首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In our previous study, we found that mercaptopyruvate sulfurtransferase (MST) was evolutionarily related to mitochondrial rhodanese. To elucidate the difference between MST and rhodanese, the tissue, cellular, and subcellular distribution of rat MST was determined biochemically and immunohistochemically by using anti-MST antibody raised in rabbit. In an immunohistochemical study, tetramethyl rhodamine isothiocyanate-conjugated phalloidin against F-actin and fluorescein isothiocyanate-conjugated goat anti-rabbit immunoglobulin as a secondary antibody to the anti-MST antibody were used for double fluorescent staining. They were detected by confocal laser fluorescence microscopy. In the immunoelectron microscopic study of hepatocyte and renal tubular epithelium, a postembedding immunogold method was used. Biochemical studies including western blot analyses of various tissues and subcellular fractions of the liver were also performed. MST was widely distributed in rat tissues but the cellular distribution was found to be different in each tissue. MST was predominantly localized in proximal tubular epithelium in the kidney, pericentral hepatocytes in the liver, cardiac cells in the heart, and neuroglial cells in the brain. This immunocytochemical study also found that MST was localized in both mitochondria and cytoplasm.  相似文献   

2.
Summary The role of rhodanese in the detoxication of acute cyanide exposure is controversial. The debate involves questions of the availability of rhodanese to cyanide in the peripheral circulation. Blood-borne cyanide will distribute to the brain and may induce lesions or even death. The present study addresses the dispute by determining the distribution of rhodanese in tissues considered to have the highest rhodanese activity and thought to serve as major detoxication sites. The results indicate that rhodanese levels are highest in (1) hepatocytes that are in close proximity to the blood supply of the liver (2) epithelial cells surrounding the bronchioles (a major entry route for gaseous cyanide) and (3) proximal tubule cells of the kidney (serving to facilitate cyanide detoxication and elimination as thiocyanate). Rhodanese activity in the brain is low compared with liver and kidney (Mimoriet al., 1984; Drawbaugh & Marrs, 1987); the brain is not considered to be a major site of cyanide detoxication. The brain, however, is the target for cyanide toxicity. In this study our goal was also to differentiate the distribution of rhodanese in an area of the brain. We found that the enzyme level is highest in fibrous astrocytes of the white matter. Cyanide-induced brain lesions may thus occur in areas of the brain lacking sufficient sites for detoxication.  相似文献   

3.
Mercaptopyruvate sulfurtransferase (MST, EC 2.8.1.2) and thiosulfate sulfurtransferase (TST, rhodanese, EC 2.8.1.1) are evolutionarily related enzymes that catalyze the transfer of sulfur ions from mercaptopyruvate and thiosulfate, respectively, to cyanide ions. We have isolated and characterized two cDNAs, AtMST1 and AtMST2, that are Arabidopsis homologs of TST and MST from other organisms. Deduced amino-acid sequences showed similarity to each other, although MST1 has a N-terminal extension of 57 amino acids containing a targeting sequence. MST1 and MST2 are located in mitochondria and cytoplasm, respectively, as shown by immunoblot analysis of subcellular fractions and by green fluorescent protein (GFP) analysis. However, some regions of MST1 fused to GFP were found to target not only mitochondria, but also chloroplasts, suggesting that the regions on the targeting sequence recognized by protein import systems of mitochondria and chloroplasts are not identical. Recombinant proteins, expressed in Escherichia coli, exhibited MST/TST activity ratios determined from kcat/Km values of 11 and 26 for MST1 and MST2, respectively. This indicates that the proteins encoded by both AtMST1 and AtMST2 are MST rather than TST type. One of the hypotheses proposed so far for the physiological function of MST and TST concerns iron-sulfur cluster assembly. In order to address this possibility, a T-DNA insertion Arabidopsis mutant, in which the AtMST1 was disrupted, was isolated by PCR screening of T-DNA mutant libraries. However, the mutation had no effect on levels of iron-sulfur enzyme activities, suggesting that MST1 is not directly involved in iron-sulfur cluster assembly.  相似文献   

4.
Activities of cyanide metabolizing enzymes were measured in various subcellular fractions and regions in the central nervous system. Brain rhodanese and liver beta-mercaptopyruvate sulfurtransferase showed a slight decrease in activity after death. The activity of beta-mercaptopyruvate sulfurtransferase was negligible in the rat brain, compared with that of rhodanese. A small amount of thiocyanate was produced from cyanide and beta-mercaptopyruvate in the human brain, probably due to contamination with red blood cells. Rhodanese activity was widely distributed in all the areas of nervous tissue examined. In the rat the olfactory bulb showed the highest rhodanese activity, and high activity was also observed served in the thalamus, septum, hippocampus, and dorsal part of the midbrain. Rhodanese activity was low in various parts of the cerebral cortex. The distribution pattern of rhodanese in post-mortem human brain was essentially similar to that in rat brain. The thalamus, amygdala, centrum semiovale, colliculus superior, and cerebellar cortex showed high rhodanese activity in the human brain. Rhodanese activity was detected in the spinal cord. Anterior horn showed the highest rhodanese activity in the cervical, thoracic, and lumbar cord. Most rhodanese activity in the rat brain was recovered in the mitochondrial fraction with the highest specific activity. Rhodanese activity was lower in spinal cords obtained from autopsied cases with amyotrophic lateral sclerosis than in those of control subjects. A significant decrease in rhodanese was observed in the posterior column of the cervical or thoracic cord, but the activity in the anterior horn did not differ significantly between the two groups.  相似文献   

5.
In previous studies on the rhodanese activity of bovine liver mitochondria, we have shown that in addition to activity observed in the soluble protein fraction, there is rhodanese activity that is bound to the mitochondrial membrane. The latter activity accounts for as much as 40% of the total and, in situ, is associated in a multiprotein complex that forms iron-sulfur centers. In the present studies, we have investigated the rhodanese activity of bovine heart muscle. We have found that the major part of this enzyme activity is localized in the mitochondria and, further, that at least 25% of the total rhodanese activity of heart mitochondria is membrane-bound. As in liver tissue, the heart activity at least in part is associated in a multiprotein complex that forms iron-sulfur centers. Upon purification of the heart rhodanese in the soluble protein fraction, there is a 10- to 30-fold decrease inK m values for the standard assay substrates thiosulfate and cyanide ions. These observations are consistent with the interpretation that there are activated and deactivated (low activity) forms of the heart enzyme in crude extracts, but only the activated form survives purification. The present results, together with our recent finding that liver mitochondrial rhodanese is subject to phosphorylation, lend support to our proposal that the rhodaneses serve as converter enzymes which regulate the rate of electron transport through sulfuration of respiratory chain components. The rhodaneses, in turn, are controlled by protein kinases and the local ATP concentration.  相似文献   

6.
Rat liver rhodanese [EC 2.8.1.1] purified by ammonium sulfate fractionation, CM-cellulose and Sephadex G-200 chromatography yielded two active fractions (I & II). Their molecular weights were estimated to be 1.75 X 10(4) (I) and 1.26 X 10(4) (II) by the gel filtration method. Kinetic studies revealed that Fraction I rat liver rhodanese catalyzes thiocyanate formation from thiosulfate and cyanide by a double displacement mechanism. Carboxylic acids such as DL-isocitric, citric malic, pyruvic, and oxaloacetic acid were competitive inhibitors with respect to thiosulfate, whereas fumaric, succinic, and alpha-ketoglutaric acids were noncompetitive inhibitors with respect ot thiosulfate. Incubation of mitochondria with sulfate and alpha-ketoglutaric acid caused a significant decrease in rhodanese activity.  相似文献   

7.
Sulfurtransferases/rhodaneses (Str) comprise a group of enzymes widely distributed in all phyla which catalyze in vitro the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors. The best characterized Str is bovine rhodanese (EC 2.8.1.1) which catalyses in vitro the transfer of a sulfane sulfur atom from thiosulfate to cyanide, leading to the formation of sulfite and thiocyanate. Plants as well as other organisms contain many proteins carrying a typical rhodanese pattern or domain forming multi-protein families (MPF). Despite the presence of Str activities in many living organisms, the physiological role of the members of this MPF has not been established unambiguously. While in mammals these proteins are involved in the elimination of toxic cyanogenic compounds, their ubiquity suggests additional physiological functions. In plants, Str are localized in the cytoplasm, mitochondria, plastids, and nucleus. Str probably also transfer reduced sulfur onto substrates as large as peptides or proteins. Several studies in different organisms demonstrate a protein–protein interaction with members of the thioredoxin MPF indicating a role of Str in maintenance of the cellular redox homeostasis. The increased expression of several members of the Str MPF in various stress conditions could be a response to oxidative stress. In summary, data indicate that Str are involved in various essential metabolic reactions.  相似文献   

8.
The enzyme rhodanese (thiosulfate/cyanide sulfurtransferase) is an ubiquitous enzyme and its activity is present in all living organisms from bacteria to man. Evidence has been accumulated to indicate that this enzyme plays a central role in cyanide detoxification. A comparison was made of rhodanese activity in different tissues of young male and adult male and female pig (Sus scrofa). The highest activity of rhodanese was in liver and kidney cortex of all animals. Among the remaining tissues examined, the kidney medulla and the stomach epithelium tended to have higher levels than other tissues, although this was not significant (P>0.05). The rhodanese activity of heart ventricle tissue of 6-month-old male animals was higher than 7-week-old male animals (P<0.05), and 6-month-old male animals had higher rhodanese activity in lung tissue, compared to 6-month-old female pigs (P<0.05). Medulla and spleen of younger male animals exhibited higher levels of activity (P<0.10) compared to older male pigs. The results of this study may indicate the involvement of rhodanese in cyanide detoxification in pig tissues, which have greater potential to be exposed to higher levels of cyanide.  相似文献   

9.
An investigation was made into the occurrence and distribution of the enzymes involved in HCN catabolism in different strains of the fungus Trichoderma. Three enzymes, cyanide hydratase, rhodanese and β-cyanoalanine synthase were studied. All the strains showed a high capacity to degrade cyanide via both the cyanide hydratase and rhodanese pathways. β-Cyanoalanine synthase, however, was not observed in any of the strains. The enzyme activities were found in varying levels in each of the Trichoderma strains. Experiments conducted with cyanide addition to the medium to assess whether the enzymes were induced in the presence of cyanide failed to show any statistically significant increase. This suggests a constitutive nature of both the enzymes in all the selected strains of Trichoderma used in this study.  相似文献   

10.
Mitochondrial rhodanese: membrane-bound and complexed activity   总被引:3,自引:0,他引:3  
We have proposed that phosphorylated and dephosphorylated forms of the mitochondrial sulfurtransferase, rhodanese, function as converter enzymes that interact with membrane-bound iron-sulfur centers of the electron transport chain to modulate the rate of mitochondrial respiration (Ogata, K., Dai, X., and Volini, M. (1989) J. Biol. Chem. 204, 2718-2725). In the present studies, we have explored some structural aspects of the mitochondrial rhodanese system. By sequential extraction of lysed mitochondria with phosphate buffer and phosphate buffer containing 20 mM cholate, we have shown that 30% of the rhodanese activity of bovine liver is membrane-bound. Resolution of cholate extracts on Sephadex G-100 indicates that part of the bound rhodanese is complexed with other mitochondrial proteins. Tests with the complex show that it forms iron-sulfur centers when incubated with the rhodanese sulfur-donor substrate thiosulfate, iron ions, and a reducing agent. Experiments on the rhodanese activity of rat liver mitochondria give similar results. Taken together, the findings indicate that liver rhodanese is in part bound to the mitochondrial membrane as a component of a multiprotein complex that forms iron-sulfur centers. The findings are consistent with the role we propose for rhodanese in the modulation of mitochondrial respiratory activity.  相似文献   

11.
1. The activities of rhodanese and beta-mercaptopyruvate sulfurtransferase (MST) in different organs of sheep and cattle were measured. 2. Liver, kidney, omasum, and rumen were the richest sources of both enzymes. The activities of both enzymes in other organs of the sheep and the cattle decreased in the order of lung, brain, heart, abomasum, lymph node, urinary bladder, spleen, and the skeletal muscle. 3. The activities of both enzymes in most organs of the sheep were higher than the cattle. 4. Both enzymes showed higher activities in the epithelial layers than the muscular layers of rumen, omasum and reticulum. 5. In most of the tissues of both species the level of rhodanese activity was greater than MST.  相似文献   

12.
The enzyme rhodanese (thiosulfate:cyanide sulfurtransferase) is a ubiquitous enzyme present in all living organisms, from bacteria to humans and plays a central role in cyanide detoxification. The purpose of this investigation is to determine and compare rhodanese activity in different parts of urogenital systems of male and female sheep fetuses at 2.5, 3, 3.5, 4, 4.5, and 5 months of age. The highest activity of rhodanese in male fetus was in kidney cortex, followed by medulla of the kidney. No significant difference was observed in other organs. In female fetus, the highest activity was in kidney cortex followed by oviduct and medulla of kidney. The enzyme activity of tissues increased with age. There was no significant difference (P > 0.05) between male and female fetuses in levels of rhodanese activity of different tissues except in urinary bladder at 2.5 and 3 months and in urethra at 4.5 months of age. The results of this study might indicate the involvement of rhodanese in cyanide detoxification in tissues which are more exposed to cyanide. On the other hand, rhodanese might perform other functions which are specific in these tissues.  相似文献   

13.
1. The activity of rhodanese in different tissues of some domestic animals was measured. 2. Rhodanese was present in all tissues studied. 3. The activity of rhodanese in most tissues of sheep was higher than other animals studied. 4. In sheep and cattle the epithelium of rumen, omasum and reticulum were the richest sources of rhodanese. Significant activity of rhodanese was also present in liver and kidney. 5. In camel the liver contained the highest level of rhodanese followed by lung and rumen epithelium. Camel liver contained a third of the activity of sheep liver. 6. Equine liver had a third of the activity of sheep liver. Other tissues showed low levels of rhodanese activity. 7. Dog liver contained only 4% of the activity of sheep liver. In this animal, brain was the richest source of rhodanese. 8. The results are discussed in terms of efficacy of different tissues of animals in cyanide detoxification.  相似文献   

14.
1. Intact and pure parenchymal and non-parenchymal cells were isolated from rat liver. The specific activities of several mitochondrial enzymes were determined in both parenchymal and non-parenchymal cell homogenates to characterize the mitochondria in these liver cell types. 2.In general the activities of mitochondrial enzymes were lower in non-parenchymal liver cells than in parenchymal cells. The specific activity of pyruvate carboxylase in non-parenchymal cells expressed as the percentage of that in parenchymal cells was onlu 2% for glutamate dehydrogenase 4.3% and for cytochrome c oxidase 79.4%. Monoamine oxidase, as an exception, has an equal specific activity in both cell types. 3. The activity ratio of pyruvate carboxylase at 10 mM pyruvate over 0.1 mM pyruvate is 3.35 for parenchymal cells and 1.50 for non-parenchymal cells. This indicates that non-parenchymal liver cells only contain the high affinity form of pyruvate carboxylase in contrast to parenchymal cells. 4. The ratio of glycerol-3-phosphate cytochrome c reductase over succinate cytochrome c reductase activity differs from parenchymal (0.01) and non-parenchymal cells (0.10). This might indicate that the glycerol-3-phosphate shuttle, which is important for the transport of reduction equivalents for cytosol to mitochondria is relatively more active in non-parenchymal cells than in parenchymal cells. 5. The activity pattern of mitochondrial enzymes in parenchymal and non-parenchymal cell homogenates indicates that these cell types contain different types of mitochondria. The presence of these different cell types in liver will therefore contribute to the heterogeneity of isolated rat liver mitochondria in which the mitochondria from non-parenchymal cells might be considered as "non-gluconeogenic".  相似文献   

15.
DNA polymerase of mitochondria is a gamma-polymerase.   总被引:20,自引:0,他引:20  
Mitochondria isolated from rat liver cells or mycoplasma-free HeLa cells contain a single DNA polymerase activity which is closely related to, or identical to, the DNA polymerase gamma activity found in the homologous cell. In rat liver cells, about 16% of the total cytoplasmic gamma-polymerase activity is found associated with mitochondria and in HeLa cells about 20% of the total cellular gamma-polymerase is mitochondria associated. Since mitochondria possess no unique DNA polymerase activity, the number of DNA polymerases now known in mammalian cells is reduced, from the previously proposed four enzymes, to three--DNA polymerases alpha, beta, and gamma.  相似文献   

16.
1. The investigators studied annual changes in rhodanese activity in mitochondria and cytosol of frog liver cells (Rana temporaria) and found that the value of the enzyme-specific activity was higher in mitochondria than in cytosol, showing significant seasonal fluctuations. 2. The character of changes in the rhodanese activity in mitochondria, regardless of the sex of the studied animal, was demonstrated to be dependent upon the seasonal changes in frog thyroid gland function. 3. In the supernatant fraction of R. temporaria liver homogenate, seasonal changes of rhodanese specific activity seemed to be related to changes in hepatic function.  相似文献   

17.
Expression of cloned bovine adrenal rhodanese   总被引:2,自引:0,他引:2  
A cDNA for the enzyme rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) has been cloned from a bovine adrenal library. An initiator methionine codon precedes the amino-terminal amino acid found in the isolated protein. Rhodanese is synthesized in the cytoplasm and transferred to the mitochondrial matrix. Thus, any amino-terminal sequence required for organelle import is retained in the mature protein. Furthermore, the DNA sequence shows that there are three additional amino acids, Gly-Lys-Ala, at the carboxyl terminus that are not found by protein sequencing. Additionally, comparison of the published amino acid sequence with that encoded by the open reading frame revealed three differences in the amino acid sequence. Comparison of the bovine and chicken liver sequences shows an overall level of 70% sequence homology, but there is complete identity of all residues that have been implicated in the function of the enzyme. When two mammalian cells, cos-7 and 293 cells, were transiently transfected with a plasmid containing the rhodanese coding region, rhodanese activity in lysates increased approximately 20-fold. Fluorograms of denaturing polyacrylamide gels detected a large increase in a polypeptide that co-migrated with the native protein and reacted with anti-rhodanese antibodies. Nondenaturing gels showed two active species that co-migrated with the two major electrophoretic forms purified by current procedures. Escherichia coli, transformed with a plasmid containing the rhodanese coding region, showed a 15-fold increase in rhodanese activity over baseline values. When the E. coli recombinant protein was analyzed on a nondenaturing gel, only one species was observed that co-electrophoresed with the more electropositive variant seen in purified bovine liver rhodanese. This single variant could be converted by carboxypeptidase B digestion to a form of the enzyme that co-migrated with the more electronegative species isolated from bovine liver. Thus, two major, enzymatically active electrophoretic variants, commonly observed in mammalian cells, can be accounted for by carboxyl-terminal processing without recourse to other post-translational modifications.  相似文献   

18.
Eight nucleotide sequences containing a single rhodanese domain were found in the Acidithiobacillus ferrooxidans ATCC 23270 genome: p11, p14, p14.3, p15, p16, p16.2, p21, and p28. Amino acids sequence comparisons allowed us to identify the potentially catalytic Cys residues and other highly conserved rhodanese family features in all eight proteins. The genomic contexts of some of the rhodanese-like genes and the determination of their expression at the mRNA level by using macroarrays suggested their implication in sulfur oxidation and metabolism, formation of Fe-S clusters or detoxification mechanisms. Several of the putative rhodanese genes were successfully isolated, cloned and overexpressed in E. coli and their thiosulfate:cyanide sulfurtransferase (TST) and 3-mercaptopyruvate/cyanide sulfurtransferase (MST) activities were determined. Based on their sulfurtransferase activities and on structural comparisons of catalytic sites and electrostatic potentials between homology- modeled A. ferrooxidans rhodaneses and the reported crystal structures of E. coli GlpE (TST) and SseA (MST) proteins, two of the rhodanese-like proteins (P15 and P16.2) could clearly be defined as TSTs, and P14 and P16 could possibly correspond to MSTs. Nevertheless, several of the eight A. ferrooxidans rhodanese-like proteins may have some different functional activities yet to be discovered.  相似文献   

19.
Rhodanese (thiosulfate: cyanide sulfurtransferase, EC. 2.8.1.1) is a ubiquitous enzyme present in all living organisms, from bacteria to humans and plays a central role in cyanide detoxification. The purpose of this investigation is to determine and compare rhodanese activity in different tissues of adult male and female goats (Capra hircus). The results showed that the specific activity of rhodanese in different tissues was significantly different (P<0.05). The highest activity of rhodanese was in epithelium of rumen, followed by epithelia of reticulum and omasum and liver. No significant difference was observed when tissues of male and female goats were compared. The lowest specific activity of rhodanese was observed in spleen, urinary bladder, lymph node, ovary, skeletal muscle and pyloric muscle of abomasum. The results of this study may indicate the involvement of rhodanese in cyanide detoxification in goat tissues that have greater potential to be exposed to higher levels of cyanide.  相似文献   

20.
Summary The biosynthesis of rhodanese was studied in human hepatoma cell lines by immunoblotting and pulselabeling experiments using polyclonal antibodies raised against the bovine liver enzyme. Rhodanese, partially purified from human liver, showed an apparent molecular weight of 33,000 daltons, coincident with that of rhodanese from Hep 3B cells. After pulse labeling of Hep 3B cells both at 37°C and 25°C, rhodanese in the cytosol fraction exhibited the same molecular weight as the enzyme isolated from the particulate fraction containing mitochondria. Moreover, newly synthesized rhodanese from total Hep 3B RNA translation products showed the same electrophoretic mobility as rhodanese from Hep 3B cells. These results suggest that rhodanese, unlike most mitochondrial proteins, is not synthesized as a higher molecular weight precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号