首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Endocytosis was studied in the seminal vesicle secretory cells of castrated and control hamsters in order to investigate the effect of testosterone withdrawal in the endocytic activity of these cells. Horseradish peroxidase was injected into the glands lumen after removal of their contents, and tracer distribution was qualitatively studied, and the number of labeled endocytic vesicles quantitatively analyzed, following 5, 20, 40 and 60 min incubation. The following compartments are labeled both in castrate and control cells: 1), endocytic vesicles; 2), vacuoles with or without secretory material; 3), multivesicular bodies; 4), Golgi cisternae; 5), intercellular spaces; 6), sub-epithelial space. The pattern of labeling is lighter in castrate than in control cells and the labeling of Golgi cisternae, which correlates with a significant peak in the number of endocytic vesicles, is observed later in castrated animals than in controls: 40 min vs 20 min. Exocytosis, as evaluated through the fraction of secretory protein released in vitro, decreases following castration. Endocytosis performed in castrated, pilocarpine treated animals shows that the Golgi labeling, coinciding with numerous labeled endocytic vesicles, is advanced from 40 to 20 min after stimulation of exocytosis. The results show that, in the seminal vesicle secretory cells a) the endocytic pathway does not depend on testosterone; b) testosterone withdrawal decreases endocytosis and delays the kinetics of labeling and; c) endocytosis couples to exocytosis, probably so regulating the apical cell membrane area.  相似文献   

2.
Somatotrophs from male rat anterior pituitary were used to investigate the formation of secretory granules. When enzymatically dispersed cells were incubated with cationized ferritin (CF) for 15 min, CF labeled immature secretory granules, but not mature granules of somatotrophs. Most immature granules labeled by CF transformed to the mature types within 120 min. This indicates that the fusion of endocytic vesicles with the immature granules occurs during the maturation process of secretory granules. The internalized CF was distributed not only in the immature secretory granules, but also in the peripheral region of trans Golgi cisternae or GERL. Enzyme cytochemistry revealed that acid phosphatase-positive cisternae (GERL) were the main site for secretory granule formation, and was devoid of thiamine pyrophosphatase (TPPase) activity. A small number of secretory granules were also present in the peripheral regions of TPPase-positive Golgi cisternae. The granule-forming sites, however, lacked TPPase activity, while the remaining region of the same cisterna showed the positive enzyme activity. This indicates that the granule-forming region at the periphery of Golgi cisterna is different from the remaining part of the same cisterna in terms of cytochemical properties. This probably results from the insertion of endocytic vesicle membrane, since the same granule-forming sites preferentially fused with CF-labeled small vesicles which lacked cytochemical TPPase activity. Taken together. Our results suggest that the membrane of secretory granules is modified during the granule formation, at least partly by the fusion of endocytic small vesicles with Golgi cisternae (or GERL), and with immature secretory granules.  相似文献   

3.
Summary Administration of ovine prolactin to castrated guinea pigs for 2 weeks induced hypertrophy of secretory cells in the lateral prostate when compared with the castrated controls. This was accompanied by an apparent increase in the number of profiles of granular endoplasmic reticulum and well developed Golgi complexes with dilated cisternae. An increase in the number of low-contrast electron-dense secretory granules was observed 4 weeks after prolactin treatment. In the seminal vesicle, dilatation and degranulation of granular endoplasmic reticulum and an apparent decrease in the number of secretory granules were observed 4 weeks after prolactin administration. Following castration and 2 weeks after prolactin treatment, thiamine pyrophosphatase (TPPase)-reaction product was mainly confined to 1–2 trans cisternae of the Golgi complexes in secretory cells of the lateral prostate and the seminal vesicle. In both glands, a reduction of TPPase activity was observed 2 weeks following prolactin administration, and the reaction product was totally absent after prolonged treatment for 4 weeks. The present study has provided morphological evidence that prolactin is capable of stimulating the secretory function of the lateral prostate while exerting some inhibitory effects on the seminal vesicle of the castrated guinea pig. In both glands, TPPase activity, and hence the process of glycosylation was inhibited after prolactin administration. The results from radioimmunoassay indicated that the action of prolactin on these glands could be a direct effect and not mediated through testosterone.  相似文献   

4.
The ultrastructure of hamster seminal vesicle epithelium was studied 7, 14, 21 and 28 days after castration using a stereological approach. The results show that castration promotes epithelial reorganization, mainly characterized by reduced epithelial cell size and number, decreased rough endoplasmic reticulum and Golgi complex, increased lysosomes and lipid droplets, increased apical secretory granule size and number, and increased intracellular secretory products per average epithelial cell. It is concluded that after testosterone withdrawal the secretory activity of hamster seminal vesicle epithelial cells, although reduced, is not abolished, and that exocytosis is relatively more reduced than secretory protein production. We suggest that an extracellular androgen source is responsible for secretory activity not being lost in the epithelial cells of castrated hamster seminal vesicle.  相似文献   

5.
Rapid Endocytosis and Vesicle Recycling in Neuroendocrine Cells   总被引:1,自引:0,他引:1  
Endocytosis is a crucial process for neuroendocrine cells that ensures membrane homeostasis, vesicle recycling, and hormone release reliability. Different endocytic mechanisms have been described in chromaffin cells, such as clathrin-dependent slow endocytosis and clathrin-independent rapid endocytosis. Rapid endocytosis, classically measured in terms of a fast decrease in membrane capacitance, exhibits two different forms, “rapid compensatory endocytosis” and “excess retrieval.” While excess retrieval seems to be associated with formation of long-lasting endosomes, rapid compensatory endocytosis is well correlated with exocytotic activity, and it is regarded as a mechanism associated to rapid vesicle recycling during normal secretory activity. It has been suggested that rapid compensatory endocytosis may be related to the prevalence of a transient fusion mode of exo-endocytosis. In the latter mode, the fusion pore, a nanometric-sized channel formed at the onset of exocytosis, remains open for a few hundred milliseconds and later abruptly closes, releasing a small amount of transmitters. By this mechanism, endocrine cell selectively releases low molecular weight transmitters, and rapidly recycles the secretory vesicles. In this article, we discuss the cellular and molecular mechanisms that define the different forms of exocytosis and endocytosis and their impact on vesicle recycling pathways.  相似文献   

6.
Endocytosis and vesicle recycling via secretory endosomes are essential for many processes in multicellular organisms. Recently, higher plants have provided useful experimental model systems to study these processes. Endocytosis and secretory endosomes in plants play crucial roles in polar tip growth, a process in which secretory and endocytic pathways are integrated closely. Plant endocytosis and endosomes are important for auxin-mediated cell-cell communication, gravitropic responses, stomatal movements, cytokinesis and cell wall morphogenesis. There is also evidence that F-actin is essential for endocytosis and that plant-specific myosin VIII is an endocytic motor in plants. Last, recent results indicate that the trans Golgi network in plants should be considered an integral part of the endocytic network.  相似文献   

7.
FM dyes have been used to label and then monitor synaptic vesicles, secretory granules and other endocytic structures in a variety of preparations. Here, we describe the general procedure for using FM dyes to study endosomal trafficking in general, and synaptic vesicle recycling in particular. The dye, dissolved in normal saline solution, is added to a chamber containing the preparation to be labeled. Stimulation evokes exocytosis, and compensatory endocytosis that follows traps FM dye inside the retrieved vesicles. The extracellular dye is then washed from the chamber, and labeled endocytic structures are examined with a fluorescence microscope. Fluorescence intensity provides a direct measure of the labeled vesicle number, a good measure of the amount of exocytosis. If the preparation is stimulated again, without dye in the chamber, dimming of the preparation provides a measure of exocytosis of labeled vesicles. With a synaptic preparation on hand, this protocol requires 1 day.  相似文献   

8.
Endocytosis in secretory cells   总被引:2,自引:0,他引:2  
Membranes of secretion granules inserted during exocytosis into the luminal plasma membranes of glandular cells are retrieved by endocytosis as revealed by electron dense tracers applied selectively to the apical cell surfaces. Two major pathways that endocytic vesicles may take are described: (1) a direct route to the Golgi complex (e.g. in parotid and exocrine pancreas) with later appearance of the tracer in the periphery of mature secretion granules; (2) an indirect route with lysosomes as a first station and the subsequent appearance of tracer in stacked Golgi cisternae. It is presumed that some of the retrieved membrane follows the same pathways and is reutilized in the secretory cycle.  相似文献   

9.
This study was performed to clarify the fate of membrane constituents internalized from the apical domain in secretory cells, in particular their possible recycling and the compartments involved in it. Glycoproteins of the apical membrane of seminal vesicle secretory cells from guinea-pig were covalently labeled in vitro (0 degrees C, 20 min) with 3H-galactose and the epithelium incubated for 15 min (37 degrees C, first incubation) to allow endocytosis. The label which was not internalized was then exposed to enzymatic hydrolysis (0 degrees C, 30 min) and the epithelium re-incubated to allow membrane movement for 15 and 30 min (37 degrees C, 2nd incubation). After each step of the protocol, tissue pieces were fixed and processed for electron microscope autoradiography and the results studied by morphometric analysis. Following labeling, 99% of the silver grains were associated with the apical domain of the cell membrane (AD). After the 1st incubation at 37 degrees C, 30% of the grains were inside the cells in association with the cytoplasmic vesicles (Cyt ves), secretory vacuoles (SV), Golgi vesicles (GV), Golgi cisternae (GC), multivesicular bodies (MVB), lysosomes (LYS), and the cell membrane basolateral domain (BLD). About 58% of non-internalized radioactivity was removed by hydrolysis. During the 2nd incubation at 37 degrees C the concentration of label increased in BLD and LYS, decreased in SV and MVB, and fluctuated in GC, GV and AD. The distribution of grains observed at 15 min, as compared using the chi-square test, was highly significantly different from that expected without recycling. The results show that cell membrane glycoproteins internalized at the cell apex recycle back to the membrane apical domain and are consistent with the involvement of GC and SV in the recycling pathway. Membrane shuttle between the apical and basolateral domains of the cell membrane is also suggested by these observations.  相似文献   

10.
Membrane recycling in pancreatic acinar cells involves endocytic vesicle formation at the apical cell surface and rapid membrane traffic to the Golgi complex. During this process a small amount of extracellular content is taken up from the acinar lumen. In order to determine whether secretory proteins already released into the pancreatic acinar lumen are reinternalized during membrane retrieval, 3H-labeled amylase or 125I-labeled secretory proteins were reinfused through the pancreatic duct until the lumina were reached. Tissue samples from various time points were prepared for light and electron microscope autoradiography. The observations showed that [3H]amylase and, to a lesser extent, the 125I-labeled secretory proteins were internalized at the apical cell surface and rapidly (within 2-5 min) transferred to the Golgi cisternae and the condensing vacuoles; only a minor proportion of silver grains was observed over lysosomes. In addition, at later time points, mature secretion granules close to the Golgi complex became labeled. The results indicate that exocytosis in the rat exocrine pancreas does not operate at 100% efficiency; part of the exported amylase and part of the total secretion product are reinternalized concomitantly with the endocytic removal of plasma membrane and are copackaged together with newly synthesized secretory proteins.  相似文献   

11.
This study was performed to clarify the fate of membrane constituents internalized from the apical domain in secretory cells, in particular their possible recycling and the compartments involved in it. Glycoproteins of the apical membrane of seminal vesicle secretory cells from guinea-pig were covalently labeled in vitro (0°C, 20 min) with 3H-galactose and the epithelium incubated for 15 min (37°C, first incubation) to allow endocytosis. The label which was not internalized was then exposed to enzymatic hydrolysis (0°C, 30 min) and the epithelium re-incubated to allow membrane movement for 15 and 30 min (37°C, 2nd incubation). After each step of the protocol, tissue pieces were fixed and processed for electron microscope autoradiography and the results studied by morphometric analysis. Following labeling, 99% of the silver grains were associated with the apical domain of the cell membrane (AD). After the 1st incubation at 37°C, 30° of the grains were inside the cells in association with the cytoplasmic vesicles (Cyt ves), secretory vacuoles (SV), Golgi vesicles (GV), Golgi cisternae (GC), multivesicular bodies (MVB), lysosomes (LYS), and the cell membrane basolateral domain (BLD). About 58% of non-internalized radioactivity was removed by hydrolysis. During the 2nd incubation at 37°C the concentration of label increased in BLD and LYS, decreased in SV and MVB, and fluctuated in GC, GV and AD. The distribution of grains observed at 15 min, as compared using the χ-square test, was highly significantly different from that expected without recycling. The results show that cell membrane glycoproteins internalized at the cell apex recycle back to the membrane apical domain and are consistent with the involvement of GC and SV in the recycling pathway. Membrane shuttle between the apical and basolateral domains of the cell membrane is also suggested by these observations.  相似文献   

12.
The effect of estradiol and/or testosterone upon secretion by seminal vesicle in castrated and intact rats was assessed in young adult Sprague-Dawley rats, using light microscopy (LM), transmission (TEM) and scanning (SEM)electron microscopy. Hormones were injected daily for ten days beginning ten days after castrations were performed. The normal rat seminal vesicle, as revealed by SEM, was characterized by a large saccular lumen with highly folded walls. Cell surfaces were covered with microvilli, or occasionally displayed a protruding, ruffled surface, sparsely covered with short microvilli. Cytology was normal in testosterone-treated animals. Estradiol treatment of castrated animals stimulated secretion by seminal vesicle epithelial cells as evidenced by the presence of normal secretory bodies, the presence of RER, and moderately hypertrophied Golgi complexes. These glands were not heavier than were glands from castrated, untreated animals, although the epithelial cells were significantly taller. Secretion was maintained in intact animals treated with estradiol, although glands were smaller and epithelial height was reduced. Estradiol and testosterone treatment in combination did not appear to have an additive effect on secretion, weight of the gland, or epithelial height. The following results support the hypothesis that estrogen-induced prolactin synthesis and release may be involved in the mechanism by which estradiol effected stimulation of seminal vesicle epithelium. Prolactin-treated, castrated animals exhibited focal areas of stimulated epithelium. In hypophysectomized animals (untreated controls), the seminal vesicle epithelium retained some secretory bodies and secretory fluid in the glandular lumen; epithelial height was taller than that in castrated controls. Estrogen treatment reduced the epithelial height to that of castrated controls; there was no evidence of secretion. This suggests that in the absence of anterior pituitary hormones, including prolactin, the stimulatory effect of estradiol on seminal vesicle epithelium was nullified. In adrenalectomized/castrated animals, estradiol treatment stimulated secretion in seminal vesicle epithelium just as in non-adrenalectomized/castrated animals. This indicates that the adrenal gland plays a non-essential role in the action of estrogen on seminal vesicle epithelium.  相似文献   

13.
Summary Ultrastructural localization of thiamine pyrophosphatase (TPPase) activity was studied in secretory cells of the lateral prostate and seminal vesicle of normal and castrated guinea pigs and castrates treated with 17-oestradiol benzoate. The present study has demonstrated that TPPase reaction product is consistently localized in the three to four trans cisternae of Golgi complexes in both the lateral prostate and the seminal vesicle. The reaction was intense and the reaction product often filled the cisternae completely.After castration there was a decrease in TPPase activity in both glands as revealed by the reduction in the amount of the reaction product which was found mainly in one to two trans cisternae of the regressed Golgi complex. The reaction product changed from a dense to a more particulate or granular pattern or to discrete deposits of high electron-density.Administration of 17-oestradiol benzoate to the castrates caused changes in the localization and patterns of distribution of TPPase. In the lateral prostate there was an apparent increase in TPPase activity. The reaction product was found in two to four trans cisternae and occasionally in the trans-most cisternae of the dilated Golgi complex. The reaction product appeared as discrete, dense coarse precipitates. In the seminal vesicle TPPase reaction product was consistently found in one to two trans cisternae in cells with larger Golgi complexes. However, almost all cisternae of the smaller Golgi complexes were TPPase-positive. The cytochemicl results of the present study suggest that TPPase activity and possibly the process of glycosylation in secretory cells of the lateral prostate and seminal vesicle may have been affected after castration and after oestradiol administration.  相似文献   

14.
Y Goda  S R Pfeffer 《FASEB journal》1989,3(13):2488-2495
Proteins bound for the cell surface, lysosomes, and secretory storage granules share a common pathway of intracellular transport. After their synthesis and translocation into the endoplasmic reticulum, these proteins traverse the secretory pathway by a series of vesicular transfers. Similarly, nutrient and signaling molecules enter cells by endocytosis, and move through the endocytic pathway by passage from one membrane-bound compartment to another. Little is known about the mechanisms by which proteins are collected into transport vesicles, or how these vesicles form, identify their targets, and subsequently fuse with their target membranes. An important advance toward our understanding these processes has come from the establishment of cell-free systems that reconstitute vesicular transfers in vitro. It is now possible to measure, in vitro, the transport of proteins from the endoplasmic reticulum to the Golgi, between Golgi cisternae, and the formation of transport vesicles en route from the trans Golgi network to the cell surface. Along the endocytic pathway, cell-free systems are available to study clathrin-coated vesicle formation, early endosome fusion, and the fusion of late endosomes with lysosomes. Moreover, the selective movement of receptors between late endosomes and the trans Golgi network has also been reconstituted. The molecular mechanisms of vesicular transport are now amenable to elucidation.  相似文献   

15.
The guinea pig seminal vesicle epithelium synthesizes and secretes four major secretory proteins (SVP-1-4). Previous work has established that these four proteins are cleaved from two primary translation products in a complex series of protein processing reactions. The present studies suggest that these protein processing reactions are regulated by androgens. In vitro labeling of seminal vesicle proteins revealed significant differences in the patterns of secretory protein intermediates produced by tissue from intact and castrated animals. Seminal vesicle tissue explants from castrated animals secreted a subset of the processing intermediates secreted by tissue from intact animals. The changes in the patterns of secretory protein intermediates became more pronounced with increasing time after castration, and were fully reversible by treatment of castrated animals with testosterone, suggesting that androgens were affecting the processing or secretion of secretory protein precursors. Amino-terminal protein sequencing of secretory protein processing intermediates that accumulate in the seminal vesicle lumen after castration suggests that the guinea pig seminal vesicle contains an androgen-regulated proteolytic processing activity.  相似文献   

16.
The subcellular distribution of sialic acid was determined at the ultrastructural level using Limax flavus agglutinin (LFA). This lectin, which is specific for N-acetylneuraminic acid and N-glycolylneuraminic acid, was covalently conjugated to horseradish peroxidase (HRP). The conjugates (LFA-HRP) were applied to aldehyde-fixed, saponin-permeabilized 3T3 cells in pre-embedding labeling electron microscopy. Peroxidase label was detected in a patchy distribution at the cell surface, and in plasma-membrane-coated pits, endocytic vesicles (receptosomes), multivesicular bodies, and lysosomes. Smooth-surfaced tubular and vesicular structures, similar to those that participate in membrane recycling, were labeled. In the Golgi complex, more than half of the cisternae contained label--typically only one cisterna on the cis side was unlabeled. Heavily labeled structures of the trans Golgi included a reticular membranous system with coated regions--50-80 nm diameter vesicular or pit-like profiles and larger coated vacuoles. Smooth 200-300 nm vacuoles were labeled on the trans side of the Golgi stack. Similar structures have been previously shown to participate in the exocytosis of plasma membrane and secretory glycoproteins from the Golgi stacks. These findings identify those intracellular organelles that are functionally at the level of, or distal to, the sialyltransferase-containing membranes of the Golgi, and distinguish them from the pre-Golgi membranous structures. The LFA-HRP conjugate is an indicator for this functional trans domain of the cell, and should be applicable for ultrastructural double-label experiments as a cis versus trans marker of the exocytic pathway.  相似文献   

17.
Albumin was isolated immunologically from various subcellular fractions from livers of adult male rats receiving an intraperitoneal injection of [3H]leucine to investigate the kinetics and pathway of subcellular transfer of newly synthesized albumin during secretion. At appropriate time intervals, livers were excised and fractionated into endoplasmic reticulum and Golgi apparatus. Golgi apparatus were further subfractionated into cisternae and secretory vesicles. In endoplasmic reticulum fractions, labeled albumin appeared within 7.5 min of injection of isotope, followed by a rapid decline in specific activity. Albumin in Golgi apparatus was labeled and concentrated in secretory vesicles over 25 min. The radioactivity in albumin per mg total protein was highest in secretory vesicles and insignificant in the cisternal fraction. Labeled albumin was present in serum by 30 min and radioactivity in serum albumin reached a plateau within 60–90 min after injection of isotope. Results provide evidence for the migration of albumin from its site of synthesis on endoplasmic reticulum membrane-bound polyribosomes to its site of secretion into the circulation via the Golgi apparatus. The pathway of albumin transport to secretory vesicles is suggested to involve peripheral elemenst of the Golgi apparatus. Secretory vesicle formation and maturation required 20 to 30 min for completion, via a mechanism whereby the inner spaces of the central saccules may be bypassed.  相似文献   

18.
African trypanosomes multiply rapidly during the course of infection obtaining nutrients from the host blood and other body fluids. The organelles involved in endocytosis were revealed ultrastructurally using horseradish peroxidase (HRP) and colloidal gold coupled to bovine transferrin (Au-Tf) or bovine serum albumin (Au-BSA). At 0 degree C the markers bound to the cell surface and neither entered the flagellar pocket nor were internalized. Upon warming to 37 degrees C, the markers were found in the flagellar pocket and appeared to enter all the intracellular endocytic organelles within 5 min. Serial sectioning of resin-embedded cells was employed to obtain pseudo three-dimensional views of these organelles. The organelles involved were of three types: (1) small vesicles and cisternae (20-25 nm in diameter), (2) large tubular networks (200 nm diameter) similar to endosomes of mammalian cells, and (3) large lysosome-like vesicles. These organelles were located between the flagellar pocket and the nucleus and were also associated with one face of the Golgi apparatus. In pulse-chase experiments HRP was not detected in intracellular organelles after 410 min but Au-Tf was seen in residual bodies. No exocytosis of Au-Tf from the flagellar pocket was observed. The data suggests that the processes of endocytosis in these parasitic protozoa may be similar to the endocytic processes found in mammalian cells.  相似文献   

19.
Human blood group A antigenicity of glycoproteins is retained on epon-embedded jejunum sections after glutaraldehyde fixation and osmium treatment. The intracellular location of molecules bearing these determinants was visualized in the four types of epithelial cells of A+ rabbit jejunum sections with immuno-colloidal gold labeling. The brush border membrane and in particular the glycocalyx of absorbing cells as well as the secretory granules of goblet and Paneth cells were heavily labeled. In enteroendocrine cells, the membrane of secretory granules and not their content was lightly labeled. The differential labeling of secretory or membrane bound glycoproteins is accompanied by different labels of the Golgi complex as expected if labeling of the Golgi saccules was due to the presence of glycoproteins in transit. In all cases the label is primarily concentrated in only half the cisternae on the trans side of the Golgi stacks. In absorbing cells, structures have been revealed in the terminal web that could be related to the brush border membrane and consequently implicated in its biogenesis. The fibrillar material of the glycocalyx appears as highly labeled tangled structures which apparently proceed from densely stained "carrier" vesicles arising from the Golgi apparatus. Vesicles fusing at the lower part of microvilli could result of integration of this material into the lightly labeled vesicles strictly found in the terminal web. These last vesicles could also contain newly synthesized brush border hydrolases.  相似文献   

20.
We take advantage of a cell-free system that reconstitutes essentially a single round of transport of the VSV-encoded G protein between Golgi cisternae to identify discrete stages in the maturation of carrier vesicles. Using GTP gamma S and N-ethylmaleimide (NEM) as selective inhibitors to accumulate coated and uncoated vesicles, respectively, we find these to be successive and obligatory transport intermediates. We find that the coated and uncoated vesicles that accumulate when transport is blocked have already transferred from donor to acceptor stacks but not yet fused. Similar coated and uncoated vesicles accumulate in appropriately treated whole cells. Our studies imply that a coated bud (pit)-coated vesicle-uncoated vesicle system analogous to that responsible for receptor-mediated endocytosis carries biosynthetic protein transport across the Golgi stack. However, "Golgi"-coated buds do not contain clathrin and seem to act as bulk carriers, whereas endocytic clathrin-coated pits carry a highly selective cargo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号