首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recent increases in global temperatures have affected the phenology and survival of many species of plants and animals. We investigated a case study of the effects of potential climate change on a thermally sensitive species, the loggerhead sea turtle, at a breeding location at the northerly extent of the range of regular nesting in the United States. In addition to the physical limits imposed by temperature on this ectothermic species, sea turtle primary sex ratio is determined by the temperature experienced by eggs during the middle third of incubation. We recorded sand temperatures and used historical air temperatures (ATs) at Bald Head Island, NC, to examine past and predict future sex ratios under scenarios of warming. There were no significant temporal trends in primary sex ratio evident in recent years and estimated mean annual sex ratio was 58% female. Similarly, there were no temporal trends in phenology but earlier nesting and longer nesting seasons were correlated with warmer sea surface temperature. We modelled the effects of incremental increases in mean AT of up to 7.5°C, the maximum predicted increase under modelled scenarios, which would lead to 100% female hatchling production and lethally high incubation temperatures, causing reduction in hatchling production. Populations of turtles in more southern parts of the United States are currently highly female biased and are likely to become ultra‐biased with as little as 1°C of warming and experience extreme levels of mortality if warming exceeds 3°C. The lack of a demonstrable increase in AT in North Carolina in recent decades coupled with primary sex ratios that are not highly biased means that the male offspring from North Carolina could play an increasingly important role in the future viability of the loggerhead turtle in the Western Atlantic.  相似文献   

2.
It is now well understood that climate change has the potential to dramatically affect biodiversity, with effects on spatio‐temporal distribution patterns, trophic relationships and survivorship. In the marine turtles, sex is determined by incubation temperature, such that warming temperatures could lead to a higher production of female hatchlings. By measuring nest temperature, and using a model to relate the incubation temperature to sex ratio, we estimate that Caribbean Colombian leatherback sea turtles currently produce approximately 92% female hatchlings. We modelled the relationship between incubation, sand and air temperature, and under all future climate change scenarios (0.4–6.0 °C warming over the next 100 years), complete feminization could occur, as soon as the next decade. However, male producing refugia exist in the periphery of smaller nests (0.7 °C cooler at the bottom than at the centre), within beaches (0.3 °C cooler in the vegetation line and inter‐tidal zone) and between beaches (0.4 °C higher on dark beaches), and these natural refugia could be assigned preferential conservation status. However, there exists a need to develop strategies that may ameliorate deleterious effects of climate‐induced temperature changes in the future. We experimentally shaded clutches using screening material, and found that it was effective in reducing nest temperature, producing a higher proportion of male hatchlings, without compromising the fitness or hatching success. Artificial shade in hatcheries is a very useful and simple tool in years or periods of high environmental temperatures. Nevertheless, this is only an emergency response to the severe impacts that will eventually have to be reversed if we are to guarantee the stability of the populations.  相似文献   

3.
Sex determination and hatching success in sea turtles is temperature dependent and as a result global warming poses a threat to sea turtles. Warmer sand temperatures may skew sea turtle population′s sex ratios towards predominantly females and decrease hatching success. Therefore, understanding the rates at which sand temperatures are likely to increase as climate change progresses is warranted. We recorded sand temperature and used historical sea surface and air temperature to model past and to predict future sand temperature under various scenarios of global warming at key sea turtle nesting grounds (n = 7) used by the northern Great Barrier Reef (nGBR) green turtle, Chelonia mydas, population. Reconstructed temperatures from 1990 to the present suggest that sand temperatures at the nesting sites studied have not changed significantly during the last 18 years. Current thermal profile at the nesting grounds suggests a bias towards female hatchling production into this population. Inter-beach thermal variance was observed at some nesting grounds with open areas in the sand dune at northern facing beaches having the warmest incubating environments. Our model projections suggest that a near complete feminization of hatchling output into this population will occur by 2070 under an extreme scenario of climate change (A1T emission scenario). Importantly, we found that some nesting grounds will still produce male hatchlings, under the most extreme scenario of climate change, this finding differs from predictions for other locations. Information from this study provides a better understanding of possible future changes in hatching success and sex ratios at each site and identifies important male producing regions. This allowed us to suggest strategies that can be used at a local scale to offset some of the impacts of warmer incubating temperatures to sea turtles.  相似文献   

4.
The continual development of ecological models and availability of high-resolution gridded climate surfaces have stimulated studies that link climate variables to functional traits of organisms. A primary constraint of these studies is the ability to reliably predict the microclimate that an organism experiences using macroscale climate inputs. This is particularly important in regions where access to empirical information is limited. Here, we contrast correlative models based on both ambient and sea surface temperatures to mechanistic modelling approaches to predict beach sand temperatures at depths relevant to sea turtle nesting. We show that mechanistic models are congruent with correlative models at predicting sand temperatures. We used these predictions to explore thermal variation across 46 mainland and island beaches that span the geographical range of sea turtle nesting in Western Australia. Using high resolution gridded climate surfaces and site-specific soil reflectance, we predict almost 9 °C variation in average annual temperatures between beaches, and nearly 10 °C variation in average temperatures during turtle nesting seasons. Validation of models demonstrated that predictions were typically within 2 °C of observations and, although most sites had high correlations (r2 > 0.7), predictive capacity varied between sites. An advantage of the mechanistic model demonstrated here is that it can be used to explore the impacts of climate change on sea turtle nesting beach temperatures as, unlike correlative models, it can be forced with novel combinations of environmental variables.  相似文献   

5.
The study of temperature‐dependent sex determination (TSD) in vertebrates has attracted major scientific interest. Recently, concerns for species with TSD in a warming world have increased because imbalanced sex ratios could potentially threaten population viability. In contrast, relatively little attention has been given to the direct effects of increased temperatures on successful embryonic development. Using 6603 days of sand temperature data recorded across 6 years at a globally important loggerhead sea turtle rookery—the Cape Verde Islands—we show the effects of warming incubation temperatures on the survival of hatchlings in nests. Incorporating published data (n = 110 data points for three species across 12 sites globally), we show the generality of relationships between hatchling mortality and incubation temperature and hence the broad applicability of our findings to sea turtles in general. We use a mechanistic approach supplemented by empirical data to consider the linked effects of warming temperatures on hatchling output and on sex ratios for these species that exhibit TSD. Our results show that higher temperatures increase the natural growth rate of the population as more females are produced. As a result, we project that numbers of nests at this globally important site will increase by approximately 30% by the year 2100. However, as incubation temperatures near lethal levels, the natural growth rate of the population decreases and the long‐term survival of this turtle population is threatened. Our results highlight concerns for species with TSD in a warming world and underline the need for research to extend from a focus on temperature‐dependent sex determination to a focus on temperature‐linked hatchling mortalities.  相似文献   

6.
Communal nesting lizards may be vulnerable to climate warming, particularly if air temperatures regulate nest temperatures. In southeastern Australia, velvet geckos Oedura lesueurii lay eggs communally inside rock crevices. We investigated whether increases in air temperatures could elevate nest temperatures, and if so, how this could influence hatching phenotypes, survival, and population dynamics. In natural nests, maximum daily air temperature influenced mean and maximum daily nest temperatures, implying that nest temperatures will increase under climate warming. To determine whether hotter nests influence hatchling phenotypes, we incubated eggs under two fluctuating temperature regimes to mimic current ‘cold’ nests (mean = 23.2 °C, range 10–33 °C) and future ‘hot’ nests (27.0 °C, 14–37 °C). ‘Hot’ incubation temperatures produced smaller hatchlings than did cold temperature incubation. We released individually marked hatchlings into the wild in 2014 and 2015, and monitored their survival over 10 months. In 2014 and 2015, hot‐incubated hatchlings had higher annual mortality (99%, 97%) than cold‐incubated (11%, 58%) or wild‐born hatchlings (78%, 22%). To determine future trajectories of velvet gecko populations under climate warming, we ran population viability analyses in Vortex and varied annual rates of hatchling mortality within the range 78– 96%. Hatchling mortality strongly influenced the probability of extinction and the mean time to extinction. When hatchling mortality was >86%, populations had a higher probability of extinction (PE: range 0.52– 1.0) with mean times to extinction of 18–44 years. Whether future changes in hatchling survival translate into reduced population viability will depend on the ability of females to modify their nest‐site choices. Over the period 1992–2015, females used the same communal nests annually, suggesting that there may be little plasticity in maternal nest‐site selection. The impacts of climate change may therefore be especially severe on communal nesting species, particularly if such species occupy thermally challenging environments.  相似文献   

7.
Extreme weather events can have negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (2–10 °C for 2–14 days), but returning to cold winter climate exposes the ecosystem to lower temperatures by the loss of insulating snow. Soil animals, which play an integral part in soil processes, may be very susceptible to such events depending on the intensity of soil warming and low temperatures following these events. We simulated week‐long extreme winter warming events – using infrared heating lamps, alone or with soil warming cables – for two consecutive years in a sub‐Arctic dwarf shrub heathland. Minimum temperatures were lower and freeze‐thaw cycles were 2–11 times more frequent in treatment plots compared with control plots. Following the second event, Acari populations decreased by 39%; primarily driven by declines of Prostigmata (69%) and the Mesostigmatic nymphs (74%). A community‐weighted vertical stratification shift occurred from smaller soil dwelling (eu‐edaphic) Collembola species dominance to larger litter dwelling (hemi‐edaphic) species dominance in the canopy‐with‐soil warming plots compared with controls. The most susceptible groups to these winter warming events were the smallest individuals (Prostigmata and eu‐edaphic Collembola). This was not apparent from abundance data at the Collembola taxon level, indicating that life forms and species traits play a major role in community assembly following extreme events. The observed shift in soil community can cascade down to the micro‐flora affecting plant productivity and mineralization rates. Short‐term extreme weather events have the potential to shift community composition through trait composition with potentially large consequences for ecosystem development.  相似文献   

8.
Sea turtles show temperature dependent sex determination. Using an empirical relationship between sand and air temperature, we reconstructed the nest temperatures since 1855 at Ascension Island, a major green turtle (Chelonia mydas) rookery. Our results show that inter‐beach thermal variations, previously ascribed to the albedo of the sand, which varies hugely from one beach to another, have persisted for the last century. Reconstructed nest temperatures varied by only 0.5 °C on individual beaches over the course of the nesting season, while the temperature difference between two key nesting beaches was always around 3 °C. Hence inter‐beach thermal variations are the main factor causing a large range of incubation temperatures at this rookery. There was a general warming trend for nests, with a mean increase in reconstructed nest temperatures for different months of between 0.36 and 0.49 °C for the last 100 years.  相似文献   

9.
10.
Temperature is a core component of a species' fundamental niche. At the fine scale over which most organisms experience climate (mm to ha), temperature depends upon the amount of radiation reaching the Earth's surface, which is principally governed by vegetation. Tropical regions have undergone widespread and extreme changes to vegetation, particularly through the degradation and conversion of rainforests. As most terrestrial biodiversity is in the tropics, and many of these species possess narrow thermal limits, it is important to identify local thermal impacts of rainforest degradation and conversion. We collected pantropical, site‐level (<1 ha) temperature data from the literature to quantify impacts of land‐use change on local temperatures, and to examine whether this relationship differed aboveground relative to belowground and between wet and dry seasons. We found that local temperature in our sample sites was higher than primary forest in all human‐impacted land‐use types (N = 113,894 daytime temperature measurements from 25 studies). Warming was pronounced following conversion of forest to agricultural land (minimum +1.6°C, maximum +13.6°C), but minimal and nonsignificant when compared to forest degradation (e.g., by selective logging; minimum +1°C, maximum +1.1°C). The effect was buffered belowground (minimum buffering 0°C, maximum buffering 11.4°C), whereas seasonality had minimal impact (maximum buffering 1.9°C). We conclude that forest‐dependent species that persist following conversion of rainforest have experienced substantial local warming. Deforestation pushes these species closer to their thermal limits, making it more likely that compounding effects of future perturbations, such as severe droughts and global warming, will exceed species' tolerances. By contrast, degraded forests and belowground habitats may provide important refugia for thermally restricted species in landscapes dominated by agricultural land.  相似文献   

11.
As global temperatures continue to rise, so too will the nest temperatures of many species of turtles. Yet for most turtle species, including the estuarine diamondback terrapin (Malaclemys terrapin), there is limited information on embryonic sensitivity to elevated temperature. We incubated eggs of M. terrapin at three, mean temperatures (31, 34, 37 °C) under two thermal exposure regimes (constant or semi-naturally fluctuating temperature) and measured hatching success, developmental rate, and hatchling size. Hatching success was 100% at 31 °C and 67% at 34 °C, respectively; at 37 °C, all eggs failed early in the incubation period. These values were unaffected by exposure regime. The modeled LT50 (temperature that was lethal to 50% of the test population) was 34.0 °C in the constant and 34.2 °C in the fluctuating thermal regime, reflecting a steep decline in survival between 33 and 35 °C. Hatchlings having been incubated at a constant 34 °C hatched sooner than those incubated at 31 °C under either constant or fluctuating temperature. Hatchlings were smaller in straight carapace length (CL) and width after having been incubated at 34 °C compared to 31 °C. Larger (CL) hatchlings resulted from fluctuating temperature conditions relative to constant temperature conditions, regardless of mean temperature. Based upon recent temperatures in natural nests, the M. terrapin population studied here appears to possess resiliency to several degrees of elevated mean nest temperatures, beyond which, embryonic mortality will likely sharply increase. When considered within the mosaic of challenges that Maryland's M. terrapin face as the climate warms, including ongoing habitat losses due to sea level rise and impending thermal impacts on bioenergetics and offspring sex ratios, a future increase in embryonic mortality could be a critical factor for a population already experiencing ecological and physiological challenges due to climate change.  相似文献   

12.
Global warming poses a threat to organisms with temperature‐dependent sex determination because it can affect operational sex ratios. Using a multigenerational experiment with a marine fish, we provide the first evidence that parents developing from early life at elevated temperatures can adjust their offspring gender through nongenetic and nonbehavioural means. However, this adjustment was not possible when parents reproduced, but did not develop, at elevated temperatures. Complete restoration of the offspring sex ratio occurred when parents developed at 1.5 °C above the present‐day average temperature for one generation. However, only partial improvement in the sex ratio occurred at 3.0 °C above average conditions, even after two generations, suggesting a limitation to transgenerational plasticity when developmental temperature is substantially increased. This study highlights the potential for transgenerational plasticity to ameliorate some impacts of climate change and that development from early life may be essential for expression of transgenerational plasticity in some traits.  相似文献   

13.
The survival and viability of sea turtle embryos is dependent upon favourable nest temperatures throughout the incubation period. Consequently, future generations of sea turtles may be at risk from increasing nest temperatures due to climate change, but little is known about how embryos respond to heat stress. Heat shock genes are likely to be important in this process because they code for proteins that prevent cellular damage in response to environmental stressors. This study provides the first evidence of an expression response in the heat shock genes of embryos of loggerhead sea turtles (Caretta caretta) exposed to realistic and near-lethal temperatures (34 °C and 36 °C) for 1 or 3 hours. We investigated changes in Heat shock protein 60 (Hsp60), Hsp70, and Hsp90 mRNA in heart (n=24) and brain tissue (n=29) in response to heat stress. Under the most extreme treatment (36 °C, 3 h), Hsp70 increased mRNA expression by a factor of 38.8 in heart tissue and 15.7 in brain tissue, while Hsp90 mRNA expression increased by a factor of 98.3 in heart tissue and 14.7 in brain tissue. Hence, both Hsp70 and Hsp90 are useful biomarkers for assessing heat stress in the late-stage embryos of sea turtles. The method we developed can be used as a platform for future studies on variation in the thermotolerance response from the clutch to population scale, and can help us anticipate the resilience of reptile embryos to extreme heating events.  相似文献   

14.
Few studies have looked into climate change resilience of populations of wild animals. We use a model higher vertebrate, the green sea turtle, as its life history is fundamentally affected by climatic conditions, including temperature‐dependent sex determination and obligate use of beaches subject to sea level rise (SLR). We use empirical data from a globally important population in West Africa to assess resistance to climate change within a quantitative framework. We project 200 years of primary sex ratios (1900–2100) and create a digital elevation model of the nesting beach to estimate impacts of projected SLR. Primary sex ratio is currently almost balanced, with 52% of hatchlings produced being female. Under IPCC models, we predict: (a) an increase in the proportion of females by 2100 to 76%–93%, but cooler temperatures, both at the end of the nesting season and in shaded areas, will guarantee male hatchling production; (b) IPCC SLR scenarios will lead to 33.4%–43.0% loss of the current nesting area; (c) climate change will contribute to population growth through population feminization, with 32%–64% more nesting females expected by 2120; (d) as incubation temperatures approach lethal levels, however, the population will cease growing and start to decline. Taken together with other factors (degree of foraging plasticity, rookery size and trajectory, and prevailing threats), this nesting population should resist climate change until 2100, and the availability of spatial and temporal microrefugia indicates potential for resilience to predicted impacts, through the evolution of nest site selection or changes in nesting phenology. This represents the most comprehensive assessment to date of climate change resilience of a marine reptile using the most up‐to‐date IPCC models, appraising the impacts of temperature and SLR, integrated with additional ecological and demographic parameters. We suggest this as a framework for other populations, species and taxa.  相似文献   

15.
1. Temperate regions with fish communities dominated by cold‐water species (physiological optima <20 °C) are vulnerable to the effects of warming temperatures caused by climate change, including displacement by non‐native cool‐water (physiological optima 20–28 °C) and warm‐water fishes (physiological optima >28 °C) that are able to establish and invade as the thermal constraints on the expression of their life history traits diminish. 2. England and Wales is a temperate region into which at least 38 freshwater fishes have been introduced, although 14 of these are no longer present. Of the remaining 24 species, some have persisted but failed to establish, some have established populations without becoming invasive and some have become invasive. The aim of the study was to predict the responses of these 24 non‐native fishes to the warming temperatures of England and Wales predicted under climate change in 2050. 3. The predictive use of climate‐matching models and an air and water temperature regression model suggested that there are six non‐native fishes currently persistent but not established in England and Wales whose establishment and subsequent invasion would benefit substantially from the predicted warming temperatures. These included the common carp Cyprinus carpio and European catfish Silurus glanis, fishes that also exert a relatively high propagule pressure through stocking to support angling and whose spatial distribution is currently increasing significantly, including in open systems. 4. The potential ecological impacts of the combined effects of warming temperatures, current spatial distribution and propagule pressure on the establishment and invasion of C. carpio and Sglanis were assessed. The ecological consequences of Ccarpio invasion were assessed as potentially severe in England and Wales, with impacts likely to relate to habitat destruction, macrophyte loss and increased water turbidity. However, evidence of ecological impacts of Sglanis elsewhere in their introduced range was less clear and so their potential impacts in England and Wales remain uncertain.  相似文献   

16.
Abstract This review summarizes recent research in Australia on: (i) climate and geophysical trends over the last few decades; (ii) projections for climate change in the 21st century; (iii) predicted impacts from modelling studies on particular ecosystems and native species; and (iv) ecological effects that have apparently occurred as a response to recent warming. Consistent with global trends, Australia has warmed ~0.8°C over the last century with minimum temperatures warming faster than maxima. There have been significant regional trends in rainfall with the northern, eastern and southern parts of the continent receiving greater rainfall and the western region receiving less. Higher rainfall has been associated with an increase in the number of rain days and heavy rainfall events. Sea surface temperatures on the Great Barrier Reef have increased and are associated with an increase in the frequency and severity of coral bleaching and mortality. Sea level rises in Australia have been regionally variable, and considerably less than the global average. Snow cover and duration have declined significantly at some sites in the Snowy Mountains. CSIRO projections for future climatic changes indicate increases in annual average temperatures of 0.4–2.0°C by 2030 (relative to 1990) and 1.0–6.0°C by 2070. Considerable uncertainty remains as to future changes in rainfall, El Niño Southern Oscillation events and tropical cyclone activity. Overall increases in potential evaporation over much of the continent are predicted as well as continued reductions in the extent and duration of snow cover. Future changes in temperature and rainfall are predicted to have significant impacts on most vegetation types that have been modelled to date, although the interactive effect of continuing increases in atmospheric CO2 has not been incorporated into most modelling studies. Elevated CO2 will most likely mitigate some of the impacts of climate change by reducing water stress. Future impacts on particular ecosystems include increased forest growth, alterations in competitive regimes between C3 and C4 grasses, increasing encroachment of woody shrubs into arid and semiarid rangelands, continued incursion of mangrove communities into freshwater wetlands, increasing frequency of coral bleaching, and establishment of woody species at increasingly higher elevations in the alpine zone. Modelling of potential impacts on specific Australian taxa using bioclimatic analysis programs such as bioclim consistently predicts contraction and/or fragmentation of species' current ranges. The bioclimates of some species of plants and vertebrates are predicted to disappear entirely with as little as 0.5–1.0°C of warming. Australia lacks the long‐term datasets and tradition of phenological monitoring that have allowed the detection of climate‐change‐related trends in the Northern Hemisphere. Long‐term changes in Australian vegetation can be mostly attributed to alterations in fire regimes, clearing and grazing, but some trends, such as encroachment of rainforest into eucalypt woodlands, and establishment of trees in subalpine meadows probably have a climatic component. Shifts in species distributions toward the south (bats, birds), upward in elevation (alpine mammals) or along changing rainfall contours (birds, semiarid reptiles), have recently been documented and offer circumstantial evidence that temperature and rainfall trends are already affecting geographic ranges. Future research directions suggested include giving more emphasis to the study of climatic impacts and understanding the factors that control species distributions, incorporating the effects of elevated CO2 into climatic modelling for vegetation and selecting suitable species as indicators of climate‐induced change.  相似文献   

17.
Models of impacts of climate change on species are generally based on correlations between current distributions and climatic variables, rather than a detailed understanding of the mechanisms that actually limit distribution. Many of the vertebrates endemic to rainforests of northeastern Australia are restricted to upland forests and considered to be threatened by climate change. However, for most of these species, the factors controlling their distributions are unknown. We examined the role of thermal intolerance as a possible mechanism limiting the distribution of Pseudochirops archeri (green ringtail possum), a specialist arboreal folivore restricted to rainforests above an altitude of 300 m in Australia’s Wet Tropics. We measured short-term metabolic responses to a range of ambient temperatures, and found that P. archeri stores heat when ambient temperatures exceed 30°C, reducing water requirements for evaporative cooling. Due to the rate at which body temperature increases with ambient temperatures >30°C, this strategy is not effective over periods longer than 5 h. We hypothesise that the distribution of P. archeri is limited by interactions between (i) the duration and severity of extreme ambient temperatures (over 30°C), (ii) the scarcity of free water in the rainforest canopy in the dry season, and (iii) constraints on water intake from foliage imposed by plant secondary metabolites and fibre. We predict that dehydration becomes limiting for P. archeri where extreme ambient temperatures (>30°C) persist for more than 5 h per day over 4–6 days or more. Consistent with our hypothesis, the abundance of P. archeri in the field is correlated with the occurrence of extreme temperatures, declining markedly at sites where the average maximum temperature of the warmest week of the year is above 30°C. Assuming the mechanism of limitation is based on extreme temperatures, we expect impacts of climate change on P. archeri to occur in discrete, rapid events rather than as a slow contraction in range.  相似文献   

18.
Mountain glaciers are retreating at an unprecedented rate due to global warming. Glacier retreat is widely believed to be driven by the physiochemical characteristics of glacier surfaces; however, the current knowledge of such biological drivers remains limited. An estimated 130 Tg of organic carbon (OC) is stored in mountain glaciers globally. As a result of global warming, the accelerated microbial decomposition of OC may further accelerate the melting process of mountain glaciers by heat production with the release of greenhouse gases, such as carbon dioxide (CO2) and methane. Here, using short‐term aerobic incubation data from the forefield of Urumqi Glacier No. 1, we assessed the potential climate feedback mediated by soil microbiomes at temperatures of 5°C (control), 6.2°C (RCP 2.6), 11°C (RCP 8.5), and 15°C (extreme temperature). We observed enhanced CO2‐C release and heat production under warming conditions, which led to an increase in near‐surface (2 m) atmospheric temperatures, ranging from 0.9°C to 3.4°C. Warming significantly changed the structures of the RNA‐derived (active) and DNA‐derived (total) soil microbiomes, and active microbes were more sensitive to increased temperatures than total microbes. Considering the positive effects of temperature and deglaciation age on the CO2‐C release rate, the alterations in the active microbial community structure had a negative impact on the increased CO2‐C release rate. Our results revealed that glacial melting could potentially be significantly accelerated by heat production from increased microbial decomposition of OC. This risk might be true for other high‐altitude glaciers under emerging warming, thus improving the predictions of the effects of potential feedback on global warming.  相似文献   

19.
Alpine lizards living in restricted areas might be particularly sensitive to climate change. We studied thermal biology of Iberolacerta cyreni in high mountains of central Spain. Our results suggest that I. cyreni is a cold‐adapted thermal specialist and an effective thermoregulator. Among ectotherms, thermal specialists are more threatened by global warming than generalists. Alpine lizards have no chance to disperse to new suitable habitats. In addition, physiological plasticity is unlikely to keep pace with the expected rates of environmental warming. Thus, lizards might rely on their behavior in order to deal with ongoing climate warming. Plasticity of thermoregulatory behavior has been proposed to buffer the rise of environmental temperatures. Therefore, we studied the change in body and environmental temperatures, as well as their relationships, for I. cyreni between the 1980s and 2012. Air temperatures have increased more than 3.5°C and substrate temperatures have increased by 6°C in the habitat of I. cyreni over the last 25 years. However, body temperatures of lizards have increased less than 2°C in the same period, and the linear relationship between body and environmental temperatures remains similar. These results show that alpine lizards are buffering the potential impact of the increase in their environmental temperatures, most probably by means of their behavior. Body temperatures of I. cyreni are still cold enough to avoid any drop in fitness. Nonetheless, if warming continues, behavioral buffering might eventually become useless, as it would imply spending too much time in shelter, losing feeding, and mating opportunities. Eventually, if body temperature exceeds the thermal optimum in the near future, fitness would decrease abruptly.  相似文献   

20.
Heatwaves are likely to increase in frequency and intensity with climate change, which may impair tree function and forest C uptake. However, we have little information regarding the impact of extreme heatwaves on the physiological performance of large trees in the field. Here, we grew Eucalyptus parramattensis trees for 1 year with experimental warming (+3°C) in a field setting, until they were greater than 6 m tall. We withheld irrigation for 1 month to dry the surface soils and then implemented an extreme heatwave treatment of 4 consecutive days with air temperatures exceeding 43°C, while monitoring whole‐canopy exchange of CO2 and H2O, leaf temperatures, leaf thermal tolerance, and leaf and branch hydraulic status. The heatwave reduced midday canopy photosynthesis to near zero but transpiration persisted, maintaining canopy cooling. A standard photosynthetic model was unable to capture the observed decoupling between photosynthesis and transpiration at high temperatures, suggesting that climate models may underestimate a moderating feedback of vegetation on heatwave intensity. The heatwave also triggered a rapid increase in leaf thermal tolerance, such that leaf temperatures observed during the heatwave were maintained within the thermal limits of leaf function. All responses were equivalent for trees with a prior history of ambient and warmed (+3°C) temperatures, indicating that climate warming conferred no added tolerance of heatwaves expected in the future. This coordinated physiological response utilizing latent cooling and adjustment of thermal thresholds has implications for tree tolerance of future climate extremes as well as model predictions of future heatwave intensity at landscape and global scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号