followed by computational image analysis and MS. Twenty-seven proteins were found to be modulated in all three radioresistant cell lines compared to parental cells. Identified proteins revealed capacity to interact with EGF and androgen receptors related signal transduction pathways and were involved in the regulation of intracellular routs providing cell survival, increased motility, mutagenesis, and DNA repair. Our data suggest that radioresistance development is accompanied by multiple mechanisms, including activation of cell receptors and related downstream signal transduction pathways. Identified proteins regulated in the radioresistant prostate carcinoma cells can significantly intensify activation of intracellular signaling that govern cell survival, growth, proliferation, invasion, motility, and DNA repair. In addition, such analyses may be utilized in predicting cellular response to radiotherapy.  相似文献   

6.
7.
Lin HP  Jiang SS  Chuu CP 《PloS one》2012,7(2):e31286
Caffeic acid phenethyl ester (CAPE) treatment suppressed proliferation, colony formation, and cell cycle progression in PC-3 human prostate cancer cells. CAPE decreased protein expression of cyclin D1, cyclin E, SKP2, c-Myc, Akt1, Akt2, Akt3, total Akt, mTOR, Bcl-2, Rb, as well as phosphorylation of Rb, ERK1/2, Akt, mTOR, GSK3α, GSK3β, PDK1; but increased protein expression of KLF6 and p21(Cip1). Microarray analysis indicated that pathways involved in cellular movement, cell death, proliferation, and cell cycle were affected by CAPE. Co-treatment of CAPE with chemotherapeutic drugs vinblastine, paclitaxol, and estramustine indicated synergistic suppression effect. CAPE administration may serve as a potential adjuvant therapy for prostate cancer.  相似文献   

8.
Though the current therapies are effective at clearing an early stage prostate cancer, they often fail to treat late-stage metastatic disease. We aimed to investigate the molecular mechanisms underlying the anticancer effects of a natural triterpenoid, ganoderic acid DM (GA-DM), on two human prostate cancer cell lines: the androgen-independent prostate carcinoma (PC-3), and androgen-sensitive prostate adenocarcinoma (LNCaP). Cell viability assay showed that GA-DM was relatively more toxic to LNCaP cells than to PC-3 cells (IC50s ranged 45-55 µM for PC-3, and 20-25 µM for LNCaP), which may have occurred due to differential expression of p53. Hoechst DNA staining confirmed detectable nuclear fragmentation in both cell lines irrespective of the p53 status. GA-DM treatment decreased Bcl-2 proteins while it upregulated apoptotic Bax and autophagic Beclin-1, Atg5, and LC-3 molecules, and caused an induction of both early and late events of apoptotic cell death. Biochemical analyses of GA-DM-treated prostate cancer cells demonstrated that caspase-3 cleavage was notable in GA-DM-treated PC-3 cells. Interestingly, GA-DM treatment altered cell cycle progression in the S phase with a significant growth arrest in the G2 checkpoint and enhanced CD4 + T cell recognition of prostate tumor cells. Mechanistic study of GA-DM-treated prostate cancer cells further demonstrated that calpain activation and endoplasmic reticulum stress contributed to cell death. These findings suggest that GA-DM is a candidate for future drug design for prostate cancer as it activates multiple pathways of cell death and immune recognition.  相似文献   

9.
Epibrassinolide (EBR) is a biologically active compound of the brassinosteroids, steroid-derived plant growth regulator family. Generally, brassinosteroids are known for their cell expansion and cell division-promoting roles. Recently, EBR was shown as a potential apoptotic inducer in various cancer cells without affecting the non-tumor cell growth. Androgen signaling controls cell proliferation through the interaction with the androgen receptor (AR) in the prostate gland. Initially, the development of prostate cancer is driven by androgens. However, in later stages, a progress to the androgen-independent stage is observed, resulting in metastatic prostate cancer. The androgen-responsive or -irresponsive cells are responsible for tumor heterogeneity, which is an obstacle to effective anti-cancer therapy. Polyamines are amine-derived organic compounds, known for their role in abnormal cell proliferation as well as during malignant transformation. Polyamine catabolism-targeting agents are being investigated against human cancers. Many chemotherapeutic agents including polyamine analogs have been demonstrated to induce polyamine catabolism that depletes polyamine levels and causes apoptosis in tumor models. In our study, we aimed to investigate the mechanism of apoptotic cell death induced by EBR, related with polyamine biosynthetic and catabolic pathways in LNCaP (AR+), DU145 (AR?) prostate cancer cell lines and PNT1a normal prostate epithelial cell line. Induction of apoptotic cell death was observed in prostate cancer cell lines after EBR treatment. In addition, EBR induced the decrease of intracellular polyamine levels, accompanied by a significant ornithine decarboxylase (ODC) down-regulation in each prostate cancer cell and also modulated ODC antizyme and antizyme inhibitor expression levels only in LNCaP cells. Catabolic enzymes SSAT and PAO expression levels were up-regulated in both cell lines; however, the specific SSAT and PAO siRNA treatments prevented the EBR-induced apoptosis only in LNCaP (AR+) cells. In a similar way, MDL 72,527, the specific PAO and SMO inhibitor, co-treatment with EBR during 24 h, reduced the formation of cleaved fragments of PARP in LNCaP (AR+) cells.  相似文献   

10.
Allium hirtifolim (Persian Shallot) belongs to Allium genus (Alliaceae family). We investigated the in vitro effects of chloroformic extract of A. hirtifolium and its Allicin on the proliferation of HeLa (cervical cancer), MCF7 (human, caucasion, breast, adenocarcinoma) and L929 (mouse, C3H/An, connective) cell lines. Our results showed that components of A. hirtifolium might inhibit proliferation of tumor cell lines. This inhibition in HeLa and MCF-7 cells was dose-dependent. The presence of Allicin was evaluated by TLC method in bulbs and the extract of A. hirtifolium was analyzed by HPLC. MTT test was performed 24, 48 and 72 h after cell culture. A significant decrease in cell lines was observed in HeLa and MCF-7 as compared to L929 cell lines. DNA fragmentation analysis revealed a large number of apoptotic cells in treated HeLa and MCF-7 cell groups, but no effects in L929 cells. Therefore A. hirtifolium might be a candidate for tumor suppression.  相似文献   

11.
12.
Celastrol, a plant triterpene has attracted great interest recently, especially for its potential anti-inflammatory and anti-cancer activities. In the present report, we investigated the effect of celastrol on proliferation of various cancer cell lines. The mechanism, by which this triterpene exerts its apoptotic effects, was also examined in detail. We found that celastrol inhibited the proliferation of wide variety of human tumor cell types including multiple myeloma, hepatocellular carcinoma, gastric cancer, prostate cancer, renal cell carcinoma, head and neck carcinoma, non-small cell lung carcinoma, melanoma, glioma, and breast cancer with concentrations as low as 1 μM. Growth inhibitory effects of celastrol correlated with a decrease in the levels of cyclin D1 and cyclin E, but concomitant increase in the levels of p21 and p27. The apoptosis induced by celastrol was indicated by the activation of caspase-8, bid cleavage, caspase-9 activation, caspase-3 activation, PARP cleavage and through the down regulation of anti-apoptototic proteins. The apoptotic effects of celastrol were preceded by activation of JNK and down-regulation of Akt activation. JNK was needed for celastrol-induced apoptosis, and inhibition of JNK by pharmacological inhibitor abolished the apoptotic effects. Overall, our results indicate that celastrol can inhibit cell proliferation and induce apoptosis through the activation of JNK, suppression of Akt, and down-regulation of anti-apoptotic protein expression.  相似文献   

13.
Caffeic acid phenethyl ester (CAPE) treatment suppressed proliferation, colony formation, and cell cycle progression in PC-3 human prostate cancer cells. CAPE decreased protein expression of cyclin D1, cyclin E, SKP2, c-Myc, Akt1, Akt2, Akt3, total Akt, mTOR, Bcl-2, Rb, as well as phosphorylation of Rb, ERK1/2, Akt, mTOR, GSK3α, GSK3β, PDK1; but increased protein expression of KLF6 and p21Cip1. Microarray analysis indicated that pathways involved in cellular movement, cell death, proliferation, and cell cycle were affected by CAPE. Co-treatment of CAPE with chemotherapeutic drugs vinblastine, paclitaxol, and estramustine indicated synergistic suppression effect. CAPE administration may serve as a potential adjuvant therapy for prostate cancer.  相似文献   

14.
Our study aimed to compare death signalling pathways triggered by lupulone in TRAIL-sensitive human colon cancer cells (SW480) and in their derived TRAIL-resistant metastatic cells (SW620). Lupulone (40 μg/ml) up-regulated expression of TRAIL DR4/DR5 death receptors at the cell surface of both cell lines, even in the absence of exogenous TRAIL ligand. Cell death induced by lupulone was inhibited in SW480 and SW620 cells exposed to blocking anti-DR4/DR5 antibodies. In SW480 cells, lupulone triggered cell death through a cross-talk between TRAIL-DR4/DR5 and the mitochondrial (intrinsic) pathways involving caspase-8 activation and Bid protein cleavage. As a consequence mitochondrial cytochrome c was released into the cytosol and activation of caspases-9 and -3 was observed. In the metastatic SW620 cells, lupulone restored the sensibility of these cells to TRAIL ligand and activated the extrinsic apoptotic pathway via DR4/DR5 death receptors and the involvement of the caspase-8/caspase-3 cascade. The demonstration that lupulone is able to activate TRAIL-death signalling pathways even in TRAIL resistant cancer cells highlights the potential of this natural compound for cancer prevention and therapy.  相似文献   

15.
5alpha-Androstane-3alpha,17beta-diol (3alpha-diol) is reduced from the potent androgen, 5alpha-dihydrotestosterone (5alpha-DHT), by reductive 3alpha-hydroxysteroid dehydrogenases (3alpha-HSDs) in the prostate. 3alpha-diol is recognized as a weak androgen with low affinity toward the androgen receptor (AR), but can be oxidized back to 5alpha-DHT. However, 3alpha-diol may have potent effects by activating cytoplasmic signaling pathways, stimulating AR-independent prostate cell growth, and, more importantly, providing a key signal for androgen-independent prostate cancer progression. A cancer-specific, cDNA-based membrane array was used to determine 3alpha-diol-activated pathways in regulating prostate cancer cell survival and/or proliferation. Several canonical pathways appeared to be affected by 3alpha-diol-regulated responses in LNCaP cells; among them are apoptosis signaling, PI3K/AKT signaling, and death receptor signaling pathways. Biological analysis confirmed that 3alpha-diol stimulates AKT activation; and the AKT pathway can be activated independent of the classical AR signaling. These observations sustained our previous observations that 3alpha-diol continues to support prostate cell survival and proliferation regardless the status of the AR. We provided the first systems biology approach to demonstrate that 3alpha-diol-activated cytoplasmic signaling pathways are important components of androgen-activated biological functions in human prostate cells. Based on the observations that levels of reductive 3alpha-HSD expression are significantly elevated in localized and advanced prostate cancer, 3alpha-diol may, therefore, play a critical role for the transition from androgen-dependent to androgen-independent prostate cancer in the presence of androgen deprivation.  相似文献   

16.
Liquidambar orientalis Mill., commonly called the Anatolian sweetgum or Sigla tree, is endemic to southwestern Turkey. It has been historically significant in traditional medicine. In our research, we delved into the therapeutic attributes of its oil, emphasizing its antioxidant, antimicrobial, and antitumor properties. The primary chemical constituent of the gum is styrene, accounting for 78.5 %. The gum demonstrated antioxidant capabilities in several assays, including in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), cupric reducing antioxidant capacity (CUPRAC) and ferric reducing antioxidant power (FRAP). It displayed bactericidal actions against various gram-positive bacteria, such as Staphylococcus aureus, and gram-negative strains, including Escherichia coli. Additionally, the oil showcased potent antitumor effects against breast (MDA-MB-231), lung (A549), and prostate (PC3) cancer cell lines. These effects were found to be both time- and dose-dependent. L. orientalis Mill. oil showed the best antitumor activity against breast, lung, and prostate cancer cell lines after the 24 h and 48 h treatment. Its oil might induce autophagy in the PC3 prostate cancer cell line, whereas its cytotoxicity against MDA-MB-231 and A549 cancer cell lines might not be correlated with autophagy or apoptosis pathways. In conclusion, the oil from the Sigla tree offers promising therapeutic potential and warrants further exploration.  相似文献   

17.
Background: Hypertriglyceridemia has been shown to be one of the risk factors for prostate cancer. In this study, we investigated the effect of remnant lipoproteins on cell growth in prostate cancer cell lines. Methods: Remnant lipoproteins were isolated as remnant like particles (RLP) from human plasma. We used RLP for TG-rich lipoproteins and low density lipoproteins (LDL) for cholesterol-rich lipoproteins respectively and examined the effect of lipoproteins on proliferation of PC-3 and LNCaP cells using MTS assays. Moreover, we studied the effect of RLP and LDL treatment on the regulation of lipoprotein receptors in prostate cancer cells to investigate the relationship between lipoprotein-induced cell proliferation and lipoprotein receptor expression using real-time PCR, Western blotting assays and siRNA. Results: RLP effectively induced PC-3 cell proliferation more than LDL, whereas both RLP and LDL could not induce LNCaP cell proliferation except at a higher concentration of RLP. LDL receptor (LDLr) was expressed in both prostate cancer cells but there was a sharp difference of sterol regulation between two cells. In PC-3 cells, LDL decreased the LDLr expression in some degree, but RLP did not. Meanwhile LDLr expression in LNCaP was easily downregulated by RLP and LDL. Blocking LDLr function significantly inhibited both RLP- and LDL-induced PC-3 cell proliferation. Conclusions: This study demonstrated that RLP-induced PC-3 cell proliferation more than LDL; however, both RLP and LDL hardly induced LNCaP cell proliferation. The differences of proliferation by lipoproteins might be involved in the regulation of LDLr expression.  相似文献   

18.
19.
The prostate gland is regulated by multiple hormones and growth factors that may also affect prostate tumorigenesis. Growth hormone (GH) contributes to prostate development and function, but the direct effects of GH on prostate cancer cells are not well understood. The expression of endogenous GH in prostate cancer cell lines has also been observed, suggesting the potential for an effect of autocrine GH. In the present study, we measure the levels of GH and GH receptor (GHR) mRNA in multiple prostate cancer and normal prostate‐derived cell lines, and compare the effects of exogenous and autocrine GH on LNCaP prostate cancer cell proliferation and apoptosis, and the associated signal transduction pathways. We found that GHR and GH expression were higher in the prostate cancer cell lines, and that exogenous GH increased LNCaP cell proliferation, but had no effect on apoptosis. In contrast, autocrine GH overexpression reduced LNCaP cell proliferation and increased apoptosis. The distinct actions of exogenous and autocrine GH were accompanied by differences in the involvement of GHR‐associated signal transduction pathways, and were paralleled by an alteration in the subcellular localization of GHR, in which autocrine GH appeared to sequester GHR in the Golgi and endoplasmic reticulum. This alteration of GHR trafficking may underlie a distinct mode of GH‐mediated signaling associated with the effect of autocrine GH. These findings clarify the potential effects of GH on prostate cancer cell function, and indicate that the activity of autocrine GH may be distinct from that of endocrine GH in prostate cancer cells. J. Cell. Biochem. 114: 1322–1335, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
To characterize immunomodulatory mechanisms that affect oligodendroglia (OL) and white matter following ethanol exposure during early CNS development, we investigated the direct effects of ethanol and cytokines on glia. Mixed glial cultures from newborn rat brain were exposed to 6.5–130 mM ethanol for 1–3 days. OL were sensitive to ethanol, with death ranging from 32 to 88% with increasing time and ethanol concentrations. Little cell death occurred in astroglia or microglia. Mixtures of cytokines representative of those produced by pro-inflammatory Th1 and monocyte/macrophage (M/M) cells as well as those produced by anti-inflammatory Th2 cells were all protective. Three of the cytokines in the Th1 mixture, IL-2, TNF-α and IFN-γ, were protective individually, although no single cytokine was as effective as the mixture. The protective effects of the Th1 mixture and of IL-2 were reversed by inhibition of both MAP kinase and PI-3 kinase signaling pathways. We conclude that cytokines can act either directly on OL or indirectly through effects on astroglia or microglia to protect OL from ethanol toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号