首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

This study examines the inter-annual variability of production data in an organic dairy farm and its effect on the estimation of product-related greenhouse gas emissions (GHG) using a detailed material flow model. It is believed that the examination of only one production year may not adequately reflect temporal representativeness and may therefore lead to unreliable results. The current study also provides a method to deal with variability when temporal representativeness cannot be ensured.

Methods

All material flows related to milk production from six consecutive milk years in an organic dairy farm in northern Germany were analysed. The milk yield of the 75 to 91 cows varied between 5418 and 7102 kg energy corrected milk (ECM) per cow and year. GHG emissions were estimated using calculation guidelines from the International Dairy Federation (IDF) and the Intergovernmental Panel on Climate Change (IPCC). Emissions were calculated in the Flow Analysis and Resource Management (FARM) model ensuring mass balances for nitrogen and phosphorous in every subsection of the model. Based on the variability of crop yields, the number of years for representative average data was calculated as well as an uncertainty when only a limited number of years was available.

Results and discussion

Estimated GHG emissions varied between 0.88 and 1.09 kg CO2-eq kg?1 ECM?1 (mean, standard deviation of the mean = 0.97 and 0.07 kg CO2-eq kg?1 ECM?1). Emissions from ruminant digestion had the highest contribution (50.9 ± 2.3) percent in relation to overall product-related GHG emissions. Direct emissions from soil showed the highest coefficient of variation (36%) due to simultaneous changes in fertilization amount, crop yield and milk yield which showed no significant direct relationship. The number of years needed to be assessed for representative average yields was between 27 and 215 years for clover grass and maize silage, respectively. When performing a sensitivity analysis based on the variability of crop yields, the assessed farm showed reliable results with average data of at least 4 years.

Conclusions

Temporal representativeness should be dealt with explicitly in GHG assessments for dairy farming. If the representativeness of crop yields cannot be ensured, an uncertainty bandwidth of the results based on variability of yields can provide a basis for comparing different farms or farming systems. This approach could also be extended to other variabilities in dairy farming for more reliability of results.
  相似文献   

2.

Purpose

The rapid growth of vehicle sales and usage has highlighted the need for greenhouse gas (GHG) emission reduction in Macau, a special administrative region (SAR) of China. As the most primary vehicle type, light-duty vehicles (LDV, including light-duty gasoline vehicles (LDGVs) and light-duty diesel vehicles (LDDVs)) play a key role in promoting the GHG reduction and development of green transportation system in Macau.

Methods

This study, on the basis of real-world tested and statistical data, firstly performed a streamlined life-cycle assessment (SLCA) on LDVs, to evaluate the potential GHG emissions and reduction through shifting to hybrid electric vehicles (HEVs) and electric vehicles (EVs).

Results and discussion

The results show that the mean GHG emissions from the LDGVs, LDDVs, and HEVs per 100 km were 25.16, 20.30, and 15.00 kg CO2 eq, respectively. Under the current electricity mix in Macau, EVs with the emissions of 12.39 kg CO2 eq/100 km can achieve a significant GHG emission reduction of LDVs in Macau. The total GHG emissions from LDVs increased from 124.99 to 247.82 thousand metric tons over the periods 2001–2014, with a 5.42% annual growth rate. A scenario analysis indicated that the development of HEVs and EVs—especially EVs—has the potential to control the GHG emissions from LDVs. Under the electricity mix of natural gas (NG) and solar energy (SE), the GHG emissions from EVs would drop by about 22 and 28%, respectively, by 2030.

Conclusions

This study develops a useful approach to evaluate the potential GHG emissions and its reduction strategies in Macau. All the obtained results could be useful for decision makers, providing robust support for drawing up an appropriate plan for improving green transportation systems in Macau.
  相似文献   

3.

Purpose

The aim of this study was to estimate the total greenhouse gas (GHG) emissions generated from whole life cycle stages of a sewer pipeline system and suggest the strategies to mitigate GHG emissions from the system.

Methods

The process-based life cycle assessment (LCA) with a city-scale inventory database of a sewer pipeline system was conducted. The GHG emissions (direct, indirect, and embodied) generated from a sewer pipeline system in Daejeon Metropolitan City (DMC), South Korea, were estimated for a case study. The potential improvement actions which can mitigate GHG emissions were evaluated through a scenario analysis based on a sensitivity analysis.

Results and discussion

The amount of GHG emissions varied with the size (150, 300, 450, 700, and 900 mm) and materials (polyvinyl chloride (PVC), polyethylene (PE), concrete, and cast iron) of the pipeline. Pipes with smaller diameter emitted less GHG, and the concrete pipe generated lower amount of GHG than pipes made from other materials. The case study demonstrated that the operation (OP) stage (3.67 × 104 t CO2eq year?1, 64.9%) is the most significant for total GHG emissions (5.65 × 104 t CO2eq year?1) because a huge amount of CH4 (3.51 × 104 t CO2eq year?1) can be generated at the stage due to biofilm reaction in the inner surface of pipeline. Mitigation of CH4 emissions by reducing hydraulic retention time (HRT), optimizing surface area-to-volume (A/V) ratio of pipes, and lowering biofilm reaction during the OP stage could be effective ways to reduce total GHG emissions from the sewer pipeline system. For the rehabilitation of sewer pipeline system in DMC, the use of small diameter pipe, combination of pipe materials, and periodic maintenance activities are suggested as suitable strategies that could mitigate GHG emissions.

Conclusions

This study demonstrated the usability and appropriateness of the process-based LCA providing effective GHG mitigation strategies at a city-scale sewer pipeline system. The results obtained from this study could be applied to the development of comprehensive models which can precisely estimate all GHG emissions generated from sewer pipeline and other urban environmental systems.
  相似文献   

4.

Purpose

The purpose of this study was to quantify the spatial and technological variability in life cycle greenhouse gas (GHG) emissions, also called the carbon footprint, of durum wheat production in Iran.

Methods

The calculations were based on information gathered from 90 farms, each with an area ranging from 1 to 150 ha (average 16 ha). The carbon footprint of durum wheat was calculated by quantifying the biogenic GHG emissions of carbon loss from soil and biomass, as well as the GHG emissions from fertilizer application and machinery use, irrigation, transportation, and production of inputs (e.g., fertilizers, seeds, and pesticides). We used Spearman’s rank correlation to quantify the relative influence of technological variability (in crop yields, fossil GHG emissions, and N2O emissions from fertilizer application) and spatial variability (in biogenic GHG emissions) on the variation of the carbon footprint of durum wheat.

Results and discussion

The average carbon footprint of 1 kg of durum wheat produced was 1.6 kg CO2-equivalents with a minimum of 0.8 kg and a maximum of 3.0 kg CO2-equivalents. The correlation analysis showed that variation in crop yield and fertilizer application, representing technological variability, accounted for the majority of the variation in the carbon footprint, respectively 76 and 21%. Spatial variation in biogenic GHG emissions, mainly resulting from differences in natural soil carbon stocks, accounted for 3% of the variation in the carbon footprint. We also observed a non-linear relationship between the carbon footprint and the yield of durum wheat that featured a scaling factor of ?2/3. This indicates that the carbon footprint of durum wheat production (in kg CO2-eq kg?1) typically decreases by 67% with a 100% increase in yield (in kg ha?1 year?1).

Conclusions

Various sources of variability, including variation between locations and technologies, can influence the results of life cycle assessments. We demonstrated that technological variability exerts a relatively large influence on the carbon footprint of durum wheat produced in Iran with respect to spatial variability. To increase the durum wheat yield at farms with relatively large carbon footprints, technologies such as site-specific nutrient application, combined tillage, and mechanized irrigation techniques should be promoted.
  相似文献   

5.

Purpose

The well-to-wheel (WTW) methodology is widely used for policy support in road transport. It can be seen as a simplified life cycle assessment (LCA) that focuses on the energy consumption and CO2 emissions only for the fuel being consumed, ignoring other stages of a vehicle’s life cycle. WTW results are therefore different from LCA results. In order to close this gap, the authors propose a hybrid WTW+LCA methodology useful to assess the greenhouse gas (GHG) profiles of road vehicles.

Methods

The proposed method (hybrid WTW+LCA) keeps the main hypotheses of the WTW methodology, but integrates them with LCA data restricted to the global warming potential (GWP) occurring during the manufacturing of the battery pack. WTW data are used for the GHG intensity of the EU electric mix, after a consistency check with the main life cycle impact (LCI) sources available in literature.

Results and discussion

A numerical example is provided, comparing GHG emissions due to the use of a battery electric vehicle (BEV) with emissions from an internal combustion engine vehicle. This comparison is done both according to the WTW approach (namely the JEC WTW version 4) and the proposed hybrid WTW+LCA method. The GHG savings due to the use of BEVs calculated with the WTW-4 range between 44 and 56 %, while according to the hybrid method the savings are lower (31–46 %). This difference is due to the GWP which arises as a result of the manufacturing of the battery pack for the electric vehicles.

Conclusions

The WTW methodology used in policy support to quantify energy content and GHG emissions of fuels and powertrains can produce results closer to the LCA methodology by adopting a hybrid WTW+LCA approach. While evaluating GHG savings due to the use of BEVs, it is important that this method considers the GWP due to the manufacturing of the battery pack.
  相似文献   

6.

Purpose

The effect of regional factors on life cycle assessment (LCA) of camelina seed production and camelina methyl ester production was assessed in this study. While general conclusions from LCA studies point to lower environmental impacts of biofuels, it has been shown in many studies that the environmental impacts are dependent on location, production practices, and even local weather variations.

Methods

A cradle-to-farm gate and well-to-pump approaches were used to conduct the LCA. To demonstrate the impact of agro-climatic and management factors (weather condition, soil characteristics, and management practices) on the overall emissions for four different regions including Corvallis, OR, Pendleton, OR, Pullman, WA, and Sheridan, WY, field emissions were simulated using the DeNitrification-DeComposition (DNDC) model. openLCA v.1.4.2 software was used to quantify the environmental impacts of camelina seed and camelina methyl ester production.

Results and discussion

The results showed that greenhouse gas (GHG) emissions during camelina production in different regions vary between 49.39 and 472.51 kg CO2-eq./ha due to differences in agro-climatic and weather variations. The GHG emissions for 1 kg of camelina produced in Corvallis, Pendleton, Pullman, and Sheridan were 0.76 ± 11, 0.55 ± 10, 0.47 ± 18, and 1.26 ± 6 % kg CO2-eq., respectively. The GHG emissions for 1000 MJ of camelina biodiesel using camelina produced in Corvallis, Pendleton, Pullman, and Sheridan were 53.60 ± 5, 48.87 ± 5, 44.33 ± 7, and 78.88 ± 4 % kg CO2-eq., respectively. Other impact categories such as acidification and ecotoxicity for 1000 MJ of camelina biodiesel varied across the regions by 43 and 103 %, respectively.

Conclusions

It can be concluded that process-based crop models such as DNDC in conjunction with Monte Carlo analysis are helpful tools to quantitatively estimate the influence of regional factors on field emissions which consequently can provide information about the expected variability in LCA results.
  相似文献   

7.

Background and Aims

Rock fragments within topsoil have important effects on soil properties and plant growth. This study mainly aimed to investigate the relationships between rock fragments, soil carbon (C) and nitrogen (N) densities and vegetation biomass in an alpine steppe.

Methods

Rock fragments, plant and soil samples were collected from four topographic positions (top, upper, lower, and bottom) on a hillslope.

Results

Volumetric rock fragment content within the 0–30 cm soil profile varied from 17.8 to 30.5%, the upper position value was significantly greater (P < 0.05) than those at other positions. The highest aboveground biomass was observed at the lower position (921 kg ha?1), while the highest belowground biomass within the 0–30 cm profile was found at the upper position (4460 kg ha?1). More fine earth and plant litter input accompanied by lower C and N losses induced by rainfall erosion resulted in higher soil organic C and total N densities (28.6 Mg C ha?1 and 2.87 Mg N ha?1) at the lower position.

Conclusions

Rock fragments may promote root growth but limit aboveground biomass production, and can therefore change the biomass distribution pattern. Our findings provide more evidence for scientifically assessing alpine steppe productivity.
  相似文献   

8.

Objective

To produce δ-decalactone from linoleic acid by one-pot reaction using linoleate 13-hydratase with supplementation with whole Yarrowia lipolytica cells.

Results

Whole Y. lipolytica cells at 25 g l?1 produced1.9 g l?1 δ-decalactone from 7.5 g 13-hydroxy-9(Z)-octadecenoic acid l?1 at pH 7.5 and 30 °C for 21 h. Linoleate 13-hydratase from Lactobacillus acidophilus at 3.5 g l?1 with supplementation with 25 g Y. lipolytica cells l?1 in one pot at 3 h produced 1.9 g l?1 δ-decalactone from 10 g linoleic acid l?1 via 13-hydroxy-9(Z)-octadecenoic acid intermediate at pH 7.5 and 30°C after 18 h, with a molar conversion yield of 31 % and productivity of 106 mg l?1 h?1.

Conclusion

To the best of our knowledge, this is the first production of δ-decalactone using unsaturated fatty acid.
  相似文献   

9.

Background

The greenhouse gas (GHG) mitigation is one of the most important environmental benefits of using bioenergy replacing fossil fuels. Nitrous oxide (N2O) and methane (CH4) are important GHGs and have drawn extra attention for their roles in global warming. Although there have been many works of soil emissions of N2O and CH4 from bioenergy crops in the field scale, GHG emissions in large area of marginal lands are rather sparse and how soil temperature and moisture affect the emission potential remains unknown. Therefore, we sought to estimate the regional GHG emission based on N2O and CH4 releases from the energy crop fields.

Results

Here we sampled the top soils from two Miscanthus fields and incubated them using a short-term laboratory microcosm approach under different conditions of typical soil temperatures and moistures. Based on the emission measurements of N2O and CH4, we developed a model to estimate annual regional GHG emission of Miscanthus production in the infertile Loess Plateau of China. The results showed that the N2O emission potential was 0.27 kg N ha?1 year?1 and clearly lower than that of croplands and grasslands. The CH4 uptake potential was 1.06 kg C ha?1 year?1 and was slightly higher than that of croplands. Integrated with our previous study on the emission of CO2, the net greenhouse effect of three major GHGs (N2O, CH4 and CO2) from Miscanthus fields was 4.08 t CO2eq ha?1 year?1 in the Loess Plateau, which was lower than that of croplands, grasslands and shrub lands.

Conclusions

Our study revealed that Miscanthus production may hold a great potential for GHG mitigation in the vast infertile land in the Loess Plateau of China and could contribute to the sustainable energy utilization and have positive environmental impact on the region.
  相似文献   

10.

Objectives

To evaluate the remediation efficiency of Mucor hiemalis by comparing media elimination, uptake, and biotransformation of microcystin-LR with exposure to pure toxin versus a crude bloom extract.

Results

With exposure to the extract, the elimination rate of microcystin-LR from the media, which was 0.28 ng MC-LR l?1 h?1, was significantly higher compared to that achieved with exposure to the pure toxin (0.16 ng MC-LR l?1 h?1) after 24 h. However, intracellular breakdown of microcystin-LR was significantly lower in the extract exposed pellets compared to the pure toxin treated fungal pellets over time. This coincided with reduced intracellular glutathione S-transferase activity with crude extract exposure which could be responsible for the detection of only the glutathione conjugate of microcystin-LR.

Conclusion

This paper signifies the importance of using laboratory exposure scenarios which resemble conditions in nature to fully understand and evaluate remediation efficiency. There is merit in using M. hiemalis for mycoremediation of cyanotoxins in surface waters.
  相似文献   

11.

Objectives

To investigate the contribution of direct electron transfer mechanisms to electricity production in microbial fuel cells by physically retaining Shewanella oneidensis cells close to or away from the anode electrode.

Results

A maximum power output of 114 ± 6 mWm?2 was obtained when cells were retained close to the anode using a dialysis membrane. This was 3.5 times more than when the cells were separated away from the anode. Without the membrane the maximum power output was 129 ± 6 mWm?2. The direct mechanisms of electron transfer contributed significantly to overall electron transfer from S. oneidensis to electrodes, a result that was corroborated by another experiment where S. oneidensis cells were entrapped in alginate gels.

Conclusion

S. oneidensis transfers electrons primarily by direct electron transfer as opposed to mediated electron transfer.
  相似文献   

12.

Objective

To produce a therapeutic protein (endostatin) by fusion with two fragments of the carboxyl-terminal peptide (CTP) of the human chorionic gonadotropin β-subunit in Pichia pastoris.

Results

Two CTP sequences were fused to the C-terminal of human endostatin, and the fusion protein (endo-CTP) was expressed by P. pastoris. Endo-CTP inhibited proliferation of endothelial cells with an IC50 of 7 μg ml?1, and 30 % of cells were annexin V-positive after treatment with 20 μg endo-CTP ml?1 for 48 h. Migration of endothelial cells was inhibited by endo-CTP in a concentration-dependent manner. The half-life of endo-CTP in Sprague–Dawley rats was much longer than that of its commercial counterpart (Endostar).

Conclusion

A long-acting endostatin can be produced using CTP technology.
  相似文献   

13.

Objectives

To degrade enzymatically bisphenol A (BPA) that causes serious environmental concerns and is difficult to be degraded by chemical or physical methods.

Results

BPA (150 mg l?1) was completely degraded by chloroperoxidase (CPO)/H2O2 within 7 min at room temperature, atmospheric pressure with the enzyme at 6 μg CPO ml?1. The degradation products were identified by HPLC–MS, which suggested involvement of multiple steps. Enzymatic treatment followed by existing bioremediation technologies (activated sludge) enhanced removal of COD from 9 to 54 %. Using an ecotoxicity evaluation with Chlorella pyrenoidosa, the degradation products had a lower toxicity than BPA.

Conclusion

BPA can be degraded rapidly and efficiently under mild conditions with chloroperoxidase at 6 μg ml?1. The degradation products had a lower toxicity than BPA.
  相似文献   

14.

Objectives

To improve the production and activity of an alkaline zinc metalloprotease from Salinivibrio proteolyticus in response to ZnSO4 (ionic and nanoparticle forms) and low intensity direct electric current (LIDC).

Results

A DC of 50 µA for 10 min increased enzyme production from 35 to 53 U ml?1 when applied to the stationary phase bacterial cells. Zn2+ improved enzyme production better than zinc nanoparticles (52 vs. 43.5 U ml?1). Zinc nanoparticles (0.5 mM) added to an enzyme reaction mixture containing casein (0.65 %) and 20 mM Tris/HCl buffer (pH 8) improved enzyme activity more than Zn2+ (42 vs. 36 U ml?1).

Conclusion

LIDC exposure (50 µA, 10 min) to the stationary phase bacterial cells increases metalloprotease production in Salinivibrio. A low concentration of zinc nanoparticles (0.5 mM) increases maximum enzyme activity.
  相似文献   

15.

Objectives

To screen and identify the probe markers specifically binding to human cervical cancer, a phage-displayed 12-mer peptide library was used for biopanning of SiHa cells.

Results

After four rounds of whole-cell subtraction biopanning, the phage recovery was 21-fold higher (from 3.9 × 10?5 to 8.3 × 10?4) than that of the first round, and specific phage clones were significantly enriched. 57 randomly selected phage clones were tested by ELISA, and 36 phage clones were identified as positive clones. After sequencing of positive clones, six different peptide sequences were obtained and CSP3 showed best affinity and specificity to SiHa cells via immunofluorescence assay.

Conclusions

Peptide, CSP3, bound to SiHa cells specifically and sensitively. It may be a potential candidate for molecular imaging detection and targeting therapy of cervical cancer.
  相似文献   

16.

Purpose

Variability in consumer behaviour can significantly influence the environmental performance of products and their associated impacts and this is typically not quantified in life cycle assessments. The goal of this paper is to demonstrate how consumer behaviour data can be used to understand and quantify the variability in the greenhouse gas emissions from domestic laundry washing across Europe.

Methods

Data from a pan-European consumer survey of product usage and washing habits was combined with internal company data on product format greenhouse gas (GHG) footprints and in-home measurement of energy consumption of laundry washing as well as literature data to determine the GHG footprint of laundry washing. The variability associated with four laundry detergent product formats and four wash temperature settings in washing machines were quantified on a per wash cycle basis across 23 European countries. The variability in GHG emissions associated with country electricity grid mixes was also taken into account. Monte Carlo methods were used to convert the variability in the input parameters into variability of the life cycle GHG emissions. Rank correlation analysis was used to quantify the importance of the different sources of variability.

Results and discussion

Both inter-country differences in background electricity mix as well as intra-country variation in consumer behaviour are important for determining the variability in life cycle GHG emissions of laundry detergents. The average GHG emissions related to the laundry washing process in the 23 European countries in 2014 was estimated to be 5?×?102 g CO2?eq/wash cycle, but varied by a factor of 6.5 between countries. Intra-country variability is between a factor of 3.5 and 5.0 (90% interval). For countries with a mainly fossil-based electricity system, the dominant source of variability in GHG emissions results from consumer choices in the use of washing machines. For countries with a relatively low-carbon electricity mix, variability in life cycle GHG emissions is mainly determined by laundry product-related parameters.

Conclusions

The combination of rich data sources enabled the quantification of the variability in the life cycle GHG emissions of laundry washing which is driven by a variety of consumer choices, manufacturer choices and infrastructural differences of countries. The improved understanding of the variability needs to be balanced against the cost and challenges of assessing of consumer habits.
  相似文献   

17.

Background and aims

Single superphosphate (SSP) is a major source of phosphorus (P) used in grazing systems to improve pasture production. The aim of this experiment was to determine the fate of fertiliser P in clover pastures under field conditions.

Methods

A procedure was developed to radiolabel SSP granules with a 33P radiotracer, which was then applied to the soil surface (equivalent to ~12 kg P ha?1) of a clover pasture. Recovery of fertiliser P was determined in clover shoots, fertiliser granules and soil fractions (surface layer: 0–4 cm and sub-surface layer: 4–8 cm).

Results

The P diffusion patterns of the 33P-labelled SSP granules were not significantly different to those of commercial SSP granules (P?>?0.05). Recovery of fertiliser P in clover shoots was 30–35 %. A considerable proportion of the fertiliser P (~28 %) was recovered in the surface soil layer and was largely inorganic P.

Conclusions

Recovery of fertiliser P by clover plants was up to 35 % in the year of application. Much of the fertiliser P in soil fractions was inorganic P, which highlights the importance of inorganic P forms and dynamics in soils under clover pasture on a single season timeframe at these sites.
  相似文献   

18.

Objectives

Power production characteristics and substrate concentration dependence of voltage have been investigated together with the determination of kinetic constants in two-chambered mediator-less microbial fuel cells (MFC) for acetate and peptone substrates.

Results

At 500 mg DOC l?1 (dissolved organic carbon), power densities normalized to the anode surface of 112 mW m?2 with acetate and 114 mW m?2 with peptone as electron donor were attained by applying cathodes with a Pt catalyst layer. Related anode surface specific substrate removal rate was 44 g DOC m?2 h?1 for acetate and 52 g DOC m?2 h?1 for peptone. Substrate concentration dependency of the voltage suggests Monod-like kinetics with extremely low, <1 mg DOC l?1, half saturation constants and with final DOC concentrations of 6–10 mg l?1.

Conclusions

Acetate and peptone are equivalent substrates for the exoelectrogenic bacteria both from the point of view of biodegradation kinetics and power production characteristics.
  相似文献   

19.

Objective

To re-engineer the active site of proteins for non-natural substrates using a position-based prediction method (PBPM).

Results

The approach has been applied to re-engineer the E. coli glutamate dehydrogenase to alter its substrate from glutamate to homoserine for a de novo 1,3-propanediol biosynthetic pathway. After identification of key residues that determine the substrate specificity, residue K92 was selected as a candidate site for mutation. Among the three mutations (K92V, K92C, and K92M) suggested by PBPM, the specific activity of the best mutant (K92 V) was increased from 171 ± 35 to 1328 ± 71 μU mg?1.

Conclusion

The PBPM approach has a high efficiency for re-engineering the substrate specificity of natural enzymes for new substrates.
  相似文献   

20.

Aims

Slow or failed tree regeneration after forest disturbance is increasingly observed in the central European Alps, potentially amplifying the carbon (C) loss from disturbance. We aimed at quantifying C dynamics of a poorly regenerating disturbance site with a special focus on the role of non-woody ground vegetation.

Methods

Soil CO2 efflux, fine root biomass, ground vegetation biomass, tree increment and litter input were assessed in (i) an undisturbed section of a ~ 110 years old Norway spruce stand, (ii) in a disturbed section which was clear-cut six years ago (no tree regeneration), and (iii) in a disturbed section which was clear-cut three years ago (no tree regeneration).

Results

Total soil CO2 efflux was similar across all stand sections (8.5 ± 0.2 to 8.9 ± 0.3 t C ha?1 yr.?1). The undisturbed forest served as atmospheric C sink (2.1 t C ha?1 yr.?1), whereas both clearings were C sources to the atmosphere. The source strength three years after disturbance (?5.5 t C ha?1 yr.?1) was almost twice as high as six years after disturbance (?2.9 t C ha?1 yr.?1), with declining heterotrophic soil respiration and the high productivity of dense graminoid ground vegetation mitigating C loss.

Conclusions

C loss after disturbance decreases with time and ground vegetation growth. Dense non-woody ground vegetation cover can hamper tree regeneration but simultaneously decrease the ecosystem C loss. The role of ground vegetation should be more explicitly taken into account in forest C budgets assessing disturbance effects.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号