首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change poses a unique threat to species with temperature dependent sex determination (TSD), such as marine turtles, where increases in temperature can result in extreme sex ratio biases. Knowledge of the primary sex ratio of populations with TSD is key for providing a baseline to inform management strategies and to accurately predict how future climate changes may affect turtle populations. However, there is a lack of robust data on offspring sex ratio at appropriate temporal and spatial scales to inform management decisions. To address this, we estimate the primary sex ratio of hawksbill hatchlings, Eretmochelys imbricata, from incubation duration of 5514 in situ nests from 10 nesting beaches from two regions in Brazil over the last 27 years. A strong female bias was estimated in all beaches, with 96% and 89% average female sex ratios produced in Bahia (BA) and Rio Grande do Norte (RN). Both inter-annual (BA, 88 to 99%; RN, 75 to 96% female) and inter-beach (BA, 92% to 97%; RN, 81% to 92% female) variability in mean offspring sex ratio was observed. These findings will guide management decisions in Brazil and provide further evidence of highly female-skew sex ratios in hawksbill turtles.  相似文献   

2.
    
Few studies have looked into climate change resilience of populations of wild animals. We use a model higher vertebrate, the green sea turtle, as its life history is fundamentally affected by climatic conditions, including temperature‐dependent sex determination and obligate use of beaches subject to sea level rise (SLR). We use empirical data from a globally important population in West Africa to assess resistance to climate change within a quantitative framework. We project 200 years of primary sex ratios (1900–2100) and create a digital elevation model of the nesting beach to estimate impacts of projected SLR. Primary sex ratio is currently almost balanced, with 52% of hatchlings produced being female. Under IPCC models, we predict: (a) an increase in the proportion of females by 2100 to 76%–93%, but cooler temperatures, both at the end of the nesting season and in shaded areas, will guarantee male hatchling production; (b) IPCC SLR scenarios will lead to 33.4%–43.0% loss of the current nesting area; (c) climate change will contribute to population growth through population feminization, with 32%–64% more nesting females expected by 2120; (d) as incubation temperatures approach lethal levels, however, the population will cease growing and start to decline. Taken together with other factors (degree of foraging plasticity, rookery size and trajectory, and prevailing threats), this nesting population should resist climate change until 2100, and the availability of spatial and temporal microrefugia indicates potential for resilience to predicted impacts, through the evolution of nest site selection or changes in nesting phenology. This represents the most comprehensive assessment to date of climate change resilience of a marine reptile using the most up‐to‐date IPCC models, appraising the impacts of temperature and SLR, integrated with additional ecological and demographic parameters. We suggest this as a framework for other populations, species and taxa.  相似文献   

3.
    
The adaptive significance of temperature-dependent sex determination (TSD) in reptiles remains unknown decades after TSD was first identified in this group. Concurrently, there is growing concern about the effect that rising temperatures may have on species with TSD, potentially producing extremely biased sex ratios or offspring of only one sex. The current state-of the-art in TSD research on sea turtles is reviewed here and, against current paradigm, it is proposed that TSD provides an advantage under warming climates. By means of coadaptation between early survival and sex ratios, sea turtles are able to maintain populations. When offspring survival declines at high temperatures, the sex that increases future fecundity (females) is produced, increasing resilience to climate warming. TSD could have helped reptiles to survive mass extinctions in the past via this model. Flaws in research on sex determination in sea turtles are also identified and it is suggested that the development of new techniques will revolutionize the field.  相似文献   

4.
    
Global warming could threaten over 400 species with temperature-dependent sex determination (TSD) worldwide, including all species of sea turtle. During embryonic development, rising temperatures might lead to the overproduction of one sex and, in turn, could bias populations’ sex ratios to an extent that threatens their persistence. If climate change predictions are correct, and biased sex ratios reduce population viability, species with TSD may go rapidly extinct unless adaptive mechanisms, whether behavioural, physiological or molecular, exist to buffer these temperature-driven effects. Here, we summarize the discovery of the TSD phenomenon and its still elusive evolutionary significance. We then review the molecular pathways underpinning TSD in model species, along with the hormonal mechanisms that interact with temperatures to determine an individual's sex. To illustrate evolutionary mechanisms that can affect sex determination, we focus on sea turtle biology, discussing both the adaptive potential of this threatened TSD taxon, and the risks associated with conservation mismanagement.  相似文献   

5.
6.
    
Marine turtle reproductive success is correlated with the stability and quality of the nesting environment. Female marine turtles show fidelity to nesting beaches, making artificial beach nourishment practices directly relevant to their recovery. We evaluated the impacts of artificial beach nourishment on Loggerhead ( Caretta caretta ) and Green turtles ( Chelonia mydas ) between artificially nourished and nonnourished beaches. We observed reduced nesting success (ratio of nesting emergences to emergences not resulting in nest deposition) for both species. This negative effect lasted for one season in Loggerheads and for at least one season in Green turtles. Physical attributes of the fill sand did not impede nesting attempts. We argue that the decrease in nesting success resulted from an altered beach profile not favorable for nest deposition, which subsequently improved in later seasons as the beach equilibrated to a more natural slope. We observed a 52.2% decrease in reproductive output (hatchlings km−1 yr−1) for Loggerheads one year postnourishment, with a 44.1% increase observed the two seasons postnourishment. In Green turtles, a 0.8% reduction was observed the first season postnourishment, despite a 13% increase in the nonnourished area. The reduction in reproductive output in both cases was primarily a consequence of decreased nesting success, lowering nest numbers. These results reveal stronger negative effects of beach nourishment on Loggerheads compared to Green turtles and the importance of minimizing excessive nonnesting emergences associated with artificial beach nourishment. Nourished areas also experienced more than 600% increase in the number of Loggerhead hatchlings disoriented by artificial lighting over two years postnourishment.  相似文献   

7.
When the nests of marine turtles are at a risk of inundation, relocation of the nests are often used in the conservation measures. Here, I determined the effect of nest relocation on Loggerhead Turtle (Caretta caretta) egg hatching success during the 2013 and 2014 nesting seasons in the Göksu Delta, Mersin, Turkey. I compared natural and relocated clutches, including those relocated before and after inundation, and evaluated 102 (94.6%) and 63 (81.1%) of survived nests in 2013 and 2014 respectively. Relocated nests experienced a 30% decrease in hatching success and a more prolonged incubation period compared to nests left in situ. Egg failure in nests relocated before and after inundation was similar in early-stage embryos, whereas it was three-fold higher in mid-stage embryos and two-fold lower in late-stage embryos. Thus, there was no significant difference in overall hatching success between the two relocation types. Moreover, there was no effect of delayed relocation of nests after inundation on hatching success. Possible impacts specific to the nesting site should be considered and explored before using nest relocation as a conservation tool. The relocation approach is recommended for nests at a high risk of inundation when the loss of nests is inevitable.  相似文献   

8.
    
ABSTRACT For species with temperature-dependent sex determination, such as marine turtles, global climate change poses numerous threats. At the nesting beach, rising temperatures are predicted to further skew already female-biased sex ratios and increase embryonic mortality; sea-level rise and resultant coastal squeeze may leave few alternative breeding habitats in developed regions. As a result, clutch relocation, a commonly used management tool to reduce egg loss, may become necessary for safeguarding populations. Although studies have examined the impact of relocation on clutch success, few have examined the impact of this practice on the sex or phenotypic characteristics of hatchlings produced. We used a randomized block design experiment to examine effects of relocation on green turtle (Chelonia mydas) clutches. We compared hatching success, thermal conditions, and size (length and mass) of hatchlings from in situ control clutches with those subjected to 2 relocation methods, while controlling for maternal and other environmental effects. Relocated clutches did not vary significantly from control clutches in incubation temperature or inferred sex ratios during the critical middle third of incubation when sex is thought to be determined. Hatchling size was also unaffected by relocation. Both relocation methods, however, resulted in a 20% reduction in hatching success in comparison to in situ clutches. Clutch relocation is, however, likely to affect the population primary sex ratio, when clutches are relocated from sites in proximity to the sea where tidal inundation is a threat. Here, cooler conditions are likely to produce more males than are the warmer female-producing temperatures higher up the beach. For clutches at risk, relocation is a viable process and does not appear to affect hatchling size or predicted sex ratios if relocation sites are selected in areas utilized by other females. We urge caution, however, when moving clutches from potentially male-producing sites, particularly given predicted impacts of climate change on already female-biased sex ratios.  相似文献   

9.
Sex determination and hatching success in sea turtles is temperature dependent and as a result global warming poses a threat to sea turtles. Warmer sand temperatures may skew sea turtle population′s sex ratios towards predominantly females and decrease hatching success. Therefore, understanding the rates at which sand temperatures are likely to increase as climate change progresses is warranted. We recorded sand temperature and used historical sea surface and air temperature to model past and to predict future sand temperature under various scenarios of global warming at key sea turtle nesting grounds (n = 7) used by the northern Great Barrier Reef (nGBR) green turtle, Chelonia mydas, population. Reconstructed temperatures from 1990 to the present suggest that sand temperatures at the nesting sites studied have not changed significantly during the last 18 years. Current thermal profile at the nesting grounds suggests a bias towards female hatchling production into this population. Inter-beach thermal variance was observed at some nesting grounds with open areas in the sand dune at northern facing beaches having the warmest incubating environments. Our model projections suggest that a near complete feminization of hatchling output into this population will occur by 2070 under an extreme scenario of climate change (A1T emission scenario). Importantly, we found that some nesting grounds will still produce male hatchlings, under the most extreme scenario of climate change, this finding differs from predictions for other locations. Information from this study provides a better understanding of possible future changes in hatching success and sex ratios at each site and identifies important male producing regions. This allowed us to suggest strategies that can be used at a local scale to offset some of the impacts of warmer incubating temperatures to sea turtles.  相似文献   

10.
    
Climate change poses a serious threat to species that demonstrate temperature-dependent sex determination, including marine turtles. Increased temperatures can result in highly female-skewed sex ratios and decreased hatching success. The pivotal temperature that delineates hatchling sex ratios is commonly considered to be 29.2°C, but whether this threshold applies to turtles in the Red Sea region has not been tested in situ. For all species of marine turtles, there is a supposed thermal range of 25–33°C in which egg incubation is successful, with prolonged temperatures above 33°C resulting in morphological abnormalities and hatchling mortality. Sand temperature data were collected from May–September 2018 from the average nesting depth of hawksbill (Eretmochelys imbricata) and green turtles (Chelonia mydas) at five study sites. We calculated the expected sex ratio based on a maximum likelihood model. The sand temperature profile at four of the sites exceeded the pivotal temperature (29.2°C) throughout the study duration, which suggests feminization of turtles could be occurring; however, the pivotal temperature in this region still needs to be empirically confirmed. The percentage of days with sand temperature exceeding the maximum thermal threshold between June 3, and September 16, 2018, was site-specific rather than determined by latitudinal temperature gradients, and ranged between 0 and 100% of days. Maximum temperature recordings were as high as 36.0 and 35.3°C at 30 and 50 cm depth, respectively. Nesting sites in the Red Sea region could already be exceeding the thermal limits and may be particularly vulnerable to rising temperatures. Sites with lower sand temperatures, such as Small Gobal Island, may represent priority areas for conservation efforts. Alternatively, local adaptation may be a reality under extremely warm conditions, thus, further research into the thermal tolerance of hatchlings in the region could provide insight on how they might adapt to future climate change.  相似文献   

11.
12.
13.
For organisms with temperature-dependent sex determination (TSD), skewed offspring sex ratios are common. However, climate warming poses the unique threat of producing extreme sex ratio biases that could ultimately lead to population extinctions. In marine turtles, highly female-skewed hatchling sex ratios already occur and predicted increases in global temperatures are expected to exacerbate this trend, unless species can adapt. However, it is not known whether offspring sex ratios persist into adulthood, or whether variation in male mating success intensifies the impact of a shortage of males on effective population size. Here, we use parentage analysis to show that in a rookery of the endangered green turtle (Chelonia mydas), despite an offspring sex ratio of 95 per cent females, there were at least 1.4 reproductive males to every breeding female. Our results suggest that male reproductive intervals may be shorter than the 2-4 years typical for females, and/or that males move between aggregations of receptive females, an inference supported by our satellite tracking, which shows that male turtles may visit multiple rookeries. We suggest that male mating patterns have the potential to buffer the disruptive effects of climate change on marine turtle populations, many of which are already seriously threatened.  相似文献   

14.
    
Sex-ratio theory predicts that parents can optimise their fitness by producing offspring of the rare sex, yet there is a dearth of empirical evidence for adaptive sex allocation in response to the adult sex ratio (ASR). This is concerning, as anthropogenic disruption of the sex ratios of reproductive individuals threatens to cause demographic collapse in animal populations. Species with environmental sex determination (ESD) are especially at risk but may possess the capacity to adaptively influence offspring sex via control over the developmental environment. For example, reptiles with temperature-dependent sex determination (TSD) could conceivably choose nest sites with thermal characteristics that produce offspring of the rare sex. To test this hypothesis, we seeded three secure outdoor ponds with different sex ratios (~M:F 3:1, 1:1, and 1:3) of adult painted turtles (Chrysemys picta), a reptile species with TSD. We then quantified nesting traits that could influence nest temperature and thus offspring sex ratio, including nesting date, nest depth, and nest canopy cover. We found no directional relationship between the ASR treatments and any measured nest traits and thus rejected our hypothesis. Interestingly, increased maternal body size was associated with reduced nest canopy cover, and this trend was more pronounced in the biased ASR treatments. If adaptive sex allocation occurs in this system, it instead may manifest via maternal epigenetic predisposition of offspring sex or in response to a phenomenon other than the ASR.  相似文献   

15.
    
It is now well understood that climate change has the potential to dramatically affect biodiversity, with effects on spatio‐temporal distribution patterns, trophic relationships and survivorship. In the marine turtles, sex is determined by incubation temperature, such that warming temperatures could lead to a higher production of female hatchlings. By measuring nest temperature, and using a model to relate the incubation temperature to sex ratio, we estimate that Caribbean Colombian leatherback sea turtles currently produce approximately 92% female hatchlings. We modelled the relationship between incubation, sand and air temperature, and under all future climate change scenarios (0.4–6.0 °C warming over the next 100 years), complete feminization could occur, as soon as the next decade. However, male producing refugia exist in the periphery of smaller nests (0.7 °C cooler at the bottom than at the centre), within beaches (0.3 °C cooler in the vegetation line and inter‐tidal zone) and between beaches (0.4 °C higher on dark beaches), and these natural refugia could be assigned preferential conservation status. However, there exists a need to develop strategies that may ameliorate deleterious effects of climate‐induced temperature changes in the future. We experimentally shaded clutches using screening material, and found that it was effective in reducing nest temperature, producing a higher proportion of male hatchlings, without compromising the fitness or hatching success. Artificial shade in hatcheries is a very useful and simple tool in years or periods of high environmental temperatures. Nevertheless, this is only an emergency response to the severe impacts that will eventually have to be reversed if we are to guarantee the stability of the populations.  相似文献   

16.
    
Enhancing species resilience to changing environmental conditions is often suggested as a climate change adaptation strategy. To effectively achieve this, it is necessary first to understand the factors that determine species resilience, and their relative importance in shaping the ability of species to adjust to the complexities of environmental change. This is an extremely challenging task because it requires comprehensive information on species traits. We explored the resilience of 58 marine turtle regional management units (RMUs) to climate change, encompassing all seven species of marine turtles worldwide. We used expert opinion from the IUCN‐SSC Marine Turtle Specialist Group (n = 33 respondents) to develop a Resilience Index, which considered qualitative characteristics of each RMU (relative population size, rookery vulnerability, and genetic diversity) and non climate‐related threats (fisheries, take, coastal development, and pollution/pathogens). Our expert panel perceived rookery vulnerability (the likelihood of functional rookeries becoming extirpated) and non climate‐related threats as having the greatest influence on resilience of RMUs to climate change. We identified the world's 13 least resilient marine turtle RMUs to climate change, which are distributed within all three major ocean basins and include six of the world's seven species of marine turtle. Our study provides the first look at inter‐ and intra‐species variation in resilience to climate change and highlights the need to devise metrics that measure resilience directly. We suggest that this approach can be widely used to help prioritize future actions that increase species resilience to climate change.  相似文献   

17.
Whether a turtle embryo develops into a male or a female depends, as with many other reptiles, on the temperature during incubation of the eggs. With sea turtles, warm temperatures produce 100% females. Therefore, global warming has the potential to drastically alter their sex ratios. Air temperatures on Antigua have increased by 0.7°C over the last 35 years. Measurements in both the sand and the clutches laid by hawksbill turtles (Eretmochelys imbricata) at Pasture Bay, Antigua, show that for important parts of the nesting season temperatures are already above the level producing 50% of each sex (pivotal level). Comparisons are made to sand temperature measurements taken on this beach in 1989 and 1990. It is estimated that fewer males were produced in 2003 than in the previous years. Recommendations are made for close monitoring of the fertility of eggs and for research on any turtles nesting at cooler times of year.  相似文献   

18.
Recent increases in global temperatures have affected the phenology and survival of many species of plants and animals. We investigated a case study of the effects of potential climate change on a thermally sensitive species, the loggerhead sea turtle, at a breeding location at the northerly extent of the range of regular nesting in the United States. In addition to the physical limits imposed by temperature on this ectothermic species, sea turtle primary sex ratio is determined by the temperature experienced by eggs during the middle third of incubation. We recorded sand temperatures and used historical air temperatures (ATs) at Bald Head Island, NC, to examine past and predict future sex ratios under scenarios of warming. There were no significant temporal trends in primary sex ratio evident in recent years and estimated mean annual sex ratio was 58% female. Similarly, there were no temporal trends in phenology but earlier nesting and longer nesting seasons were correlated with warmer sea surface temperature. We modelled the effects of incremental increases in mean AT of up to 7.5°C, the maximum predicted increase under modelled scenarios, which would lead to 100% female hatchling production and lethally high incubation temperatures, causing reduction in hatchling production. Populations of turtles in more southern parts of the United States are currently highly female biased and are likely to become ultra‐biased with as little as 1°C of warming and experience extreme levels of mortality if warming exceeds 3°C. The lack of a demonstrable increase in AT in North Carolina in recent decades coupled with primary sex ratios that are not highly biased means that the male offspring from North Carolina could play an increasingly important role in the future viability of the loggerhead turtle in the Western Atlantic.  相似文献   

19.
杜卫国  计翔 《生态学报》2002,22(4):548-553
用4个恒定温(24-32℃)孵化灰鼠蛇卵,检测温度对孵化期,孵化成功率和孵出幼体特征的影响。在24-32℃范围内,孵化温度显影响孵化期及孵出幼体的体长和剩余卵黄大小,但不影响孵化成功率和孵出幼体的性别,体重,躯干重和脂肪体重。24,26,30和32℃孵化期分别为99.0,72.2,54.7和48.7d。24℃和26℃孵出幼体的体筮大于30℃和32℃孵出幼体;24℃和32℃孵同幼体内的卵黄较多。不同温度下发育的胚胎对卵内物质和能量的利用一定的差异,但差异不显。雌性幼体的体长,尾长和总长均大于雄性幼体,这些两性差异与孵化温度无关。孵出幼体和新生卵内容的灰分含量无显差异,孵化前后卵壳灰分含量也无显差异,表明灰鼠蛇的卵黄可提供胚胎发育所需的所有无机物。  相似文献   

20.
    
The goal of this study was to assess the consequences of single versus multiple paternity by identifying paternity of clutches per female to identify whether there were detectable costs or benefits. Multiple mating can occur when the benefits of mating outweigh the costs, but if costs and benefits are equal, no pattern is expected. Previous research on loggerhead sea turtle (Caretta caretta) populations found male‐biased breeding sex ratios and multiple mating by many females nesting in southwestern Florida. A sample of nesting loggerhead females who laid more than one nest over the course of the season and a subset of their hatchlings were examined from 36 clutches in 2016 on Sanibel Island, Florida. Males that fathered hatchlings in the first clutch sampled were identified in subsequent clutches. Interestingly, 75% of the females analyzed had mated singly. No male was represented in more than one female's clutches. The results suggest that females likely mate at the beginning of the season and use stored sperm for multiple clutches. Evidence for mating between laying events was limited. There was no consistent pattern across the subsequent multiple paternity clutches, suggesting benefits to loggerhead females likely equal their costs and subsequent mating is likely determined by female preference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号