首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In pea, normal pod (pericarp) growth requires the presence of seeds; and in the absence of seeds, gibberellins (GAs) and/or auxins can stimulate pericarp growth. To further characterize the function of naturally occurring pea GAs and the auxin, 4-chloroindole-3-acetic acid (4-Cl-IAA), on pea fruit development, profiles of the biological activities of GA3, GA1, and 4-Cl-IAA on pericarp growth were determined separately and in combination on pollinated deseeded ovaries (split-pericarp assay) and nonpollinated ovaries. Nonpollinated ovaries (pericarps) responded differently to exogenous GAs and 4-Cl-IAA than pollinated deseeded pericarps. In nonpollinated pericarps, both GA3 and 4-Cl-IAA stimulated pericarp growth, but GA3 was significantly more active in stimulating all measured parameters of pericarp growth than 4-Cl-IAA. 4-Cl-IAA, GA1, and GA3 were observed to stimulate pericarp growth similarly in pollinated deseeded pericarps. In addition, the synergistic effect of simultaneous application of 4-Cl-IAA and GAs on pollinated deseeded pericarp growth supports the hypothesis that GAs and 4-Cl-IAA are involved in the growth and development of pollinated ovaries.  相似文献   

3.
In pea (Pisum sativum), normal fruit growth requires the presence of the seeds. The coordination of growth between the seed and ovary tissues involves phytohormones; however, the specific mechanisms remain speculative. This study further explores the roles of the gibberellin (GA) biosynthesis and catabolism genes during pollination and fruit development and in seed and auxin regulation of pericarp growth. Pollination and fertilization events not only increase pericarp PsGA3ox1 message levels (codes for GA 3-oxidase that converts GA20 to bioactive GA1) but also reduce pericarp PsGA2ox1 mRNA levels (codes for GA 2-oxidase that mainly catabolizes GA20 to GA29), suggesting a concerted regulation to increase levels of bioactive GA1 following these events. 4-Chloroindole-3-acetic acid (4-Cl-IAA) was found to mimic the seeds in the stimulation of PsGA3ox1 and the repression of PsGA2ox1 mRNA levels as well as the stimulation of PsGA2ox2 mRNA levels (codes for GA 2-oxidase that mainly catabolizes GA1 to GA8) in pericarp at 2 to 3 d after anthesis, while the other endogenous pea auxin, IAA, did not. This GA gene expression profile suggests that both seeds and 4-Cl-IAA can stimulate the production, as well as modulate the half-life, of bioactive GA1, leading to initial fruit set and subsequent growth and development of the ovary. Consistent with these gene expression profiles, deseeded pericarps converted [14C]GA12 to [14C]GA1 only if treated with 4-Cl-IAA. These data further support the hypothesis that 4-Cl-IAA produced in the seeds is transported to the pericarp, where it differentially regulates the expression of pericarp GA biosynthesis and catabolism genes to modulate the level of bioactive GA1 required for initial fruit set and growth.  相似文献   

4.
The auxins 4-chloroindole-3-acetic acid (4-Cl-IAA) and indole-3-acetic acid (IAA) occur naturally in pea vegetative and fruit tissues (Pisum sativum L.). Previous work has shown that 4-Cl-IAA can substitute for the seeds in the stimulation of pea pericarp growth, whereas IAA is ineffective. Both auxins are found as free acids and as low-molecular-weight conjugates from organic solvent-soluble extracts from pea fruit. Here we present evidence for an additional conjugated auxin species that was not soluble in organic solvent and yielded 4-Cl-IAA and IAA after strong alkaline hydrolysis, suggestive of auxin attachment to pea seed and pericarp proteins. The solvent-insoluble conjugated 4-Cl-IAA in young pericarp was on average 15-fold greater than solvent-soluble 4-Cl-IAA. The solvent-insoluble conjugated IAA was approximately half the levels reported for the solvent-soluble IAA fraction. To identify putative 4-Cl-IAA-bound proteins, polyclonal antibodies were raised to 4-Cl-IAA linked to bovine serum albumin protein (BSA). Immunoblots probed with anti-4-Cl-IAA-BSA antiserum detected three to four unique bands (32–40 kDa) in primarily maternal tissues, and a different set of protein bands were detected in mainly embryonic tissues (ca. 65–74 kDa in mature seed). 4-Cl-IAA and IAA were also identified from protein fractions separated by polyacrylamide gel electrophoresis using GC-MS. These data show that the majority of 4-Cl-IAA, the growth-active auxin in young pea pericarp, and significant levels of IAA are linked to protein fractions. Auxin-proteins may function in regulation of free bioactive 4-Cl-IAA and IAA levels, and/or 4-Cl-IAA or IAA may be targeted to specific proteins post-translationally to modify protein function or stability.  相似文献   

5.
Pea (Pisum sativum L.) fruit naturally contain the auxins, indole-3-acetic acid (IAA) and 4-chloroindole-3-acetic acid (4-Cl-IAA). However, only 4-Cl-IAA can substitute for the seeds in maintaining pea fruit growth in planta. The importance of the substituent at the 4-position of the indole ring was tested by comparing the molecular properties of 4-X-IAA (X = H, Me, Et, F, or Cl) and their effect on the elongation of pea pericarps in planta. Structure-activity is discussed in terms of structural data derived from X-ray analysis, computed conformations in solution, semiempirical shape and bulk parameters, and experimentally determined lipophilicities and NH-acidities. The size of the 4-substituent, and its lipophilicity are associated with growth promoting activity of pea pericarp, while there was no obvious relationship with electromeric effects.  相似文献   

6.
The effect of gibberellin A1 (GA1) on production of ethylene by cowpea (Vigna sinensis cv Blackeye pea no. 5) epicotyl explants and its relationship to epicotyl elongation was investigated. The explants were placed upright in water and incubated in sealed culture tubes or in large jars. GA, and IAA in ethanol solution were injected into the subapical tissues of the decapitated epicotyls. Cowpea epicotyl explants elongated after GA but not after IAA treatment, and they were very sensitive to exogenous ethylene. As little as 0.14 1/1 ethylene reduced significantly GA1-induced epicotyl elongation.Treatment with GA1 induced the production of ethylene which began 10 h after GA application, showed a peak at about 22 h and then declined. The yield of ethylene was proportional to the amount of GA, injected. The inhibition of epicotyl elongation in closed tubes was avoided by absorbing ethylene released with Hg(Cl04)2 , or by adding AVG to the incubation solution to inhibit ethylene production. Treatment with IAA elicited a rapid production of ethylene which ceased about 10 h after application. The effects of IAA and GA1 on ethylene production were additive.Abbreviations AVG aminoethoxyvinylglycine 2-amino-4-(2-aminoethoxy)-trans-3butenoic acid - ACC 1-aminocyclopropane-1-carboxylic acid - GA gibberellin - IAA indole-3-acetic acid  相似文献   

7.
The role of gibberellins (GAs) during germination and early seedling growth is examined by following the metabolism and transport of radiolabeled GAs in cotyledon, shoot, and root tissues of pea (Pisum sativum L.) using an aseptic culture system. Mature pea seeds have significant endogenous GA20 levels that fall during germination and early seedling growth, a period when the seedling develops the capacity to transport GA20 from the cotyledon to the shoot and root of the seedling. Even though cotyledons at 0–2 days after imbibition have appreciable amounts of GA20, the cotyledons retain the ability to metabolize labeled GA19 to GA20 and express significant levels of PsGA20ox2 message (which encodes a GA biosynthesis enzyme, GA 20-oxidase). The large pool of cotyledonary GA20 likely provides substrate for GA1 synthesis in the cotyledons during germination, as well as for shoots and roots during early seedling growth. The shoots and roots express GA metabolism genes (PsGA3ox genes which encode GA 3-oxidases for synthesis of bioactive GA1, and PsGA2ox genes which encode GA 2-oxidases for deactivation of GAs to GA29 and GA8), and they develop the capacity to metabolize GAs as necessary for seedling establishment. Auxins also show an interesting pattern during early seedling growth, with higher levels of 4-chloro-indole-3-acetic acid (4-Cl-IAA) in mature seeds and higher levels of indole-3-acetic acid (IAA) in young root and shoot tissues. This suggests a changing role for auxins during early seedling development.  相似文献   

8.
9.
10.
I. D. J. Phillips 《Planta》1969,86(4):315-323
Summary Seedlings of dwarf and tall varieties of pea and bean, growing in John Innes Compost No. 2, were studied in relation to the effects of decapitation, indole-3-acetic acid (IAA), and gibberellic acid (GA3) on axillary bud growth. In all varieties, GA3 antagonized the inhibitory influence of IAA on bud growth when both hormones were applied to the upper cut end of the stem. Thus, GA3 caused a reduction in IAA-induced correlative bud inhibition in tall, as well as in dwarf, plants. These results agree with those obtained by several workers, but contrast with some recent reports of increased apical dominance in a tall pea variety when seedlings were treated with GA3 in addition to IAA. An attempt was made to identify the cause of opposite results being obtained by different workers, and it is considered that possibly the most important factor is mineral nutrition.  相似文献   

11.
Indole-3-acetic acid (IAA) strongly enhanced rooting of etiolated pea epicotyl cuttings while gibberellic acid (GA3) enhanced rooting only slightly. The promoting effects of the hormones appeared not until 14 d after the onset of treatment. When GA3 and IAA were applied together, the initiation of rooting started already after 6 d after onset of treatment. It is suggested that gibberellin plays an important role, in combination with auxin, in the initiation of root formation in Pisum cuttings.Abbreviations IAA Indole-3-acetic acid - GA3 Gibberellic acid  相似文献   

12.
Hormone and seed-specific regulation of pea fruit growth   总被引:7,自引:0,他引:7       下载免费PDF全文
Growth of young pea (Pisum sativum) fruit (pericarp) requires developing seeds or, in the absence of seeds, treatment with gibberellin (GA) or auxin (4-chloroindole-3-acetic acid). This study examined the role of seeds and hormones in the regulation of cell division and elongation in early pea fruit development. Profiling histone H2A and gamma-tonoplast intrinsic protein (TIP) gene expression during early fruit development identified the relative contributions of cell division and elongation to fruit growth, whereas histological studies identified specific zones of cell division and elongation in exocarp, mesocarp, and endocarp tissues. Molecular and histological studies showed that maximal cell division was from -2 to 2 d after anthesis (DAA) and elongation from 2 to 5 DAA in pea pericarp. Maximal increase in pericarp gamma-TIP message level preceded the maximal rate of fruit growth and, in general, gamma-TIP mRNA level was useful as a qualitative marker for expanding tissue, but not as a quantitative marker for cell expansion. Seed removal resulted in rapid decreases in pericarp growth and in gamma-TIP and histone H2A message levels. In general, GA and 4-chloroindole-3-acetic acid maintained these processes in deseeded pericarp similarly to pericarps with seeds, and both hormones were required to obtain mesocarp cell sizes equivalent to intact fruit. However, GA treatment to deseeded pericarps resulted in elevated levels of gamma-TIP mRNA (6 and 7 DAA) when pericarp growth and cell enlargement were minimal. Our data support the theory that cell division and elongation are developmentally regulated during early pea fruit growth and are maintained by the hormonal interaction of GA and auxin.  相似文献   

13.
Potato (Solanum tuberosum cv. Désirée) shoots grown in vitro in continuous darkness or in long days (LDs), were used to investigate indole-3-acetic acid (IAA) effects on stolon initiation and tuber formation, combining IAA with increased or decreased gibberellin levels. An increased gibberellin (GA) level was achieved by the applying 1 μM GA3, while decreased gibberellin level was presumably realized by the adding 3 μM tetcyclacis (Tc). About 15% of potato shoots developed stolons both in LDs and in darkness. Stolon initiation was stimulated by GA3 in darkness and by Tc in LDs. Tuber formation was strongly inhibited in LDs and by GA3 both in light and darkness, but stimulated in darkness at low GA level. Exceptionally, tuber formation occurred in LDs at the highest Tc concentrations, in about 25% of explants. Indole-3-acetic acid alone stimulated stolon formation in LDs, both in the presence or absence of GA3. IAA alone also stimulated tuber formation in dark-grown shoots, but could not overcome the inhibitory effect of LDs. Indications that, depending on their concentration ratio, IAA may interact with GA3 in different tuberization phases, have been discussed. Radomir Konjević—Deceased in July 2006.  相似文献   

14.
Indole-3-acetic acid (IAA) and 4-chloroindole-3-acetic acid (4-Cl-IAA) were tested at different concentrations and times for their capacity to change the redox activity and medium pH of maize root segments. The dose-response surfaces (dose-response curves as a function of time) plotted for redox activity and changes in medium pH (expressed as ΔpH) had a similar shape for both auxins, but differed significantly at the optimal concentrations. With 4-Cl-IAA, the maximal values of redox activity and medium pH changes were observed at 10−10 M, which was a 100-fold lower concentration than with IAA. Correlations were observed between redox activity and medium pH changes at the optimal concentrations of both IAA and 4-Cl-IAA. The results are discussed herein, taking into account both the concentration of the auxins and the effects produced by them.  相似文献   

15.
The physiological characteristics of the response of excised cowpea (Vigna sinensis cv Blackeye pea No. 5) epicotyls to gibberellins (GAs) were studied. Epicotyl explants, retaining the petioles and a 2-cm portion of hypocotyl, were placed upright in small vials containing water. Plant growth substances were injected into the subapical tissues as ethanol solutions.Epicotyl elongation resulting from treatment with 0.5 g of GA ranged between 5 and 13 times that of the control, depending on the GA applied. With GA1, no differences were obtained with explants prepared from 5 to 9-day-old seedlings. The increase in elongation could be detected within 6 h of treatment, and the stimulus of a single application lasted at least 4 days. Final elongation was proportional to the logarithm of the amount of GA, applied, 0.01 to lug. The response to GA treatment was limited to the upper part, the most sensitive zone being located between 2 to 4 mm below the apex of the epicotyl; this effect was entirely due to cell elongation.The induction of epicotyl elongation by GAs seems to be specific and independent of the effect of auxin. IAA had no effect on elongation and 4-chloro-phenoxyisobutyric acid (PCIB) did not affect the response to GA1 Abbreviations ABA abscisic acid - GA gibberellin - IAA Indole-3-acetic acid - TIBA 2,3,5-triiodobenzoic acid - PCIB 4-chloro-phenoxyisobutyric acid  相似文献   

16.
Prohexadione, a gibberellin (GA) biosynthesis inhibitor, was applied in ethanol around the circumference at the midpoint of the previous year terminal shoot of dormant Pinus sylvestris seedlings. After cultivating the seedlings under environmental conditions favorable for growth for 10 weeks, longitudinal and cambial growth were measured, and the endogenous levels of GA1, GA3, GA4, GA9, and indole-3-acetic acid (IAA) were determined by combined gas chromatography-mass spectrometry, using deuterated GAs and [13C6]IAA as internal standards. Prohexadione application inhibited elongation and xylem and phloem production in the current year terminal shoot and xylem production in the previous year terminal shoots. Concomitantly, in both ages of shoots the cambial region contents of GA1; GA3, and GA4 were decreased, whereas the level of GA9 was increased. However, the IAA content was not altered in the terminal bud on the current year terminal shoot or in the cambial region of the current year or previous year terminal shoots. The results provide additional evidence that: (1) GAs are involved in the regulation of cambial growth, as well as longitudinal growth, in Pinus sylvestris shoots; (2) they act directly, rather than indirectly, by altering the IAA level; and (3) the GA9 GA4 GA1 pathway is a major route of GA biosynthesis in conifer species.Abbreviations GA gibberellin - IAA indole-3-acetic acid - HPLC high performance liquid chromatography - GC gas chromatography - SIM selected ion monitoring - MS mass spectrometry  相似文献   

17.
Auxin regulation of the gibberellin pathway in pea   总被引:1,自引:0,他引:1  
O'Neill DP  Ross JJ 《Plant physiology》2002,130(4):1974-1982
  相似文献   

18.
S. T. C. Wright 《Planta》1980,148(4):381-388
Abscisic acid (ABA) inhibits the production of ethylene induced by water stress in excised wheat leaves and counteracts the stimulatory effect of 6-benzyladenine (BA) on this process. The stimulatory effect of BA and the inhibitory effect of ABA were equally pronounced whether external or endogenous ethylene levels were determined. When leaves were sprayed or floated on solutions of BA, indole-3-acetic acid (IAA), gibberellic acid (GA3), or ABA, the relative activities of these growth regulators on stress-induced ethylene at 10-4 mol l-1 were BA>IAA >GA3>controls>ABA. In non-stressed leaves, however, where the levels of ethylene produced were 2–20 times smaller, the relative activities were IAA >BA>GA3>controls>ABA. The effects of BA and ABA spray treatment on water stress induced ethylene were closely similar whether the solutions were applied 2 or 18 h prior to the initiation of water stress. The relationships between the levels of endogenous growth regulators in the plant and ethylene release induced by water stress are discussed.Abbreviations BA 6-benzyladenine - IAA indole-3-acetic acid - GA3 gibberellic acid - ABA abscisic acid - GLC gas-liquid chromatography - leaf leaf water potential  相似文献   

19.
Similar ranges of gibberellins (GAs) were detected by high-performance liquid chromatography (HPLC)-immunoassay procedures in ten cultures of wild-type and mutant strains of Rhizobium phaseoli. The major GAs excreted into the culture medium were GA1 and GA4. These identifications were confirmed by combined gas chromatographymass spectrometry. The HPLC-immunoassays also detected smaller amounts of GA9- as well as GA20-like compounds, the latter being present in some but not all cultures. In addition to GAs, all strains excreted indole-3-acetic acid (IAA) but there was no obvious relationship between the amounts of GA and IAA that accumulated. The Rhizobium strains studied included nod and fix mutants, making it unlikely that the IAA- and GA-biosynthesis genes are closely linked to the genes for nodulation and nitrogen fixation.The HPLC-immunoassay analyses showed also that nodules and non-nodulated roots of Phaseolus vulgaris L. contained similar spectra of GAs to R. phaseoli culture media. The GA pools in roots and nodules were of similar size, indicating that Rhizobium does not make a major contribution to the GA content of the infected tissue.Abbreviations EIA enzyme immunoassay - GAn gibberellin An - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - Me methyl ester - RIA radioimmunoassay - TLC thin-layer chromatography  相似文献   

20.
Information on the involvement of elongation-controlling hormones, particularly gibberellin (GA), in UV-B modulation of stem elongation and leaf growth, is limited. We aimed to study the effect of UV-B on levels of GA and indole-3-acetic acid (IAA) as well as involvement of GA in UV-B inhibition of stem elongation and leaf expansion in pea. Reduced shoot elongation (13%) and leaf area (37%) in pea in response to a 6-h daily UV-B (0.45 W m?2) exposure in the middle of the light period for 10 days were associated with decreased levels of the bioactive GA1 in apical stem tissue (59%) and young leaves (69%). UV-B also reduced the content of IAA in young leaves (35%). The importance of modulation of GA metabolism for inhibition of stem elongation in pea by UV-B was confirmed by the lack of effect of UV-B in the le GA biosynthesis mutant. No UV-B effect on stem elongation in the la cry-s (della) pea mutant demonstrates that intact GA signalling is required. In conclusion, UV-B inhibition of shoot elongation and leaf expansion in pea depends on UV-B modulation of GA metabolism in shoot apices and young leaves and GA signalling through DELLA proteins. UV-B also affects the IAA content in pea leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号