首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Previous studies have demonstrated that Arabidopsis thaliana BBX32 (AtBBX32) represses light signaling in A. thaliana and that expression of AtBBX32 in soybean increases grain yield in multiple locations and multiyear field trials. The BBX32 protein is a member of the B-box zinc finger family from A. thaliana and contains a single conserved Zn(2+)-binding B-box domain at the N terminus. Although the B-box domain is predicted to be involved in protein-protein interactions, the mechanism of interaction is poorly understood. Here, we provide in vitro and in vivo evidence demonstrating the physical and functional interactions of AtBBX32 with another B-box protein, soybean BBX62 (GmBBX62). Deletion analysis and characterization of the purified B-box domain indicate that the N-terminal B-box region of AtBBX32 interacts with GmBBX62. Computational modeling and site-directed mutagenesis of the AtBBX32 B-box region identified specific residues as critical for mediating the interaction between AtBBX32 and GmBBX62. This study defines the plant B-box as a protein interaction domain and offers novel insight into its role in mediating specific protein-protein interactions between different plant B-box proteins.  相似文献   

2.
3.
Phylomat: an automated protein motif analysis tool for phylogenomics   总被引:2,自引:0,他引:2  
Recent progress in genomics, proteomics, and bioinformatics enables unprecedented opportunities to examine the evolutionary history of molecular, cellular, and developmental pathways through phylogenomics. Accordingly, we have developed a motif analysis tool for phylogenomics (Phylomat, http://alg.ncsa.uiuc.edu/pmat) that scans predicted proteome sets for proteins containing highly conserved amino acid motifs or domains for in silico analysis of the evolutionary history of these motifs/domains. Phylomat enables the user to download results as full protein or extracted motif/domain sequences from each protein. Tables containing the percent distribution of a motif/domain in organisms normalized to proteome size are displayed. Phylomat can also align the set of full protein or extracted motif/domain sequences and predict a neighbor-joining tree from relative sequence similarity. Together, Phylomat serves as a user-friendly data-mining tool for the phylogenomic analysis of conserved sequence motifs/domains in annotated proteomes from the three domains of life.  相似文献   

4.
Plant disease resistance (R) genes encode proteins in which several motifs of the nucleotide-binding region (NBS) are highly conserved. Using degenerate primers designed according to the kinase 1 (P-loop) and hydrophobic (HD) motifs of the R gene NBS domains, homologous sequences were cloned from moss (Physcomitrella patens; phylum Bryophyta) representing an ancient nonvascular plant. A novel gene family (PpC) with at least eight homologous members was found. Expression of five members was detected. The level of expression was dependent on the developmental stage of moss, being higher in the gametophyte tissue than in the protonema tissue. The PpCs contained the conserved motifs characteristic of the NBS regions of R genes, and a kinase domain was found upstream from the NBS region. Phylogenetic analysis using the deduced NBS amino acid sequences of the PpCs and the plant genes available in databanks indicated that the PpCs show the closest relationship with the TIR-NBS class of R genes. No significant similarity to plant genes other than R genes was observed. These findings shed novel light on the evolutionary history of the R gene families, suggesting that the NBS region characteristic of the TIR-NBS class of R-like genes evolved prior to the evolutionary differentiation of vascular and nonvascular plants.  相似文献   

5.
In mammals, nuclear localization of U-snRNP particles requires the snRNA hypermethylated cap structure and the Sm core complex. The nature of the signal located within the Sm core proteins is still unknown, both in humans and yeast. Close examination of the sequences of the yeast SmB, SmD1, and SmD3 carboxyl-terminal domains reveals the presence of basic regions that are reminiscent of nuclear localization signals (NLSs). Fluorescence microscopy studies using green fluorescent protein (GFP)-fusion proteins indicate that both yeast SmB and SmD1 basic amino acid stretches exhibit nuclear localization properties. Accordingly, deletions or mutations in the NLS-like motifs of SmB and SmD1 dramatically reduce nuclear fluorescence of the GFP-Sm mutant fusion alleles. Phenotypic analyses indicate that the NLS-like motifs of SmB and SmD1 are functionally redundant: each NLS-like motif can be deleted without affecting yeast viability whereas a simultaneous deletion of both NLS-like motifs is lethal. Taken together, these findings suggest that, in the doughnut-like structure formed by the Sm core complex, the carboxyl-terminal extensions of Sm proteins may form an evolutionarily conserved basic amino acid-rich protuberance that functions as a nuclear localization determinant.  相似文献   

6.
The evolution of putative starch-binding domains   总被引:1,自引:0,他引:1  
Machovic M  Janecek S 《FEBS letters》2006,580(27):6349-6356
The present bioinformatics analysis was focused on the starch-binding domains (SBDs) and SBD-like motifs sequentially related to carbohydrate-binding module (CBM) families CBM20 and CBM21. Originally, these SBDs were known from microbial amylases only. At present homologous starch- and glycogen-binding domains (or putative SBD sequences) have been recognised in various plant and animal proteins. The sequence comparison clearly showed that the SBD-like sequences in genethonin-1, starch synthase III and glucan branching enzyme should possess the real SBD function since the two tryptophans (or at least two aromatics) of the typical starch-binding site 1 are conserved in their sequences. The same should apply also for the sequences corresponding with the so-called KIS-domain of plant AKINbetagamma protein that is a homologue of the animal AMP-activated protein kinase (AMPK). The evolutionary tree classified the compared SBDs into three distinct groups: (i) the family CBM20 (the motifs from genethonins, laforins, starch excess 4 protein, beta-subunits of the animal AMPK and all plant and yeast homologues, and eventually from amylopullulanases); (ii) the family CBM21 (the motifs from regulatory subunits of protein phosphatase 1 together with those from starch synthase III); and (iii) the (CBM20+CBM21)-related group (the motifs from the pullulanase subfamily consisting of pullulanase, branching enzyme, isoamylase and maltooligosyl trehalohydrolase).  相似文献   

7.
转录因子在调控植物生长、发育及环境适应性等方面发挥重要作用。具有B-box结构域的一类锌指结构转录因子称为BBX,它们通过调控基因转录,与同类或其他转录因子的互作参与植物光形态建成、花发育、避荫效应、植物信号转导以及非生物和生物逆境响应等。文中从BBX蛋白结构、分类以及其功能方面对该类转录因子在植物中的作用进行了综述。  相似文献   

8.
The identification of LSD1-like genes in parasite, green algae, moss, pine, and monocot and dicot species allowed us to trace the phylogenetic history of this gene family. Computational analysis showed that the diversification of members of this family could be dated back to the early stage of plant evolution. The evolution of plant LSD1-like genes was possibly shaped by two duplication events. These proteins, which contain three copies of the LSD1 zinc finger (zf-LSD1) domain within their entire polypeptides and play crucial roles in modulating disease defense and cell death, resulted from the second duplication. A gain of zf-LSD1 domain model was reasonable for explaining the origination of three-zf-LSD1 domain-containing proteins. The zf-LSD1 domain phylogeny showed that the middle (M) and C-terminal (C) domains originated from a common ancestor; the N-terminal (N) domain might be more ancient than the former two. The divergence of the N, M, and C domains was well before the monocot-dicot split. Coevolution analysis revealed that four intramolecular domain pairs, including the N domain and the interregion between the M and the C domains (INTER2), the M and C domain, the N- and C-terminus, and the M domain and C-terminus, possibly coevolved during the evolution of three-zf-LSD1 domain-containing proteins. The three zf-LSD1 domains are evolutionary conserved. Thus, the differences at the N- and C-terminus would be crucial for functional specificity of LSD1 genes. Strong functional constraints should work on the zf-LSD1 domains, whereas reduced functional constraint was found in the INTER2 region. Functional divergence analysis showed that three-zf-LSD1 domain-containing proteins were significantly functionally divergent from those proteins containing only one zf-LSD1 domain, a result demonstrating that shifted evolutionary rates between the two clusters were significantly different from each other. [Reviewing Editor: Dr. Joshua Plotkin]  相似文献   

9.
TRIM/RBCC, a novel class of 'single protein RING finger' E3 ubiquitin ligases   总被引:10,自引:0,他引:10  
The TRIM/RBCC proteins are defined by the presence of the tripartite motif composed of a RING domain, one or two B-box motifs and a coiled-coil region. These proteins are involved in a plethora of cellular processes such as apoptosis, cell cycle regulation and viral response. Consistently, their alteration results in many diverse pathological conditions. The highly conserved modular structure of these proteins suggests that a common biochemical function may underlie their assorted cellular roles. Here, we review recent data indicating that some TRIM/RBCC proteins are implicated in ubiquitination and propose that this large protein family represents a novel class of 'single protein RING finger' ubiquitin E3 ligases.  相似文献   

10.
A B-box zinc finger protein, B-BOX32 (BBX32), was identified as playing a role in determining hypocotyl length during a large-scale functional genomics study in Arabidopsis (Arabidopsis thaliana). Further analysis revealed that seedlings overexpressing BBX32 display elongated hypocotyls in red, far-red, and blue light, along with reduced cotyledon expansion in red light. Through comparative analysis of mutant and overexpression line phenotypes, including global expression profiling and growth curve studies, we demonstrate that BBX32 acts antagonistically to ELONGATED HYPOCOTYL5 (HY5). We further show that BBX32 interacts with SALT TOLERANCE HOMOLOG2/BBX21, another B-box protein previously shown to interact with HY5. Based on these data, we propose that BBX32 functions downstream of multiple photoreceptors as a modulator of light responses. As such, BBX32 potentially has a native role in mediating gene repression to maintain dark adaptation.  相似文献   

11.
PAS domains are widespread in archaea, bacteria, and eukaryota, and play important roles in various functions. In this study, we aim to explore functional evolutionary relationship among proteins in the PAS domain superfamily in view of the sequence‐structure‐dynamics‐function relationship. We collected protein sequences and crystal structure data from RCSB Protein Data Bank of the PAS domain superfamily belonging to three biological functions (nucleotide binding, photoreceptor activity, and transferase activity). Protein sequences were aligned and then used to select sequence‐conserved residues and build phylogenetic tree. Three‐dimensional structure alignment was also applied to obtain structure‐conserved residues. The protein dynamics were analyzed using elastic network model (ENM) and validated by molecular dynamics (MD) simulation. The result showed that the proteins with same function could be grouped by sequence similarity, and proteins in different functional groups displayed statistically significant difference in their vibrational patterns. Interestingly, in all three functional groups, conserved amino acid residues identified by sequence and structure conservation analysis generally have a lower fluctuation than other residues. In addition, the fluctuation of conserved residues in each biological function group was strongly correlated with the corresponding biological function. This research suggested a direct connection in which the protein sequences were related to various functions through structural dynamics. This is a new attempt to delineate functional evolution of proteins using the integrated information of sequence, structure, and dynamics.  相似文献   

12.
Arabidopsis (Arabidopsis thaliana) SALT TOLERANCE/B-BOX ZINC FINGER PROTEIN24 (STO/BBX24) is a negative regulator of the light signal transduction that localizes to the nucleus of plant cells and interacts with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) in the yeast (Saccharomyces cerevisiae) two-hybrid system. The protein contains two B-box zinc-finger motives at the N terminus and a conserved motif at the C-terminal part required for the interaction with COP1. BBX24 accumulates during deetiolation of young seedlings in the first hours of exposure to light. However, this accumulation is transient and decreases after prolonged light irradiation. Here, we identified the amino acidic residues necessary for the nuclear import of the protein. In addition, we created mutated forms of the protein, and analyzed them by overexpression in the bbx24-1 mutant background. Our results indicate that the degradation of BBX24 occurs, or at least is initiated in the nucleus, and this nuclear localization is a prerequisite to fulfill its function in light signaling. Moreover, mutations in the region responsible for the interaction with COP1 revealed that a physical interaction of the proteins is also required for degradation of BBX24 in the light and for normal photomorphogenesis.  相似文献   

13.
The B-box type 2 domain is a prominent feature of a large and growing family of RING, B-box, coiled-coil (RBCC) domain-containing proteins and is also present in more than 1500 additional proteins. Most proteins usually contain a single B-box2 domain, although some proteins contain tandem domains consisting of both type 1 and type 2 B-boxes, which actually share little sequence similarity. Recently, we determined the solution structure of B-box1 from MID1, a putative E3 ubiquitin ligase that is mutated in X-linked Opitz G/BBB syndrome, and showed that it adopted a betabetaalpha RING-like fold. Here, we report the tertiary structure of the B-box2 (CHC(D/C)C(2)H(2)) domain from MID1 using multidimensional NMR spectroscopy. This MID1 B-box2 domain consists of a short alpha-helix and a structured loop with two short anti-parallel beta-strands and adopts a tertiary structure similar to the B-box1 and RING structures, even though there is minimal primary sequence similarity between these domains. By mutagenesis, ESI-FTICR and ICP mass spectrometry, we show that the B-box2 domain coordinates two zinc atoms with a 'cross-brace' pattern: one by Cys175, His178, Cys195 and Cys198 and the other by Cys187, Asp190, His204, and His207. Interestingly, this is the first case that an aspartic acid is involved in zinc atom coordination in a zinc-finger domain, although aspartic acid has been shown to coordinate non-catalytic zinc in matrix metalloproteinases. In addition, the finding of a Cys195Phe substitution identified in a patient with X-linked Opitz GBBB syndrome supports the importance of proper zinc coordination for the function of the MID1 B-box2 domain. Notably, however, our structure differs from the only other published B-box2 structure, that from XNF7, which was shown to coordinate one zinc atom. Finally, the similarity in tertiary structures of the B-box2, B-box1 and RING domains suggests these domains have evolved from a common ancestor.  相似文献   

14.
LITAF is a small cellular protein with an unknown function. The C-terminus of LITAF contains a highly conserved domain termed the SIMPLE-like domain (SLD), while the N-terminus contains two PPXY motifs that mediate protein-protein interactions with WW-domain containing proteins. LITAF also harbors two endosome/lysosome targeting sequences at its C-terminus, but there has been conflicting reports regarding its intracellular localization. Here, we demonstrate that LITAF is localized to the late endosome/lysosomal compartment in a variety of cell lines. We also show that Itch, a WW-domain containing protein, and LITAF strongly interact and that this interaction depends on the two PPXY motifs in the N-terminus of LITAF. Interestingly, co-expression of LITAF with Itch induces major changes in Itch intracellular localization, bringing Itch from the trans-Golgi network to lysosomes. We show that this re-localization is dependent upon the interaction with the PPXY sequences of LITAF, since disruption of these binding motifs completely abrogates Itch re-localization.  相似文献   

15.
16.
17.

Background and Aims

The cell cycle is controlled by cyclin-dependent kinases (CDKs), and CDK inhibitors are major regulators of their activities. The ICK/KRP family of CDK inhibitors has been reported in several plants, with seven members in arabidopsis; however, the phylogenetic relationship among members in different species is unknown. Also, there is a need to understand how these genes and proteins are regulated. Furthermore, little information is available on the functional differences among ICK/KRP family members.

Methods

We searched publicly available databases and identified over 120 unique ICK/KRP protein sequences from more than 60 plant species. Phylogenetic analysis was performed using 101 full-length sequences from 40 species and intron–exon organization of ICK/KRP genes in model species. Conserved sequences and motifs were analysed using ICK/KRP protein sequences from arabidopsis (Arabidopsis thaliana), rice (Orysa sativa) and poplar (Populus trichocarpa). In addition, gene expression was examined using microarray data from arabidopsis, rice and poplar, and further analysed by RT-PCR for arabidopsis.

Key Results and Conclusions

Phylogenetic analysis showed that plant ICK/KRP proteins can be grouped into three major classes. Whereas the C-class contains sequences from dicotyledons, monocotyledons and gymnosperms, the A- and B-classes contain only sequences from dicotyledons or monocotyledons, respectively, suggesting that the A- and B-classes might have evolved from the C-class. This classification is also supported by exon–intron organization. Genes in the A- and B- classes have four exons, whereas genes in the C-class have only three exons. Analysis of sequences from arabidopsis, rice and poplar identified conserved sequence motifs, some of which had not been described previously, and putative functional sites. The presence of conserved motifs in different family members is consistent with the classification. In addition, gene expression analysis showed preferential expression of ICK/KRP genes in certain tissues. A model has been proposed for the evolution of this gene family in plants.  相似文献   

18.
Superdomain is uniquely defined in this work as a conserved combination of different globular domains in different proteins. The amino acid sequences of 25 structurally and functionally diverse proteins from fungi, plants, and animals have been analyzed in a test of the superdomain hypothesis. Each of the proteins contains a protein tyrosine phosphatase (PTP) domain followed by a C2 domain. Four novel conserved sequence motifs have been identified, one in the PTP domain and three in the C2 domain. All contribute to the PTP-C2 domain interface in PTEN, a tumor suppressor, and all are more conserved than the PTP signature motif, HCX3(K/R)XR, in the 25 sequences. We show that PTP-C2 was formed prior to the fungi, plant, and animal kingdom divergence. A superdomain as defined here does not fit the usual protein structure classification system. The demonstrated existence of one superdomain suggests the existence of others.  相似文献   

19.
Proteomic analyses of the nucleolus have revealed almost 700 functionally diverse proteins implicated in ribosome biogenesis, nucleolar assembly, and regulation of vital cellular processes. However, this nucleolar inventory has not unveiled a specific consensus motif necessary for nucleolar binding. The ribosomal protein family characterized by their basic nature should exhibit distinct binding sequences that enable interactions with the rRNA precursor molecules facilitating subunit assembly. We succeeded in delineating 2 minimal nucleolar binding sequences of human ribosomal protein S6 by fusing S6 cDNA fragments to the 5' end of the LacZ gene and subsequently detecting the intracellular localization of the beta-galactosidase fusion proteins. Nobis1 (nucleolar binding sequence 1), comprising of 4 highly conserved amino acid clusters separated by glycine or proline, functions independently of the 3 authentic nuclear localization signals (NLSs). Nobis2 consists of 2 conserved peptide clusters and requires the authentic NLS2 in its native context. Similarly, we deduced from previous publications that the single Nobis of ribosomal protein S25 is also highly conserved. The functional protein domain organization of the ribosomal protein S6e family consists of 3 modules: NLS, Nobis, and the C-terminal serine cluster of the phosphorylation sites. This modular structure is evolutionary conserved in vertebrates, invertebrates, and fungi. Remarkably, nucleolar binding sequences of small and large ribosomal proteins reside in peptide clusters conserved over millions of years.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号