首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.

For quinoline-denitrifying degradation, very few researches focused on shortcut denitrification process and its bacterial community characteristics. In this study, complete and shortcut denitrification systems were constructed simultaneously for quinoline degradation. By calculation, specific quinoline removal rates were 0.905 and 1.123 g/(gVSS d), respectively, in the complete and shortcut systems, and the latter was 1.24 times of the former. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), high-throughput sequencing, and quantitative PCR (qPCR) techniques based on 16S rRNA were jointly applied to compare microbial community structures of two systems. Many denitrifying bacteria phyla, classes, and genera were detected in the two systems. Phylum Proteobacteria, Class Gammaproteobacteria, and Genus Alicycliphilus denitrificans were the dominant contributors for quinoline-denitrifying degradation. In the shortcut denitrification system, main and specific strains playing crucial roles were more; the species richness and the total abundance of functional genes (narG, nirS, nirK, and nosZ) were higher compared with the complete denitrification system. It could be supposed that inorganic-nitrogen reductase activity of bacterial community was stronger in the shortcut denitrification system, which was the intrinsic reason to result in higher denitrification rate.

  相似文献   

2.
The export of nitrogen from urban catchments is a global problem, and denitrifying bacteria in stream ecosystems are critical for reducing in-stream N. However, the environmental factors that control the composition of denitrifying communities in streams are not well understood. We determined whether denitrifying community composition in sediments of nine streams on the eastern fringe of Melbourne, Australia was correlated with two measures of catchment urban impact: effective imperviousness (EI, the proportion of a catchment covered by impervious surfaces with direct connection to streams) or septic tank density (which affects stream water chemistry, particularly stream N concentrations). Denitrifying community structure was examined by comparing terminal restriction fragment length polymorphisms of nosZ genes in the sediments, as the nosZ gene codes for nitrous oxide reductase, the last step in the denitrification pathway. We also determined the chemical and physical characteristics of the streams that were best correlated with denitrifying community composition. EI was strongly correlated with community composition and sediment physical and chemical properties, while septic tank density was not. Sites with high EI were sandier, with less fine sediment and lower organic carbon content, higher sediment cations (calcium, sodium and magnesium) and water filterable reactive phosphorus concentrations. These were also the best small-scale environmental variables that explained denitrifying community composition. Among our study streams, which differed in the degree of urban stormwater impact, sediment grain size and carbon content are the most likely drivers of change in community composition. Denitrifying community composition is another in a long list of ecological indicators that suggest the profound degradation of streams is caused by urban stormwater runoff. While the relationships between denitrifying community composition and denitrification rates are yet to be unequivocally established, landscape-scale indices of environmental impact such as EI may prove to be useful indicators of change in microbial communities.  相似文献   

3.
A denitrification system for saline wastewater utilizing halophilic denitrifying bacteria has not been developed so far. In this study, denitrification performance and microbial community under various saline conditions were investigated using denitrifying sludge acclimated under low-salinity condition for a few years as seed sludge. A continuous denitrification experiment showed that denitrification performance and microbial community at 10% salinity was higher than that at 1% salinity. The microbial community in the denitrification sludge that was acclimated under low salinity was monitored by terminal-restriction fragment length polymorphism (T-RFLP) analysis during acclimation to high-salinity condition. T-RFLP profiles and clone analysis based on 16S rRNA-encoding genes in the sludge of the denitrification system with 10% salinity indicated that the γ-Proteobacteria, particularly Halomonas spp., were predominant species, suggesting that these bacterial members were possibly responsible for a high denitrification activity under high-salinity conditions. Furthermore, the investigation of denitrification performance under various saline conditions revealed that 4–10% salinity results in the highest denitrification rate, indicating that this salinity was optimal for predominant bacterial species to exhibit denitrification activity. These results indicate the possibility that an appropriate denitrification system for saline wastewater can be designed using acclimated sludge with a halophilic community.  相似文献   

4.
Denitrification causes loss of available nitrogen from soil systems, thereby reducing crop productivity and increasing reliance on agrochemicals. The dynamics of denitrification and denitrifying communities are thought to be altered by land management practices, which affect the physicochemical properties of the soil. In this study, we look at the effects of long-term tillage and fertilization regimes on arable soils following 16 years of treatment in a factorial field trial. By studying the bacterial community composition based on 16S rRNA amplicons, absolute bacterial abundance and diversity of denitrification functional genes (nirK, nirS and nosZ), under conditions of minimum/conventional tillage and organic/synthetic mineral fertilizer, we tested how specific land management histories affect the diversity and distribution of both bacteria and denitrification genes. Bacterial and denitrifier communities were largely unaffected by land management history and clustered predominantly by spatial location, indicating that the variability in bacterial community composition in these arable soils is governed by innate environmental differences and Euclidean distance rather than agricultural management intervention.  相似文献   

5.
Soils in the riparian zone, the interface between terrestrial and aquatic ecosystems, may decrease anthropogenic nitrogen (N) loads to streams through microbial transformations (e.g., denitrification). However, the ecological functioning of riparian zones is often compromised due to degraded conditions (e.g., vegetation clearing). Here we compare the efficacy of an urban remnant and a cleared riparian zone for supporting a putative denitrifying microbial community using 16S rRNA sequencing and quantitative polymerase chain reaction of archaeal and bacterial nitrogen cycling genes. Although we had no direct measure of denitrification rates, we found clear patterns in the microbial communities between the sites. Greater abundance of N-cycling genes was predicted by greater soil ammonium (N-NH4), organic phosphorus, and C:N. At the remnant site, we found positive correlations between microbial community composition, which was dominated by putative N oxidisers (Nitrosomonadaceae, Nitrospiraceae and Nitrosotaleaceae), and abundance of ammonia-oxidizing archaea (AOA), nirS, nirK and nosZ, whereas the cleared site had lower abundance of N-oxidisers and N cycling genes. These results were especially profound for the remnant riparian fringe, which suggests that this region maintains suitable soil conditions (via diverse vegetation structure and periodic saturation) to support putative N cyclers, which could amount to higher potential for N removal.  相似文献   

6.
7.
Big Asian knotweeds (Fallopia spp.) are among the most invasive plant species in north-western Europe. We suggest that their success is partially explained by biological and chemical niche construction. In this paper, we explored the microbial mechanisms by which the plant modifies the nitrogen cycle. We found that Fallopia spp. decreased potential denitrification enzyme activity (DEA) by reducing soil moisture and reducing denitrifying bacteria density in the soil. The plant also reduced potential ammonia and nitrite oxydizing bacteria enzyme activities (respectively, AOEA and NOEA) in sites with high AOEA and NOEA in uninvaded situation. Modification of AOEA and NOEA were not correlated to modifications of the density of implicated bacteria. AOB and Nitrobacter-like NOB community genetic structures were significantly different in respectively two and three of the four tested sites while the genetic structure of denitrifying bacteria was not affected by invasion in none of the tested sites. Modification of nitrification and denitrification functioning in invaded soils could lead to reduced nitrogen loss from the ecosystem through nitrate leaching or volatilization of nitrous oxides and dinitrogen and could be considered as a niche construction mechanism of Fallopia.  相似文献   

8.
Song  Hao  Xu  Jiahui  Lavoie  Michel  Fan  Xiaoji  Liu  Guangfu  Sun  Liwei  Fu  Zhengwei  Qian  Haifeng 《Applied microbiology and biotechnology》2017,101(4):1685-1696

Physico-chemical parameters, hydrological conditions, and microbial interactions can affect the growth and persistence of cyanobacteria, but the interacting effects among these bloom-forming factors are still poorly known. This hampers our capacity to predict the occurrence of cyanobacterial bloom accurately. Here, we studied the relationship between temperature, N and P cycles, and the microbial community abundance and diversity at 0.5 m under the surface of West Lake (China) from January 21 to November 20, 2015, in order to better understand the key factors regulating temporal changes in the cyanobacterial community. Using high throughput sequencing of the 16S rRNA gene V3-V4 region, we studied the diversity and abundance of bacteria. In parallel, we measured physico-chemical parameters and followed the abundance of key genes involved in N fixation, denitrification, and nutrient uptake. Multivariate analyses suggest that P concentration and water temperature are the key factors controlling the outbreak of summer cyanobacterial bloom. RT-qPCR analyses of the bacterial community and measurements of the copy number of denitrification-related gene (nirK, nosZ, nirS) show that denitrification potential and denitrifying bacteria relative abundance (Pseudomonas and Bacillus) increased in concert with diazotrophic cyanobacterial genera (Anabaena, Nostoc, Aphanizomenon flos-aquae) and the common bloom-forming non-diazotrophic cyanobacterium genus Microcystis. The present study brings new insights on the complex interplay between physico-chemical parameters, heterotrophic bacterial community composition, nitrogen cycle, and cyanobacteria dominance in a eutrophic lake.

  相似文献   

9.
Lake Bonney is a chemically stratified, permanently ice‐covered Antarctic lake that is unusual because anomalous nutrient concentrations in the east lobe suggest that denitrification occurs in the deep suboxic waters of the west lobe but not the east lobe, resulting in high concentrations of nitrate and nitrite below the east lobe chemocline. Environmental factors that usually control denitrification rates (e.g. organic carbon, nitrate, oxygen) do not appear to explain the nitrate distribution in the east lobe, suggesting that other factors (e.g. trace metals, salts, microbial community structure, etc.) may be involved. In order to explore the potential importance of microbial community composition, samples collected from multiple depths in both lobes were compared on the basis of 16S rRNA gene diversity. 16S rRNA polymerase chain reaction (PCR) clone libraries generated from five depths were subjected to restriction fragment length polymorphism (RFLP), rarefaction, statistical and phylogenetic analyses. Bacterial and archaeal 16S rRNA gene sequences were determined for clones corresponding to unique RFLP patterns. The bacterial community below the chemocline (at 25 m) in the east lobe was the least diverse of the five depths analysed and was compositionally distinct from the communities of the overlying waters. The greatest compositional overlap was observed between 16 and 19 m in the east lobe, while the east lobe at 25 m and the west lobe at 13 and 16 m had relatively distinct communities. Despite very little compositional overlap between the suboxic, hypersaline depths of the east and west lobes (25 m and 16 m, respectively), sequences closely related to the denitrifying Marinobacter strain ELB17 previously isolated from the east lobe were found in both libraries. Most of the Lake Bonney sequences are fairly distinct from those reported from other Antarctic environments. Archaeal 16S rRNA genes were only successfully amplified from the two hypersaline depths analysed, with only one identical halophilic sequence type occurring in both libraries, indicating extremely low archaeal diversity. Overall, microbial community composition varies both between lobes and across depths within lobes in Lake Bonney, reflecting the steep gradients in physical/chemical parameters across the chemocline, as well as the anomalous nutrient chemistry of the system.  相似文献   

10.
This study coupled a landscape-scale metagenomic survey of denitrification gene abundance in soils with in situ denitrification measurements to show how environmental factors shape distinct denitrification communities that exhibit varying denitrification activity. Across a hydrologic gradient, the distribution of total denitrification genes (nap/nar + nirK/nirS + cNor/qNor + nosZ) inferred from metagenomic read abundance exhibited no consistent patterns. However, when genes were considered independently, nirS, cNor and nosZ read abundance was positively associated with areas of higher soil moisture, higher nitrate and higher annual denitrification rates, whereas nirK and qNor read abundance was negatively associated with these factors. These results suggest that environmental conditions, in particular soil moisture and nitrate, select for distinct denitrification communities that are characterized by differential abundance of genes encoding apparently functionally redundant proteins. In contrast, taxonomic analysis did not identify notable variability in denitrifying community composition across sites. While the capacity to denitrify was ubiquitous across sites, denitrification genes with higher energetic costs, such as nirS and cNor, appear to confer a selective advantage in microbial communities experiencing more frequent soil saturation and greater nitrate inputs. This study suggests metagenomics can help identify denitrification hotspots that could be protected or enhanced to treat non-point source nitrogen pollution.  相似文献   

11.
Bioregenerative life support systems may be necessary for long-term space missions due to the high cost of lifting supplies and equipment into orbit. In this study, we investigated two biological wastewater treatment reactors designed to recover potable water for a spacefaring crew being tested at Johnson Space Center. The experiment (Lunar-Mars Life Support Test Project-Phase III) consisted of four crew members confined in a test chamber for 91 days. In order to recycle all water during the experiment, an immobilized cell bioreactor (ICB) was employed for organic carbon removal and a trickling filter bioreactor (TFB) was utilized for ammonia removal, followed by physical-chemical treatment. In this study, the spatial distribution of various microorganisms within each bioreactor was analyzed by using biofilm samples taken from four locations in the ICB and three locations in the TFB. Three target genes were used for characterization of bacteria: the 16S rRNA gene for the total bacterial community, the ammonia monooxygenase (amoA) gene for ammonia-oxidizing bacteria, and the nitrous oxide reductase (nosZ) gene for denitrifying bacteria. A combination of terminal restriction fragment length polymorphism (T-RFLP), sequence, and phylogenetic analyses indicated that the microbial community composition in the ICB and the TFB consisted mainly of Proteobacteria, low-G+C gram-positive bacteria, and a Cytophaga-Flexibacter-Bacteroides group. Fifty-seven novel 16S rRNA genes, 8 novel amoA genes, and 12 new nosZ genes were identified in this study. Temporal shifts in the species composition of total bacteria in both the ICB and the TFB and ammonia-oxidizing and denitrifying bacteria in the TFB were also detected when the biofilms were compared with the inocula after 91 days. This result suggests that specific microbial populations were either brought in by the crew or enriched in the reactors during the course of operation.  相似文献   

12.
The quantification of denitrifying bacteria is a component in the further understanding of denitrification processes in the environment. Real-time PCR primers were designed to target two segments of the denitrifier population (cnorB(P) [Pseudomonas mandelii and closely related strains] and cnorB(B) [Bosea, Bradyrhizobium, and Ensifer spp.]) in agricultural soils based on functional cnorB (nitric oxide reductase) gene sequences. Total population numbers were measured using 16S rRNA gene real-time PCR. Two soil microcosm experiments were conducted. Experiment 1 examined the response of the indigenous soil microbial population to the addition of 500 mg/kg glucose-C daily over 7 days in soil microcosms. Changes in the total population were correlated (r = 0.83) between 16S rRNA gene copy numbers and microbial biomass carbon estimates. Members of the cnorB(P) population of denitrifiers showed typical r-strategy by being able to increase their proportion in the total population from starting levels of <0.1% to around 2.4% after a daily addition of 500 mg/kg glucose-C. The cnorB(B) guild was not able to increase its relative percentage of the total population in response to the addition of glucose-C, instead increasing copy numbers only in proportion with the total population measured by 16S rRNA genes. Experiment 2 measured population dynamics in soil after the addition of various amounts of glucose-C (0 to 500 mg/kg) and incubation under denitrifying conditions. cnorB(P) populations increased proportionally with the amount of glucose-C added (from 0 to 500 mg/kg). In soil microcosms, denitrification rates, respiration, and cnorB(P) population densities increased significantly with increasing rates of glucose addition. cnorB(B) guild densities did not increase significantly under denitrifying conditions in response to increasing C additions.  相似文献   

13.
反硝化菌功能基因及其分子生态学研究进展   总被引:9,自引:0,他引:9  
由微生物推动的反硝化作用是地球氮素循环的重要分支,尽管已被发现广泛存在于细菌、真菌和古生菌中,其功能基因的研究仍仅限于很少几个物种。现代分子生物学的发展为研究环境微生物提供了行之有效的方法,以反硝化功能基因作为分子标记的分子生态学研究迅猛发展。综述近年来国内外微生物反硝化功能基因研究及以其为标记的分子生态学研究进展。  相似文献   

14.
Bioregenerative life support systems may be necessary for long-term space missions due to the high cost of lifting supplies and equipment into orbit. In this study, we investigated two biological wastewater treatment reactors designed to recover potable water for a spacefaring crew being tested at Johnson Space Center. The experiment (Lunar-Mars Life Support Test Project—Phase III) consisted of four crew members confined in a test chamber for 91 days. In order to recycle all water during the experiment, an immobilized cell bioreactor (ICB) was employed for organic carbon removal and a trickling filter bioreactor (TFB) was utilized for ammonia removal, followed by physical-chemical treatment. In this study, the spatial distribution of various microorganisms within each bioreactor was analyzed by using biofilm samples taken from four locations in the ICB and three locations in the TFB. Three target genes were used for characterization of bacteria: the 16S rRNA gene for the total bacterial community, the ammonia monooxygenase (amoA) gene for ammonia-oxidizing bacteria, and the nitrous oxide reductase (nosZ) gene for denitrifying bacteria. A combination of terminal restriction fragment length polymorphism (T-RFLP), sequence, and phylogenetic analyses indicated that the microbial community composition in the ICB and the TFB consisted mainly of Proteobacteria, low-G+C gram-positive bacteria, and a Cytophaga-Flexibacter-Bacteroides group. Fifty-seven novel 16S rRNA genes, 8 novel amoA genes, and 12 new nosZ genes were identified in this study. Temporal shifts in the species composition of total bacteria in both the ICB and the TFB and ammonia-oxidizing and denitrifying bacteria in the TFB were also detected when the biofilms were compared with the inocula after 91 days. This result suggests that specific microbial populations were either brought in by the crew or enriched in the reactors during the course of operation.  相似文献   

15.
The bacterial community structure, in situ spatial distributions and activities of nitrifying and denitrifying bacteria in biofilms treating industrial wastewater were investigated by combination of the 16S rRNA gene clone analysis, fluorescence in situ hybridization (FISH) and microelectrodes. These results were compared with the nitrogen removal capacity of the industrial wastewater treatment plant (IWTP). Both nitrification and denitrification occurred in the primary denitrification (PD) tank and denitrification occurred in the secondary denitrification (SD) tank. In contrast, nitrification and denitrification rates were very low in the nitrification (N) tank. 16S rRNA gene clone sequence analysis revealed that the bacteria affiliated with Alphaproteobacteria, followed by Betaproteobacteria, were numerically important microbial groups in three tanks. The many clones affiliated with Alphaproteobacteria were closely related to the denitrifying bacteria (e.g., Hyphomicrobium spp., Rhodopseudomonas palustris, and Rhodobacter spp.). In addition, Methylophilus leisingeri affiliated with Betaproteobacteria, which favorably utilized methanol, was detected only in the SD-tank to which methanol was added. Nitrosomonas europaea and Nitrosomonas marina were detected as the ammonia-oxidizing bacteria affiliated with Betaproteobacteria throughout this plant, although the dominant species of them was different among three tanks. Nitrifying bacteria were mainly detected in the upper parts of the PD-biofilm whereas their populations were low in the upper parts of the N-biofilm. The presence of denitrifying bacteria affiliated with Hyphomicrobium spp. in SD- and N-biofilms was verified by FISH analysis. Microelectrode measurements showed that the nitrifying bacteria present in the N- and PD-biofilms were active and the bacteria present in the SD-biofilm could denitrify.  相似文献   

16.
The biological oxidation of reduced sulfur compounds is a critically important process in global sulfur biogeochemistry. In this study, we enriched from marine sediments under denitrifying conditions, chemolithotrophic sulfur oxidizers that could oxidize a variety of reduced sulfur compounds: thiosulfate, tetrathionate, sulfide, and polysulfide. Two major phylotypes of 16S rRNA gene (>99% identity in each phylotype) were detected in this enrichment culture. In order to characterize sulfide oxidation, we sequenced and characterized one fosmid clone (43.6 kb) containing the group I sulfide-quinone reductase (sqr) gene. Interestingly, four putative rhodanese genes were found in this clone. Furthermore, comparative alignment with the closest genome of Thiomicrospira crunogena XCL2 revealed that three homologous genes were located within the vicinity of the sqr gene. Fosmid clones harboring carbon fixation (cbbL and cbbM) and denitrification (narG) genes were screened, and the phylogeny of the functional genes was analyzed. Along with the comparison between the sqr-containing fosmid clones and the relevant -proteobacteria, our phylogenetic study based on the 16S rRNA gene and carbon fixation genes suggest the prevalence of chemolithotrophic -proteobacteria in the denitrifying cultures. The findings of this study imply that a combination of cultivation and metagenomic approaches might provide us with a glimpse into the characteristics of sulfur oxidizers in marine sediments.  相似文献   

17.
Denitrification is a facultative respiratory pathway in which nitrite (NO2(-)), nitric oxide (NO), and nitrous oxide (N2O) are successively reduced to nitrogen gas (N(2)), effectively closing the nitrogen cycle. The ability to denitrify is widely dispersed among prokaryotes, and this polyphyletic distribution has raised the possibility of horizontal gene transfer (HGT) having a substantial role in the evolution of denitrification. Comparisons of 16S rRNA and denitrification gene phylogenies in recent studies support this possibility; however, these results remain speculative as they are based on visual comparisons of phylogenies from partial sequences. We reanalyzed publicly available nirS, nirK, norB, and nosZ partial sequences using Bayesian and maximum likelihood phylogenetic inference. Concomitant analysis of denitrification genes with 16S rRNA sequences from the same organisms showed substantial differences between the trees, which were supported by examining the posterior probability of monophyletic constraints at different taxonomic levels. Although these differences suggest HGT of denitrification genes, the presence of structural variants for nirK, norB, and nosZ makes it difficult to determine HGT from other evolutionary events. Additional analysis using phylogenetic networks and likelihood ratio tests of phylogenies based on full-length sequences retrieved from genomes also revealed significant differences in tree topologies among denitrification and 16S rRNA gene phylogenies, with the exception of the nosZ gene phylogeny within the data set of the nirK-harboring genomes. However, inspection of codon usage and G + C content plots from complete genomes gave no evidence for recent HGT. Instead, the close proximity of denitrification gene copies in the genomes of several denitrifying bacteria suggests duplication. Although HGT cannot be ruled out as a factor in the evolution of denitrification genes, our analysis suggests that other phenomena, such gene duplication/divergence and lineage sorting, may have differently influenced the evolution of each denitrification gene.  相似文献   

18.
Methane can be used as an alternative carbon source in biological denitrification because it is nontoxic, widely available and relatively inexpensive. A microbial consortium involved in methane oxidation coupled to denitrification (MOD) was enriched with nitrite and nitrate as electron acceptors under micro‐aerobic conditions. The 16S rRNA gene combined with pmoA phylogeny of methanotrophs and nirK phylogeny of denitrifiers were analysed to reveal the dominant microbial populations and functional microorganisms. Real‐time quantitative polymerase chain reaction results showed high numbers of methanotrophs and denitrifiers in the enriched consortium. The 16S rRNA gene clone library revealed that Methylococcaceae and Methylophilaceae were the dominant populations in the MOD ecosystem. Phylogenetic analyses of pmoA gene clone libraries indicated that all methanotrophs belonged to Methylococcaceae, a type I methanotroph employing the ribulose monophosphate pathway for methane oxidation. Methylotrophic denitrifiers of the Methylophilaceae that can utilize organic intermediates (i.e. formaldehyde, citrate and acetate) released from the methanotrophs played a vital role in aerobic denitrification. This study is the first report to confirm micro‐aerobic denitrification and to make phylogenetic and functional assignments for some members of the microbial assemblages involved in MOD.  相似文献   

19.
20.
The microbial population from a reactor using methane as electron donor for denitrification under microaerophilic conditions was analyzed. High numbers of aerobic methanotrophic bacteria (3 107 cells/ml) and high numbers of acetate-utilizing denitrifying bacteria (2 107 cells/ml) were detected, but only very low numbers of methanol-degrading denitrifying bacteria (4 104 cells/ml) were counted. Two abundant acetate-degrading denitrifiers were isolated which, based on 16S rRNA analysis, were closely related to Mesorhizobium plurifarium (98.4% sequence similarity) and a Stenotrophomonas sp. (99.1% sequence similarity). A methanol-degrading denitrifying bacterium isolated from the bioreactor morphologically resembled Hyphomicrobium sp. and was moderately related to H. vulgare (93.5% sequence similarity). The initial characterization of the most abundant methanotrophic bacterium indicated that it belongs to class II of the methanotrophs. “In vivo”13C-NMR with concentrated cell suspensions showed that this methanotroph produced acetate under oxygen limitation. The microbial composition of reactor material together with the NMR experiments suggest that in the reactor methanotrophs excrete acetate, which serves as the direct electron donor for denitrification. Received: 19 October 1999 / Received revision: 11 January 2000 / Accepted: 14 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号