首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

The study develops site-dependent characterization factors (CFs) for marine ecotoxicity of metals emitted to freshwater, taking their passage of the estuary into account. To serve life cycle assessment (LCA) studies where emission location is often unknown, site-generic marine CFs were developed for metal emissions to freshwater and coastal seawater, respectively. The new CFs were applied to calculate endpoint impact scores for the same amount of metal emission to each compartment, to compare the relative ecotoxicity damages in freshwater and marine ecosystems in LCA.

Methods

Site-dependent marine CFs for emission to freshwater were calculated for 64 comparatively independent seas (large marine ecosystems, LMEs). The site-dependent CF was calculated as the product of fate factor (FF), bioavailability factor (BF), and effect factor (EF). USEtox modified with site-dependent parameters was extended with an estuary removal process to calculate FF. BF and EF were taken from Dong et al. Environ Sci Technol 50:269–278 (2016). Site-generic marine CFs were derived from site-dependent marine CFs. Different averaging principles were tested, and the approach representing estuary discharge rate was identified as the best one. Endpoint marine and freshwater metals CFs were developed to calculate endpoint ecotoxicity impact scores.

Results and discussion

Marine ecotoxicity CFs are 1.5 orders of magnitude lower for emission to freshwater than for emission to seawater for Cr, Cu, and Pb, due to notable removal fractions both in freshwater and estuary. For the other metals, the difference is less than half an order of magnitude, mainly due to removal in freshwater. The site-dependent CFs generally vary within two orders of magnitude around the site-generic CF. Compared to USES-LCA 2.0 CFs (egalitarian perspective), the new site-generic marine CFs for emission to seawater are 1–4 orders of magnitude lower except for Pb. The new site-generic marine CFs for emission to freshwater lie within two orders of magnitude difference from USES-LCA 2.0 CFs. The comparative contribution share analysis shows a poor agreement of metal toxicity ranking between both methods.

Conclusions

Accounting for estuary removal particularly influences marine ecotoxicity CFs for emission to freshwater of metals that have a strong tendency to complex-bind to particles. It indicates the importance of including estuary in the characterization modelling when dealing with those metals. The resulting endpoint ecotoxicity impact scores are 1–3 orders of magnitude lower in seawater than in freshwater for most metals except Pb, illustrating the higher sensitivity of freshwater ecosystems to metal emissions, largely due to the higher species density there.
  相似文献   

2.

Purpose

To assess the diverse environmental impacts of land use, a standardization of quantifying land use elementary flows is needed in life cycle assessment (LCA). The purpose of this paper is to propose how to standardize the land use classification and how to regionalize land use elementary flows.

Materials and methods

In life cycle inventories, land occupation and transformation are elementary flows providing relevant information on the type and location of land use for land use impact assessment. To find a suitable land use classification system for LCA, existing global land cover classification systems and global approaches to define biogeographical regions are reviewed.

Results and discussion

A new multi-level classification of land use is presented. It consists of four levels of detail ranging from very general global land cover classes to more refined categories and very specific categories indicating land use intensities. Regionalization is built on five levels, first distinguishing between terrestrial, freshwater, and marine biomes and further specifying climatic regions, specific biomes, ecoregions and finally indicating the exact geo-referenced information of land use. Current land use inventories and impact assessment methods do not always match and hinder a comprehensive assessment of land use impact. A standardized definition of land use types and geographic location helps to overcome this gap and provides the opportunity to test the optimal resolution of land cover types and regionalization for each impact pathway.

Conclusions and recommendation

The presented approach provides the necessary flexibility to providers of inventories and developers of impact assessment methods. To simplify inventories and impact assessment methods of land use, we need to find archetypical situations across impact pathways, land use types and regions, and aggregate inventory entries and methods accordingly.
  相似文献   

3.

Purpose

Improving land use assessment in life cycle assessment (LCA) is a priority. Recently, soil organic carbon (SOC) depletion has been proposed as a transformation and occupation midpoint indicator to estimate impacts on biotic production potential (BPP). SOC depletion is recommended by the European Union in the International Reference Life Cycle Data System (ILCD) Handbook as a land use indicator. There is a consensus method to calculate SOC depletion in LCA, and ILCD proposes a set of characterization factors (CFs), but these lack geographical discrimination.

Methods

Our method of calculation for midpoint CFs follows Brandão and Milà i Canals (Int J Life Cycle Assess 18:1243–1252, 2013). We operationalize the method using SOC stocks from the LUCASOIL database of field measurements in Europe. We use potential natural vegetation (PNV) as the reference situation. CFs were calculated on a cell basis for 23 countries in Europe and grouped in three spatial scales (an administrative classification, NUTS II, and two biophysical classifications, ecoregion and climate region) according to soil type and land cover following a consensus map of cover classes. To evaluate the method’s results, CFs were applied in a case study.

Results and discussion

SOC stocks of European soils were obtained according to land use and soil type classes (excluding non-European Union countries) for the three spatial scales. A database of European transformation and occupation CFs is also presented and analyzed. The aggregation of CFs at biophysical scales (ecoregion and climate region) is similar, but NUTS II aggregation of CFs is problematic. The application of the CFs in the case study revealed significant differences compared to the outcome of using CFs collected from other land use models.

Conclusions

This paper is the first operationalization using field measurements of an updated version of the ILCD-recommended model for land use impacts in LCA. We obtained CFs for SOC depletion in Europe that can be nested within CFs suggested by ILCD since our results possess better spatial resolution but are only for European Union countries. The case study application highlighted the need for inventories to improve the spatial resolution of the life cycle processes to match the detail of LCIA models.
  相似文献   

4.

Purpose

The shortage of agricultural water from freshwater sources is a growing concern because of the relatively large amounts needed to sustain food production for an increasing population. In this context, an impact assessment methodology is indispensable for the identification and assessment of the potential consequences of freshwater consumption in relation to agricultural water scarcity. This paper reports on the consistent development of midpoint and endpoint characterisation factors (CFs) for assessing these impacts.

Methods

Midpoint characterisation factors focus specifically on shortages in food production resulting from agricultural water scarcity. These were calculated by incorporating country-specific compensation factors for physical availability of water resources and socio-economic capacity in relation to the irrigation water demand for agriculture. At the endpoint, to reflect the more complex impact pathways from food production losses to malnutrition damage from agricultural water scarcity, international food trade relationships and economic adaptation capacity were integrated in the modelling with measures of nutritional vulnerability for each country.

Results and discussion

The inter-country variances of CFs at the midpoint revealed by this study were larger than those derived using previously developed methods, which did not integrate compensation processes by food stocks. At the endpoint level, both national and trade-induced damage through international trade were quantified and visualised. Distribution of malnutrition damage was also determined by production and trade balances for commodity groups in water-consuming countries, as well as dependency on import ratios for importer countries and economic adaptation capacity in each country. By incorporating the complex relationships between these factors, estimated malnutrition damage due to freshwater consumption at the country scale showed good correlation with total reported nutritional deficiency damage.

Conclusions

The model allows the establishment of consistent CFs at the midpoint and endpoint for agricultural water scarcity resulting from freshwater consumption. The complex relationships between food production supply and nutrition damage can be described by considering the physical and socio-economic parameters used in this study. Developed CFs contribute to a better assessment of the potential impacts associated with freshwater consumption in global supply chains and to life cycle assessment and water footprint assessments.
  相似文献   

5.

Purpose

The increasing use of engineered nanomaterials (ENMs) in industrial applications and consumer products is leading to an inevitable release of these materials into the environment. This makes it necessary to assess the potential risks that these new materials pose to human health and the environment. Life cycle assessment (LCA) methodology has been recognized as a key tool for assessing the environmental performance of nanoproducts. Until now, the impacts of ENMs could not be included in LCA studies due to a lack of characterization factors (CFs). This paper provides a methodological framework for identifying human health CFs for ENMs.

Methods

The USEtox? model was used to identify CFs for assessing the potential carcinogenic and non-carcinogenic effects on human health caused by ENM emissions in both indoor (occupational settings) and outdoor environments. Nano-titanium dioxide (nano-TiO2) was selected for defining the CFs in this study, as it is one of the most commonly used ENMs. For the carcinogenic effect assessment, a conservative approach was adopted; indeed, a critical dose estimate for pulmonary inflammation was assumed.

Results and discussion

We propose CFs for nano-TiO2 from 5.5E?09 to 1.43E?02 cases/kgemitted for both indoor and outdoor environments and for carcinogenic and non-carcinogenic effects.

Conclusions

These human health CFs for nano-TiO2 are an important step toward the comprehensive application of LCA methodology in the field of nanomaterial technology.
  相似文献   

6.

Purpose

Land use life cycle impact assessment is calculated as a distance to target value—the target being a desirable situation defined as a reference situation in Milà i Canals et al.’s (Int J Life Cycle Assess 12(1):2–4, 2007) widely accepted framework. There are several reference situations. This work aims to demonstrate the effect of the choice of reference situation on land impact indicators.

Methods

Various reference situations are reported from the perspective of the object of assessment in land in life cycle assessment (LCA) studies and the modeling choices used in life cycle land impact indicators. They are analyzed and classified according to additional LCA modeling requirements: the type of LCA approach (attributional or consequential), cultural perspectives (egalitarian, hierarchist or individualist), and temporal preference. Sets of characterization factors (CF) by impact pathway, land cover, and region are calculated for different reference situations. These sets of CFs by reference situation are all compared with a baseline set. A case study on different crop types is used to calculate impact scores from different sets of CFs and compare them.

Results and discussion

Comparing the rankings of the CFs from two different sets present inversions from 5% to 35% worldwide. Impact scores of the case study present inversions of 10% worldwide. These inversions demonstrate that the choice of a reference situation may reverse the LCA conclusions for the land use impact category. Moreover, these reference situations must be consistent with the different modeling requirements of an LCA study (approach, cultural perspective, and time preference), as defined in the goal and scope.

Conclusions

A decision tree is proposed to guide the selection of a consistent and suitable choice of reference situation when setting other LCA modeling requirements.
  相似文献   

7.

Purpose

This study illustrates the applicability of a framework to conduct a spatially distributed inventory of suspended solids (SS) delivery to freshwater streams combined with a method to derive site-specific characterisation factors for endpoint damage on aquatic ecosystem diversity. A case study on Eucalyptus globulus stands located in Portugal was selected as an example of a land-based system. The main goal was to assess the relevance of SS delivery to freshwater streams, providing a more comprehensive assessment of the SS impact from land use systems on aquatic environments.

Methods

The WaTEM/SEDEM model, which was used to perform the SS inventory, is a raster-based empirical erosion and deposition model. This model allowed to predict the amount of SS from E. globulus stands under study and route this amount through the landscape towards the drainage network. Combining the spatially explicit SS inventory with the derived site-specific endpoint characterisation factors of SS delivered to two different river sections, the potential damages of SS on macroinvertebrates, algae and macrophytes were assessed. In addition, this damage was compared with the damage obtained with the commonly used ecosystem impact categories of the ReCiPe method.

Results and discussion

The relevance of the impact from SS delivery to freshwater streams is shown, providing a more comprehensive assessment of the SS impact from land use systems on aquatic environments. The SS impacts ranged from 15.5 to 1234.9 PDF m3.yr.ha?1.revolution?1 for macroinvertebrates, and from 5.2 to 411.9 PDF.m3.yr.ha?1.revolution?1 for algae and macrophytes.For some stands, SS potential impacts on macroinvertebrates have the same order of magnitude than freshwater eutrophication, freshwater ecotoxicity, terrestrial ecotoxicity and terrestrial acidification impacts. For algae and macrophytes, most of the stands present SS impacts of the same order of magnitude as terrestrial ecotoxicity, one order of magnitude higher than freshwater eutrophication and two orders of magnitude lower than freshwater ecotoxicity and terrestrial acidification.

Conclusions

The SS impact results allow concluding that the increase of SS in the water column can cause biodiversity damage and that the calculated impacts can have a similar or even higher contribution to the total environmental impact than the commonly used ecosystem impact categories of the ReCiPe method. A wide application of the framework and method developed at a local scale will enable the establishment of a regionalised SS inventory database and a deep characterisation of the potential environmental impacts of SS on local aquatic environments.
  相似文献   

8.

Purpose

Aluminum (Al) is an abundant, non-essential element with complex geochemistry and aquatic toxicity. Considering its complex environmental behavior is critical for providing a reasonable estimate of its potential freshwater aquatic ecotoxicity in the context of Life Cycle Impact Assessment (LCIA).

Methods

Al characterization factors (CFs) are calculated using the following: (1) USEtox? model version 2.1 for environmental fate, (2) MINEQL+ to estimate the distribution of Al between the solid phase precipitate and total dissolved Al, (3) WHAM 7 for Al speciation within the total dissolved phase, and (4) Biotic Ligand Model (BLM) and Free Ion Activity Model (FIAM) for ecotoxicity estimation for seven freshwater archetypes and default landscape properties for the European continent. The sensitivity of the CFs to aquatic chemistry parameters is calculated. New CFs are compared with Dong et al. (Chemosphere 112:26–33, 2014) and default CF calculated by USEtox 2.1.

Results and discussion

Al CFs vary over 5 orders of magnitude between the seven archetypes, with an arithmetic average CFave of 0.04 eq 1,4-DCB (recommended for use), geometric mean CFgeo of 0.0014 eq 1,4-DCB, and weighted average CFwt of 0.026 eq 1,4-DCB. These values are lower (less toxic) than those for Cu, Ni, Zn, and Pb (with one exception). The effect factor (EF) contributed most to this variability followed by the bioavailability factor (BF), varying over 8 and 4 orders of magnitude, respectively. These revised CFs are 2–6 orders of magnitude lower than those presented by Dong et al. (Chemosphere 112:26–33, 2014) mainly because of consideration of Al precipitation.

Conclusions

Freshwater archetype-specific Al CFs for freshwater ecotoxicity that address the effect of Al speciation on bioavailability (BF) and ecotoxicity (EF) have been calculated, and a CF of 0.04 eq 1,4-DCB is recommended for use in generic LCA. For site-specific LCA, the choice of water chemistry and, in particular, pH, and consideration of metal precipitation could significantly influence results.

Practical implications

Incorporating estimates of metal speciation and its effect on aquatic toxicity is essential when conducting LCIA. Along with metal speciation estimates, the values derived from the definition of water chemistry parameters must also be included into LCIA. For site-generic assessments, we recommend using the arithmetic average of metal CFs. We also recommend using FIAM as a suitable alternative to BLM to estimate EF if the latter is not available. Consideration of metal speciation is essential for providing more realistic estimates of Al freshwater ecotoxicity in the context of LCIA.
  相似文献   

9.
10.

Purpose

Consumption of high quantities of pesticides in viticulture emphasizes the importance of including pesticide emissions and impacts hereof in viticulture LCAs. This paper addresses the lack of inventory models and characterization factors suited for the quantification of emissions and ecotoxicological impacts of pesticides applied to viticulture. The paper presents (i) a tailored version of PestLCI 2.0, (ii) corresponding characterization factors for freshwater ecotoxicity characterization and (iii) result comparison with other inventory approaches. The purpose of this paper is hence to present a viticulture customized version of PestLCI 2.0 and illustrate the application of this customized version on a viticulture case study.

Methods

The customization of the PestLCI 2.0 model for viticulture includes (i) addition of 29 pesticide active ingredients commonly used in vineyards, (ii) addition of 9 viticulture type specific spraying equipment and accounting the number of rows treated in one pass, and (iii) accounting for mixed canopy (vine/cover crop) pesticide interception. Applying USEtox?, the PestLCI 2.0 customization is further supported by the calculation of freshwater ecotoxicity characterization factors for active ingredients relevant for viticulture. Case studies on three different vineyard technical management routes illustrate the application of the inventory model. The inventory and freshwater ecotoxicity results are compared to two existing simplified emission modelling approaches.

Results and discussion

The assessment results show considerably different emission fractions, quantities emitted and freshwater ecotoxicity impacts between the different active ingredient applications. Three out of 21 active ingredients dominate the overall freshwater ecotoxicity: Aclonifen, Fluopicolide and Cymoxanil. The comparison with two simplified emission modelling approaches, considering field soil and air as part of the ecosphere, shows that PestLCI 2.0 yields considerable lower emissions and, consequently, lower freshwater ecotoxicity. The sensitivity analyses reveal the importance of soil and climate characteristics, canopies (vine and cover crop) development and sprayer type on the emission results. These parameters should therefore be obtained with site-specific data, while literature or generic data that are acceptable inputs for parameters whose uncertainties have less influence on the result.

Conclusions

Important specificities of viticulture have been added to the state-of-the-art inventory model PestLCI 2.0. They cover vertically trained vineyards, the most common vineyard training form; they are relevant for other perennial or bush crops provided equipment, shape of the canopy and pesticide active ingredients stay in the range of available options. A similar and compatible model is needed for inorganic pesticide active ingredients emission quantification, especially for organic viticulture impacts accounting.
  相似文献   

11.

Introduction

Natural products from culture collections have enormous impact in advancing discovery programs for metabolites of biotechnological importance. These discovery efforts rely on the metabolomic characterization of strain collections.

Objective

Many emerging approaches compare metabolomic profiles of such collections, but few enable the analysis and prioritization of thousands of samples from diverse organisms while delivering chemistry specific read outs.

Method

In this work we utilize untargeted LC–MS/MS based metabolomics together with molecular networking to inventory the chemistries associated with 1000 marine microorganisms.

Result

This approach annotated 76 molecular families (a spectral match rate of 28 %), including clinically and biotechnologically important molecules such as valinomycin, actinomycin D, and desferrioxamine E. Targeting a molecular family produced primarily by one microorganism led to the isolation and structure elucidation of two new molecules designated maridric acids A and B.

Conclusion

Molecular networking guided exploration of large culture collections allows for rapid dereplication of know molecules and can highlight producers of uniques metabolites. These methods, together with large culture collections and growing databases, allow for data driven strain prioritization with a focus on novel chemistries.
  相似文献   

12.

Purpose

Life cycle assessments (LCAs) that attempt to provide advice on treatment options for phosphorus (P) containing organic waste products encounter problems related to the quantification of mineral P fertilizer substitution, P loss and crop P uptake after land application. The purpose of this study was to develop a relatively easy to use life cycle inventory model, known as PLCI, that could be used to estimate these values.

Methods

A life cycle inventory model for P was developed, which estimates the effect of an application of organic waste followed by ordinary fertilizer management in the modeling period. This was compared with a simulation without the initial waste application. The difference in mineral P fertilizer application (substitution), P loss and crop P uptake was then calculated and expressed as a proportion of the amount of waste applied. As an example, the effect of an initial application of mineral fertilizer, sewage sludge and ash on two farm types was simulated. These results were applied in an LCA case study of different sewage sludge treatment options.

Results and discussion

Farm type influenced the P fertilizer substitution, loss and crop uptake factors. The application on an arable farm showed a substitution of 28 to 31%, relatively low P loss and a large spread in crop P uptake for the different P sources, compared with the pig farm. Application on a pig farm showed no mineral P substitution. For substitution, mineral fertilizer outperformed waste product fertilizer with a short modeling period, due to higher immediate P availability, which was not the case with a long period. The LCA case study showed that the P substitution factor had an influence on the environmental impact categories climate change and depletion of reserve-based abiotic resources while the P loss factor influenced freshwater eutrophication. Application of the P loss and substitution factors generated from the PLCI model resulted in higher environmental burdens and lower savings than using conventional factors.

Conclusions

The soil P status mainly affected P substitution and loss, with the fertilizer type only having a small influence when soils had a low P status. The PLCI model can facilitate more coherent and rigorous estimates of P substitution and loss to be used in LCA studies involving application of waste products on agricultural land. This is important since P substitution and loss can have an important influence on impact categories, such as freshwater eutrophication and resource depletion.
  相似文献   

13.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

14.

Purpose

Regionalization in life cycle assessment (LCA) has focused on spatially differentiated environmental variables for regional impact assessment models. Relatively less attention has been paid to spatial disparities in intermediate flows for life cycle inventory (LCI).

Methods

First, we compiled state-specific LCIs for four major crops in the USA and evaluated their geographic variability in the characterized results due to the differences in intermediate inputs. Second, we evaluated the consequence of choosing average or region-specific LCIs in understanding the life cycle environmental implications of land use change from cotton to corn or soybean. Finally, we analyzed the implications of our findings in characterizing the uncertainties associated with geographic variability under the conventional pedigree approach.

Results and discussion

Our results show that spatial disparities in LCI alone lead to two to fourfold differences in characterized results for most impact categories. The differences, however, increase to over an order of magnitude for freshwater ecotoxicity and human health non-cancer. Among the crops analyzed, winter wheat shows higher variability partly due to a larger difference in yield. As a result, the use of national average data derived from top corn and soybean producing states significantly underestimates the characterized impacts of corn and soybean in the states where land conversion from cotton to corn or soybean actually took place. The results also show that the conventional pedigree approach to uncertainty characterization in LCA substantially underestimates uncertainties arising from geographic variability of agriculture. Compared to the highest geometric standard deviation (GSD) value of 1.11 under the pedigree approach, the GSDs that we derived are as high as 7.1, with the median around 1.9.

Conclusions

The results highlight the importance of building regional life cycle inventory for understanding the environmental impacts of crops at the regional level. The high geographic variability of crops also indicates the need for sector-specific approaches to uncertainty characterization. Our results also suggest that the uncertainty values in the existing LCI databases might have been signficantly underestimated especially for those products with high geographic variability, demanding a cautious interpretation of the results derived from them. 
  相似文献   

15.

Introduction

New platforms are emerging that enable more data providers to publish life cycle inventory data.

Background

Providing datasets that are not complete LCA models results in fragments that are difficult for practitioners to integrate and use for LCA modeling. Additionally, when proxies are used to provide a technosphere input to a process that was not originally intended by the process authors, in most LCA software, this requires modifying the original process.

Results

The use of a bridge process, which is a process created to link two existing processes, is proposed as a solution.

Discussion

Benefits to bridge processes include increasing model transparency, facilitating dataset sharing and integration without compromising original dataset integrity and independence, providing a structure with which to make the data quality associated with process linkages explicit, and increasing model flexibility in the case that multiple bridges are provided. A drawback is that they add additional processes to existing LCA models which will increase their size.

Conclusions

Bridge processes can be an enabler in allowing users to integrate new datasets without modifying them to link to background databases or other processes they have available. They may not be the ideal long-term solution but provide a solution that works within the existing LCA data model.
  相似文献   

16.

Introduction

Allograft rejection is still an important complication after kidney transplantation. Currently, monitoring of these patients mostly relies on the measurement of serum creatinine and clinical evaluation. The gold standard for diagnosing allograft rejection, i.e. performing a renal biopsy is invasive and expensive. So far no adequate biomarkers are available for routine use.

Objectives

We aimed to develop a urine metabolite constellation that is characteristic for acute renal allograft rejection.

Methods

NMR-Spectroscopy was applied to a training cohort of transplant recipients with and without acute rejection.

Results

We obtained a metabolite constellation of four metabolites that shows promising performance to detect renal allograft rejection in the cohorts used (AUC of 0.72 and 0.74, respectively).

Conclusion

A metabolite constellation was defined with the potential for further development of an in-vitro diagnostic test that can support physicians in their clinical assessment of a kidney transplant patient.
  相似文献   

17.

Purpose

This discussion article aims to highlight two problematic aspects in the International Reference Life Cycle Data System (ILCD) Handbook: its guidance to the choice between attributional and consequential modeling and to the choice between average and marginal data as input to the life cycle inventory (LCI) analysis.

Methods

We analyze the ILCD guidance by comparing different statements in the handbook with each other and with previous research in this area.

Results and discussion

We find that the ILCD handbook is internally inconsistent when it comes to recommendations on how to choose between attributional and consequential modeling. We also find that the handbook is inconsistent with much of previous research in this matter, and also in the recommendations on how to choose between average and marginal data in the LCI.

Conclusions

Because of the inconsistencies in the ILCD handbook, we recommend that the handbook be revised.
  相似文献   

18.

Introduction

Concerning NMR-based metabolomics, 1D spectra processing often requires an expert eye for disentangling the intertwined peaks.

Objectives

The objective of NMRProcFlow is to assist the expert in this task in the best way without requirement of programming skills.

Methods

NMRProcFlow was developed to be a graphical and interactive 1D NMR (1H & 13C) spectra processing tool.

Results

NMRProcFlow (http://nmrprocflow.org), dedicated to metabolic fingerprinting and targeted metabolomics, covers all spectra processing steps including baseline correction, chemical shift calibration and alignment.

Conclusion

Biologists and NMR spectroscopists can easily interact and develop synergies by visualizing the NMR spectra along with their corresponding experimental-factor levels, thus setting a bridge between experimental design and subsequent statistical analyses.
  相似文献   

19.

Background and aims

Bacterial Non-Specific Acid Phosphatase (NSAP) enzymes are capable of dephosphorylating diverse organic phosphoesters but are rarely studied: their distribution in natural and managed environments is poorly understood. The aim of this study was to generate new insight into the environmental distribution of NSAPs and establish their potential global relevance to cycling of organic phosphorus.

Methods

We employed bioinformatic tools to determine NSAP diversity and subcellular localization in microbial genomes; used the corresponding NSAP gene sequences to census metagenomes from diverse ecosystems; studied the effect of long-term land management upon NSAP diversity and abundance.

Results

Periplasmic class B NSAPs are poorly represented in marine and terrestrial environments, reflecting their association with enteric and pathogenic bacteria. Periplasmic class A and outer membrane-associated class C NSAPs are cosmopolitan. NSAPs are more abundant in marine than terrestrial ecosystems and class C more abundant than class A genes, except in an acidic peat where class A genes dominate. A clear effect of land management upon gene abundance was identified.

Conclusions

NSAP genes are cosmopolitan. Class C genes are more widely distributed: their association with the outer-membrane of cells gives them a clear role in the cycling of organic phosphorus, particularly in soils.
  相似文献   

20.

Purpose

The purposes of this commentary are to further an on-going debate concerning the appropriate form of land use baseline for attributional life cycle assessment (LCA) and to respond to a number of arguments advanced by Soimakallio (Int J Life Cycle Assess 20:1364–1375, 2016). The commentary also seeks to clarify the conceptual nature of attributional LCA.

Methods

The overarching approach for resolving the question of the appropriate form of land use baseline for attributional LCA is to clarify what attributional LCA is seeking to represent, i.e. methodological questions can only be resolved if it is clear what the method is seeking to do. An illustrative example is used to explore the different results produced by ‘natural regeneration’ and ‘natural’ baselines.

Results and discussion

It is proposed that attributional LCA should be conceptualised as an inventory of anthropogenic impacts, conceptually akin to other forms of environmental inventory, such as national GHG inventories. The use of natural regeneration baselines is not consistent with this conceptualisation of attributional LCA, and such baselines necessitate further ad hoc or arbitrary adjustments, such as arbitrary temporal windows or the inconsistent treatment of natural emissions.

Conclusions

The use of natural regeneration baselines may be motivated by the impulse to make attributional LCA both an inventory-type method and an assessment of system-wide change. Pulling attributional LCA in two different directions at once results in a conceptually and methodologically incoherent method. The solution is to recognise attributional LCA as an inventory-type method, which therefore has distinct but complementary uses to consequential LCA, which is an assessment of system-wide change.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号