首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The CYP2C9 enzyme metabolizes a wide range of relevant drugs, among which are oral anticoagulants. VKORC1 is the pharmacodynamic target of the oral anticoagulants. The genetic polymorphisms CYP2C9*2, CYP2C9*3 and VKORC1 ‐1639 G>A are the major determinants of the inter‐individual variability in the dosage requirements of oral anticoagulants. This study provides a first evaluation of these 3 polymorphisms in a Romanian population. A total of 332 Romanian individuals were genotyped for the CYP2C9*2, CYP2C9*3 and VKORC1 ‐1639 G>A polymorphisms using the PCR‐RFLP technique. Sixty‐two individuals (18.7%) were heterozygous for CYP2C9*2, whereas 47 individuals (14.1%) were heterozygous for CYP2C9*3. Fourteen individuals (4.2%) had a CYP2C9*2 homozygous, CYP2C9*3 homozygous or CYP2C9*2/CYP2C9*3 compound heterozygous genotype. These individuals are predicted to have the lowest CYP2C9 enzymatic activity. The allele frequencies of the CYP2C9*2 and CYP2C9*3 polymorphisms were 11.3% and 9.3% respectively. For the VKORC1 ‐1639 G>A polymorphism, there were 170 heterozygotes (51.2%) and 55 (16.6%) homozygotes for the A allele. The frequency of the A allele was 42.2%. Overall, the distribution of the CYP2C9*2, CYP2C9*3 and VKORC1 ‐1639 G>A polymorphisms observed in our cohort is in accordance with other Caucasian populations. A large number of Romanians are expected to harbour at least one CYP2C9 variant allele and/or one VKORC1 ‐1639 G>A allele. This frequency has major implications in the pharmacogenomics of oral anticoagulants in Romanians.  相似文献   

2.
An intronic single nucleotide polymorphism (SNP) in the CYP3A5 gene (CYP3A5∗3; SNP rs776746) affects RNA splicing and enzymatic activity. The CYP3A5∗3 frequency increased with distance from the equator and natural selection has been proposed to explain the worldwide distribution of this allele. CYP3A activity has been related with the risk for hypertension in pregnancy, a major cause of morbidity and mortality among women, and CYP3A5∗3 could reduce the risk for this disease in populations from regions with high sodium and water availability. The CYP3A5 genotype was related with blood pressure in the general population, but the effect on the risk for hypertension in pregnancy has not been evaluated.We compared the allele and genotype frequencies of three functional SNPs in the CYP3A5 (rs776746), CYP3A4 (rs2740574), and CYP21A2 (rs6471) genes between pregnant women who developed hypertension (n = 250) or who remained normotensive (control group, n = 250). In addition, we sequenced the full CYP3A5 coding sequence in 40 women from the two groups to determine whether some gene variants could explain the risk for hypertensive pregnancies in our population.Allele and genotype frequencies did not differ between hypertensive and normotensive women for the three CYP variants. We did not find CYP3A5 nucleotide changes that could explain a higher risk for hypertension in pregnancy. Our data suggests that the variation in CYP3A5, CYP3A4, and CYP21A2 did not contribute to the risk for hypertension in pregnancy in our population.  相似文献   

3.
Warfarin is an anticoagulant that is difficult to administer because of the wide variation in dose requirements to achieve a therapeutic effect. CYP2C9, VKROC1, and CYP4F2 play important roles in warfarin metabolism, and their genetic polymorphisms are related to the variability in dose determination. In this study we describe a new multiplex pyrosequencing method to identify CYP2C9*3 (rs1057910), VKORC1*2 (rs9923231), and CYP4F2*3 (rs2108661) simultaneously. A multiplex pyrosequencing method to simultaneously detect CYP2C9*3, VKORC1*2, and CYP4F2*3 alleles was designed. We assessed the allele frequencies of the polymorphisms in 250 Korean subjects using the multiplex pyrosequencing method. The results showed 100 % concordance between single and multiplex pyrosequencing methods, and the polymorphisms identified by pyrosequencing were also validated with the direct sequencing method. The allele frequencies of these polymorphisms in this population were as follows: 0.040 for CYP2C9*3, 0.918 for VKORC1*2, and 0.416 for CYP4F2*3. Although the allele frequencies of the CYP2C9*3 and VKROC1*2 were comparable to those in Japanese and Chinese populations, their frequencies in this Korean population differed from those in other ethnic groups; the CYP4F2*3 frequency was the highest among other ethnic populations including Chinese and Japanese populations. The pyrosequencing methods developed were rapid and reliable for detecting CYP2C9*3, VKORC1*2, and CYP4F2*3. Large ethnic differences in the frequency of these genetic polymorphisms were noted among ethnic groups. CYP4F2*3 exhibited its highest allele frequency among other ethnic populations compared to that in a Korean population.  相似文献   

4.
Linkage between the CYP2C8 and CYP2C9 genetic polymorphisms   总被引:9,自引:0,他引:9  
Cytochrome P450 (CYP) 2C8 and 2C9 are polymorphic enzymes. The CYP2C8*3 and CYP2C9*2 are the major variant alleles in Caucasian populations. The enzymes encoded by these variant alleles have impaired function for the metabolism of several drug substrates. In the present study 1468 subjects that were used as population-based controls in the Stockholm Heart Epidemiology Program (SHEEP) were genotyped by allelic discrimination using a 5'-nuclease assay for CYP2C8*1, 2C8*3, 2C9*1, 2C9*2, and 2C9*3 variant alleles in which the frequencies appeared to be 0.91, 0.095, 0.83, 0.11, and 0.066, respectively. Approximately, 96% of the subjects with CYP2C8*3 allele also carried a CYP2C9*2 and 85% of the subjects that had CYP2C9*2 variant also carried a CYP2C8*3. The number of subjects carrying both of the CYP2C8*1*3 and CYP2C9*1*2 was 4.5-fold higher than expected. This strong association may be of importance especially for the metabolism of common substrates of CYP2C8 and CYP2C9 like arachidonic acid that produces physiologically active metabolites.  相似文献   

5.
Warfarin is the cardinal anticoagulant drug prescribed around the world. Due to stochastic bleeding in patients, it is essential to adjust the dose for every individual. The aim of the present study was to evaluate the frequency of CYP2C9 and VKORC1 gene polymorphisms and their association with warfarin maintenance dose in a sample of cardiovascular patients in Birjand, South-Khorasan province of Iran. Patients with a history of cardiovascular disorders who take warfarin daily were selected. CYP2C9 and VKORC1 gene polymorphisms were detected by polymerase chain reaction-restriction fragment length polymorphism in all participants. A total of 114 patients (mean age: 52.7 ± 14.9 years, M/F ratio: 0.76) participated in this study. Regarding CYP2C9 gene polymorphisms, the most frequent genotype was 1*/1* (80.4% in females and 62.5% in males). The frequency of 1*/2* and 2*/2* variants was 13% and 6.5% in females and 25% and 12.5% in males, respectively. The frequency of VKORC1 gene (1639 G > A), was 31.5%, 39.5%, and 29% for GG, GA, and AA in males, respectively. Besides, the mentioned genotype frequencies for females were 50%, 40.5%, and 9.5%, respectively. Moreover, there was a statistically significant correlation between VKORC1 gene −1639 G > A variant and warfarin maintenance dose (P < 0.001) but not for CYP2C9 variants. The results of the current study confirmed that the mutant variants of CYP2C9 are not frequent and do not have any impact on warfarin dose. In the case of VKORC1, the mutant allele (A) showed a positive correlation with warfarin dose adjustment.  相似文献   

6.

Background

In recent years reduced bone mineral density (BMD) and osteoporosis have become major public health problems. Single nucleotide polymorphisms (SNPs) in the cytochrome P450 2C9 (CYP2C9) gene influence the response to oral anticoagulant drugs, which are positively associated with the risk to develop osteoporosis. The aim of the present investigation was to clarify a potential role of CYP2C9 sequence variations and susceptibility to develop osteoporosis.

Subjects and methods

Ninety two consecutive angiologic outpatients, mean age: 60.3 ± 14.4, without secondary causes of bone loss were genotyped and classified as patients with normal BMD, osteopenia and osteoporosis according to WHO criteria by dual-energy X-ray absorptiometry at the lumbar spine and/or the femoral neck. Potential association between the CYP2C9 genotype and BMD was tested.

Results

59% of the patients (n = 54) presented with reduced BMD and were compared to 38 age-matched persons with normal BMD. The genotype distribution showed 15% heterozygous for CYP2C9*2 p.Arg144Cys, 14% for CYP2C9*3 p.IIe359Leu, 2% for both polymorphisms, and 69% had wildtype genotypes. Patients with CYP2C9 mutations had significantly lower BMD values at the femoral neck and displayed a four-fold higher adjusted risk to suffer from reduced BMD than individuals with wildtype genotypes (p = 0.02).

Discussion

Oral anticoagulant treatment is common in angiologic outpatients. The gene variants CYP2C9*2 and CYP2C9*3 have been shown to require lower maintenance doses of oral anticoagulant drugs. An association between oral anticoagulant drugs and the susceptibility to develop osteoporosis in relation to sequence variations in the CYP2C9 gene is suggested to be mediated via the glucocorticoid synthesis pathway.

Conclusion

The CYP2C9*2/CYP2C9*3 variants were significantly associated with femoral BMD in a selected elderly Austrian population. These variants could contribute to the complex risk to develop osteoporosis.  相似文献   

7.
Zhou YH  Zheng QC  Li ZS  Zhang Y  Sun M  Sun CC  Si D  Cai L  Guo Y  Zhou H 《Biochimie》2006,88(10):1457-1465
Cytochrome P450 2C9 (CYP2C9) plays a key role in the metabolism of clinical drugs. CYP2C9 is a genetically polymorphic enzyme and some of its allelic variants have less activity compared to the wild-type form. Drugs with a narrow therapeutic index may cause serious toxicity to the individuals who carry such allele. CYP2C9*13, firstly identified by some of the present authors in a Chinese poor metabolizer of lornoxicam, is characterized by mutation encoding Leu90Pro substitution. Kinetic experiments show that CYP2C9*13 has less catalytic activity in elimination of diclofenac and lornoxicam in vitro. In order to explore the structure-activity relationship of CYP2C9*13, the three-dimensional structure models of the substrate-free CYP2C9*1 and its variant CYP2C9*13 are constructed on the basis of the X-ray crystal structure of human CYP2C9*1 (PDB code 1R9O) by molecular dynamics simulations. The structure change caused by Leu90Pro replacement is revealed and used to explain the dramatic decrease of the enzymatic activity in clearance of the two CYP2C9 substrates: diclofenac and lornoxicam. The trans configuration of the bond between Pro90 and Asp89 in CYP2C9*13 is firstly identified. The backbone of residues 106-108 in CYP2C9*13 turns over and their side chains block the entrance for substrates accessing so that the entrance of *13 shrinks greatly than that in the wild-type, which is believed to be the dominant mechanism of the catalytic activity reduction. Consequent docking study which is consistent with the results of the kinetic experiments by Guo et al. identifies the most important residues for enzyme-substrate complexes.  相似文献   

8.
Differences in metabolism of drugs can lead to severe toxicity or therapeutic failure. In addition to cytochrome P450 2D6, which plays a critical role in drug metabolism, ABCB1 encoded P‐glycoprotein (PGP) is also an important determinant in drug bioavailability. The genes encoding these molecules are highly variable among populations and, given their clinical importance in drug therapy, determining CYP2D6 and ABCB1 allele frequencies in specific populations is very important for useful application in clinical settings. In this study the frequency of the pharmacologically relevant CYP2D6*3, *4, *5, *6 allelic variants and gene duplication, and ABCB1 C1236T and C3435T gene polymorphisms and their haplotypes was determined in a population sample of 100 Portuguese healthy subjects. CYP2D6 allele frequencies were 1.4% (*3), 13.3% (*4), 2.8% (*5), 1.8% (*6) and 6.1% (gene duplication), with 5% of the individuals classified as PM and 8.4% as UM. The frequencies obtained for the non‐functional alleles and for the CYP2D6 gene duplication are in agreement with other South European populations, and reinforce the previously suggested south/north gradient of CYP2D6 duplications. Allelic frequencies for the ABCB1 polymorphisms were 52% (3435C) and 54% (1236C) and the most common haplotype (1236C‐3435C) occurred with a frequency of 45.5%. Although allele and haplotype frequency data for ABCB1 in Southern Europe is limited, some discrepancies were found with other European populations, with possible therapeutic implications for PGP substrate drugs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Several polymorphisms in the CYP1A1 locus have been identified and their genotypes appear to exhibit population frequencies that depend on ethnicity. We studied two CYP1A1 polymorphic sites (position 4889 and 6235) in a group of 212 unrelated healthy individuals belonging to three different Mexican populations (106 Mexican Mestizos, 52 Teenek and 54 Mayos). Comparison among Mexican populations showed increased frequency of the *Ile allele (A on position 4889) in Mexican Mestizos when compared to Amerindians (p < 0.05). The analysis of position 6235 showed increased frequencies of *m2 (C in this position) allele in Teenek when compared to Mestizos and Mayos (p < 0.05) and of *m2/*m2 genotype when compared to Mestizos (p < 0.05). Amerindian populations (from Mexico and South America) presented the lowest frequencies of *Ile (position 4889) and *m1 (position 6235) alleles, however these frequencies vary according to the ethnic group studied. Mexican Amerindian groups together with other South Amerindian populations showed the highest frequencies for *Val at position 4889 and the *m2 allele at position 6235. The present study corroborates the high frequencies of*Val and *m2 alleles in the Amerindian populations and detects some differences between Mexican populations that correlate with linguistic differences. Our data could be helpful in understanding the distribution of these polymorphisms and in clarifying their roles as genetic and evolution markers in Amerindian populations.  相似文献   

10.
Polymorphisms of CYP450 metabolizer enzymes and transport proteins play crucial roles in the inter‐individual variability of drug efficiency. The aim of our study was to predict the frequency of functional variants of CYP2D6, CYP2C19 and ABCB1 genes in the Hungarian population. One hundred twelve unrelated healthy subjects donated DNA sample in the study. ABCB1 C3435T and G2677T/A single‐nucleotide polymorphisms (SNPs) were determined by LightCycler polymerase chain reaction. Because only limited amount of data is available on the rare allelic variants of CYP2D6 in the European populations, our study applied an expanded set of CYP2D6 and CYP2C19 alleles by using AmpliChip test. Our results show that the CYP2D6 phenotypes were 1.9% ultra‐rapid metabolizer, 6.5% intermediate metabolizer (IM), 8.3% poor metabolizer (PM) and 83.3% extensive metabolizer (EM), and the CYP2C19 phenotypes were 1.8% PM, 31.2% IM and 67% EM. The prevalence of the commonly observed CYP2D6 and CYP2C19 alleles in our study corresponds with that of other European populations. Nevertheless, our study confirms that extending the CYP2D6 allele set with loss‐of‐function variants such as CYP2D6*7, *9, *41 is worth considering. Frequency of the wild type ABCB1 3435C was 42.8% whereas the prevelance of 2677 G was 50.4%. Although frequency data of G2677T/A SNP in the European area are limited, some discrepancies with other studies were found. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
This study was designed to investigate the potential differences between Spaniards and Ecuadorian Mestizo people regarding CYP2C8, CYP2C9, and CYP2C19 genetic polymorphisms. DNA from 282 Spaniard and 297 Ecuadorian subjects were analyzed by either a previously reported pyrosequencing method (CY2C8*3, CYP2C9*2, CYP2C9*3, CYP2C19*2 and CYP2C19*3) or a nested PCR technique (CYP2C19*17). Whereas CYP2C19*17 allele distribution was higher in Ecuadorians than in Spaniards (P < 0.001) and the frequency of CYP2C19*3 was similar in these two populations (P > 0.05), the other allelic variants were detected at significantly lower frequencies in Ecuadorians than in Spaniards (P < 0.05). According to the diplotype distributions, the prevalence of the presumed CYP2C9 and CYP2C8 extensive metabolizers was higher in Ecuadorians than in Spaniards (P < 0.05). Individuals genotyped CYP2C19*1/*17 and *17/*17 who were considered as ultrarapid metabolizers were overrepresented in Ecuadorians in relation to Spaniards (P < 0.001). By contrast, among Ecuadorians no poor metabolizers (PMs) of either CYP2C8 or CYP2C9 were found and only two individuals were CYP2C19 PMs. These data are compatible with a higher CYP2C8, CYP2C9, and CYP2C19 activity in Mestizo Ecuadorians as opposed to Spaniards, which could imply differences in dosage requirements for drugs metabolized by these cytochromes and should also be considered in allele-disease association studies.  相似文献   

12.
The cytochrome P450 2D6 enzyme (CYP2D6) metabolizes about 25% of prescribed drugs in the endoplasmic reticulum, and genetic polymorphisms in CYP2D6 can greatly affect its activity and lead to differences among individuals in drug efficacy and adverse drug reactions. To investigate genetic polymorphisms in CYP2D6 among Tibetan Chinese, we directly sequenced the whole gene in 96 unrelated, healthy Tibetans from The Tibet Autonomous Region of China and screened for genetic variants in the promoter, exons, introns, and 3′UTR. We detected fifty-one genetic polymorphisms in CYP2D6, and 16 of them are novel. The allele frequencies of CYP2D6*1, *2, *5, *10, *41, and *49 were 0.25, 0.43, 0.02, 0.29, 0.02, and 0.01, respectively. The frequency of CYP2D6*10, a putative poor-metabolizer allele, was lower in our sample population compared with that in the Han Chinese population (p < 0.001). In addition, haplotype analysis allowed 15 CYP2D6 haplotypes to be classified into three groups. In conclusion, our results provide basic information about CPY2D6 alleles in Tibetans and suggest that the enzymatic activities of CYP2D6 may differ among the diverse ethnic populations of China. Our results provide a basis for safer drug administration and better therapeutic treatment among Tibetans.  相似文献   

13.
The arachidonic acid metabolizing CYP enzymes with prominent roles in vascular regulation are epoxygenases of the two gene family which generate epoxyeicosatrienoic acids. Carriers of CYP2C9 mutant alleles exhibit a diminished CYP2C9 metabolic capacity leading to decreased endothelium-derived hyperpolarizing factors (EDHF) synthesis and an increased risk for atherosclerosis. We investigated whether the polymorphisms of CYP2C9/19 are related with atherosclerosis. We examined 108 patients having angioraphically > or =70 coronary artery narrowing and 90 healthy controls. CYPC2C9/19*2 and CYP2C9/19*3 alleles were investigated in both patients and controls by a real time PCR instrument. There was no significant difference in the distribution of the CYP2C9*2/*3 alleles between cases and the controls. We found that smoker patients having CYP2C9*2 heterozygote genotype have 3.7-fold risk of developing atherosclerosis. CYP2C19*3 heterozygote alleles are more frequent in patients than in controls (10.2%, 5.6% respectively) and it is related with a three-fold risk of atherosclerosis (odds ratio (OR) = 3.75, confidence interval (CI) = 0.75-18.65). It becomes clear that cigarette smoking can cause almost all major diseases prevalent today, such as cancer or heart disease. This inter-subject variability in cigarette-induced pathologies is partly mediated by genetic variants of genes that may participate in detoxification processes, e.g., cytochrome P450 (CYP), cellular susceptibility to toxins, such as p53, or disease development such as atherosclerosis.  相似文献   

14.
CYP2D6 is a member of cytochrome P450 enzymes that metabolise over 25% of commonly used drugs. Genetic polymorphisms can cause insufficient drug efficacy at usually administered doses or can be the cause of adverse drug reaction. CYP2D6 genotyping can be used to predict CYP2D6 phenotype and thereby explain some abnormalities in drug response and thus optimize pharmacotherapy. The aim of this study was to investigate the frequency of functionally important variant alleles of the CYP2D6 gene throughout the Czech population to predict the prevalence of ultra-rapid and poor metabolizer phenotypes. The DNA of 223 unrelated, healthy volunteers was analysed to detect the presence of CYP2D6*6, *5, *4, *3 and gene duplication. The variant allele frequencies in our population were 0.22%, 3.14%, 22.87%, 1.12% and 3.14% for CYP2D6*6, CYP2D6*5, CYP2D6*4, CYP2D6*3 and CYP2D6*MxN, respectively. Fifteen subjects carried two variant alleles leading to predicted poor type of metabolism, 84 subjects were heterozygous extensive metabolizers (het-EM). The full-text contains detailed comparison with European white populations. The distribution of variant alleles complies with the Hardy-Weinberg equilibrium. The frequencies of functional variant alleles of CYP2D6 in Czech population are in concordance with other Caucasian populations.  相似文献   

15.
What has driven the sweep of the Accord retrotransposon insertion allele of CYP6G1 in the natural populations of Drosophila melanogaster is unknown. Previous studies on the DDT selection hypothesis produced conflicting data. To reexamine the DDT selection hypothesis and search for alternative explanations, we conducted a series of correlation and genetic linkage experiments with eight D. melanogaster natural populations collected from California (CM1, CM2, CM3, and CM7) and Africa (AM2, AM3, AM4, AM7). Diagnostic PCR showed that CM1, CM2, CM7, and AM3 have the Accord insertion in the CYP6G1 locus, whereas the other four strains do not. RT-PCR analysis exhibits a 100% correlation between Accord insertion and CYP6G1 overexpression. However, among the four strains with Accord-mediated CYP6G1 overexpression only CM1 and CM7 are resistant to DDT, and the other two strains (CM2 and AM3), like the four Accord-free strains, are susceptible to DDT. By contrast, all the four strains with Accord-mediated CYP6G1 overexpression are resistant to nicotine, a plant allelochemical. Genetic crosses between DDT resistant and susceptible Accord-insertion strains, as well as crosses between Accord-insertion and Accord-free strains demonstrated that Accord insertion and CYP6G1 overexpression are genetically linked to nicotine resistance rather than DDT resistance. These results suggest that naturally-occurring allelochemicals such as nicotine are the initial driving force for the worldwide prevalence of the Accord insertion allele of CYP6G1 in D. melanogaster natural populations.  相似文献   

16.
Human cytochrome P450 2J2 (CYP2J2) is abundant in cardiovascular tissue and active in the metabolism of arachidonic acid to eicosanoids that have potent vasodilatory properties. Variability of the CYP2J2 gene is highly constrained except for its proximal promoter: there is a relatively common and functionally relevant single nucleotide polymorphism, indicated by -50G > T polymorphism (CYP2J2*7). Although genetic variation is known among ethnic groups, data for allele frequency are limited to a few Caucasian, Asian, and one African populations. In the present study, genotype distribution of CYP2J2*7 polymorphisms was investigated using polymerase chain reaction and restriction fragment length polymorphism assay in Japanese (n = 338), Mongolian (n = 118), and Ovambo (n = 186) populations and the findings compared with other populations. The mutant (CYP2J2*7) frequencies in the Japanese, Mongolians, and Ovambos were 0.0621, 0.0339, and 0.0672, respectively. Except for the Taiwanese, a general uniformity in the polymorphism in the Asian populations was observed. The mutation frequency of Ovambos was relatively lower than that of the African-American population. This study is the first to investigate the distribution of the CYP2J2*7 gene polymorphisms in Japanese, Mongolians, and Ovambos. These data will be informative and facilitate genetic association studies, in Asian and African populations for CYP2J2-related diseases such as cardiovascular disorders.  相似文献   

17.
The aim was to investigate the prevalence of VKORC1 and CYP2C9 genotypes in patients requiring anticoagulant therapy in two different region’s populations of Turkey. The recent cohort included 292 patients that needed anticoagulant therapy, and who had a history of deep vein thrombosis and/or pulmonary artery thromboembolism. Genomic DNA was isolated from peripheral blood samples and the StripAssay reverse hybridization or Real Time PCR technique was used for genotype analysis. Genotypes for CYP2C9 were detected as follows: 165 (56.5?%) for CYP2C9*1/*1, 67 (23.0?%) for CYP2C9*1/*2, 25 (8.6?%) for CYP2C9*1/*3, 9 (3.0?%) for CYP2C9*2/*2, 21 (7.2?%) for CYP2C9*2/*3, 5(1.7?%) for CYP2C9*3/*3 for CYP2C9 and the allele frequencies were: 0.723 for allele*1, 0.182 for allele*2 and 0.095 for allele*3 respectively. Genotypes for VKORC1 were detected as follows: 64 (21.9?%) for GG, 220 (75.4?%) for GA and 8 (2.7?%) for AA alleles. The G allele frequency was detected as 0.596, and the A allele frequency was 0.404. The VKORC1 1639 G>A and CYP2C9 mutation prevalence and allele frequency of the current results from two different populations (Sivas and Canakkale) showed similarly very variable profiles when compared to the other results from the Turkish population.  相似文献   

18.

Background and aims

The characterization of candidate gene polymorphisms in elderly populations is an important tool for the identification of risk factors for age-related diseases and conditions. We aimed to genotype the APOE polymorphisms (rs429358 and rs7412), rs61886492 (1561C>T) and rs202720 of GCPII gene and rs3918242 (− 1562C>T) of MMP9 gene in an older-adult/elderly cohort from Cuiabá city, Mato Grosso Brazil as well as to characterize risk factors for morbidities and conditions affecting this cohort.

Methods

The studied population consisted of 570 subjects from Cuiabá city, Brazil, who were subjected to clinical interviews and blood collection for laboratory examinations and DNA extraction. Restriction Fragment Length Polymorphism Polymerase Chain Reaction (RFLP-PCR), sequence-specific primer PCR (SSP-PCR) and TaqMan® allelic discrimination assay were used for genotyping.

Results

The frequencies of APOE ε2 and ε4 were 6.6% and 14.8%, respectively, and the frequencies of GCPII rs61886492 T allele, GCPII rs202720 C allele and MMP9 rs3918242 T allele were, respectively, 3.0%, 26.6% and 10.1%. Significant associations between APOE ε2 allele with lower total cholesterol and LDL-cholesterol were found. In addition, MMP9 rs3918242 T allele was associated with higher LDL-cholesterol levels, suggesting a link between lipid metabolism alteration and cardiovascular disease.

Conclusions

The present findings contributed to characterize risk factors specific for the studied population and to better understand the molecular physiopathology of common morbidities and conditions affecting older-adult/elderly people.  相似文献   

19.
CYP2C9 polymorphisms result in reduced enzyme catalytic activity and greater activation by effector molecules as compared to wild-type protein, with the mechanism(s) for these changes in activity not fully elucidated. Through T1 NMR and spectral binding analyses, mechanism(s) for these differences in behavior of the variant proteins (CYP2C9.2, CYP2C9.3, and CYP2C9.5) as compared to CYP2C9.1 were assessed. Neither altered binding affinity nor substrate (flurbiprofen) proton to heme-iron distances differed substantially among the four enzymes. Co-incubation with dapsone resulted in reduced substrate proton to heme-iron distances for all enzymes, providing at least a partial mechanism for the activation of CYP2C9 variants by dapsone. In summary, neither altered binding affinity nor substrate orientation appear to be major factors in the reduced catalytic activity noted in the CYP2C9 variants, but dapsone co-incubation caused similar changes in substrate proton to heme-iron distances suggesting at least partial common mechanisms in the activation of the CYP2C9 forms.  相似文献   

20.
The purpose of our study was to characterise the CYP2C19*2 and CYP2C19*3 alleles in healthy Roma and Hungarian populations. DNA of 500 Roma and 370 Hungarian subjects were genotyped for CYP2C19*2 (G681A, rs4244285) and CYP2C19*3 (G636A, rs4986893) by PCR–RFLP assay and direct sequencing. Significant differences were found comparing the Roma and Hungarian populations in CYP2C19 681 GG (63.6 vs. 75.9 %), GA (31.8 vs. 23.0 %), AA (4.6 vs. 1.1 %), GA+AA (36.4 vs. 24.1 %) and A allele frequencies (0.205 vs. 0.125) (p < 0.004). Striking differences were found between Roma and Hungarian samples in CYP2C19*1 (79.5 vs. 87.4 %) and CYP2C19*2 (20.5 vs. 12.6 %) alleles, respectively (p < 0.001). None of the subjects was found to carry the CYP2C19*3 allele. Frequencies of the intermedier metabolizer phenotype defined by the *1/*2 genotype (0.318 vs. 0.230, p < 0.005) and poor metabolizer predicted by the *2/*2 genotype (0.046 vs. 0.011, p < 0.005) was significantly higher in Roma than in Hungarians, respectively. Genotype distribution of the Roma population was similar to those of the population of North India, however, a major difference was found in the frequency of the CYP2C19*2 allele, which is likely a result of admixture with European lineages. In conclusion, the frequencies of the CYP2C19 alleles, genotypes and corresponding extensive, intermediate and poor metabolizer phenotypes studied here in the Hungarian population are similar to those of other European Caucasian populations, but display clear differences when compared to the Roma population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号