首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Migrating movement of a pseudoplasmodium (slug) of the cellular slime mouldDictyostelium discoideum was analyzed using a time-lapse video tape recorder. Since slugs usually migrated with repeated interruptions of advance, migrating velocities were measured only within a period of forward movement. On the basis of some known facts and assumptions, a dynamical model for slug movement was formulated, which consists of motive force generated by slug cells against their intrinsic resistance and resistance of slime sheath at the tip. The migrating velocity of a slug depended neither on its width nor its volume, but solely on its length. Under any experimental conditions tested, a linear relationship always held between reciprocals of the two variables. The results were in good agreement with predictions of the model. Quantitative analyses of experimental results by the use of the model lead to the conclusions that a decrease in velocity at a low temperature is due to an increase in resistance of slime sheath at the tip, but that a decrease in velocity during prolonged migration is due to a decrease in motive force of constituent cells. An anterior isolate dissected from a slug migrated at a velocity greater than that of an intact slug of the same length. This was interpreted by the model to be due to the fact that the anterior cells have greater motive forces and intrinsic resistances than the posterior cells. The heterogeneous distributions of the two variables in the cell mass is discussed in reference to the mechanism of sorting out of cells.  相似文献   

2.
M. Oyama  Y. Maeda  I. Takeuchi 《Protoplasma》1984,123(2):152-159
Summary When shaken in a glucose-albumin-cyclic AMP medium, dissociated aggregative cells form small clumps in which prespore cells differentiate fairly synchronously (Okamoto 1981). Formation of prespore vacuoles (PSVs) in differentiating prespore cells was examined in these culture conditions, by electronmicroscopy and immunocytochemistry.After 6 hours of culture, a typical Golgi apparatus composed of vesicles and stacked flat cisternae develops near the nucleus. FITC-conjugated antispore serum stains a crescent-shaped region in the cells which seems to correspond to the Golgi area. After 9 hours, flat sacs which contain electron dense lining membrane similar to that of PSVs appear alongside Golgi cisternae. Later, partially and fully round PSVs are observed in this region, suggesting that flat sacs round up to become mature PSVs. After 12 hours, as mature PSVs increase in number, they become dispersed throughout the cytoplasm and a typical Golgi apparatus with cisternae disappears. When cultured in a medium devoid of cyclic AMP, cells develop neither Golgi cisternae nor PSVs. These results strongly suggest that PSVs form from Golgi cisternae.  相似文献   

3.
Summary Guanosine di- and triphosphates specifically decrease the affinity of chemotactic cAMP receptors in isolatedDictyostelium discoideum membranes. The K0.5 was increased from 50 nM to 150 nM. Receptors were shown to be heterogeneous in dissociation kinetics. In the absence of guanine nucleotides three dissociation processes could be resolved, having first order rate constants of 8.7 x 10−4, 1.3 X 10−2, and higher than 0.1 s−1. Guanine nucleotides decreased the affinity for cAMP by transforming the slowest dissociating receptor form (KD is 8 nM) to forms dissociating more rapidly. Our data indicate that a guanine nucleotide binding protein (G-protein) is involved in the transduction of the cAMP signal inD. discoideum.  相似文献   

4.
Summary We report a flow fluorimetric analysis of the DNA content of cells and nuclei from vegetative populations and various developmental stages of the cellular slime mouldDictyostelium discoideum using the dyes Hoechst 33258 and mithramycin. Nuclei from all of these populations showed an identical single DNA-content peak, indicating that most vegetative cells and most cells in all developmental stages are in one phase of the cell cycle. Our own data and findings in the literature indicate that this phase is G2. On the other hand, we also found that various stages, subpopulations of cells at early stages and the different differentiated cell types in the slug stage differ in DNA content per cell. Any particular population typically has one major peak of DNA content, with a modal value that is characteristic for the cell type and for the developmental stage. These differences presumably reflect differences in mitochondrial DNA content per cell.  相似文献   

5.
Summary During development and differentiation of the cellular slime mould Dictyostelium discoideum there appears to be a relationship between the cell cycle and cell fate: amoebae halted in G2 phase during early development differentiate into spores whereas stalk cells are formed from amoebae halted in GI phase. It is proposed that this is because a major effect of the cell cycle is to generate heterogeneity in the cell surface properties of the developing amoebae.  相似文献   

6.
Using a fluorospectrophotometer, we examined the fluorescence of a crude preparation from the spore masses ofDictyostelium discoideum. Fluorescence emission spectra and excitation spectra suggested that the fluorescence of the crude preparation was a lumazine-like fluorescence rather than a pterin-like fluorescence. By using a microspectrophotometer, we observedin situ the fluorescence emission of a lumazine-like substance localized only in the spore mass of the fruiting body.  相似文献   

7.
K. Inouye 《Protoplasma》1984,121(3):171-177
Summary The motive force of the migrating slug of the cellular slime mouldDictyostelium discoideum was measured by the use of centrifugal force. Changes in shape of the slugs due to the use of centrifugal force were prevented by letting them migrate in an agar capillary. The motive force thus obtained was proportional to the slug volume, the value per unit volume being 5.8×106 dyne/cm3 (58 N/cm3). This is in good agreement with the value measured by the use of hydrostatic pressure.  相似文献   

8.
The localization of fluorescent substance was observed microscopically in livingDictyostelium discoideum cells. The fluorescence was localized in the vacuoles of the vegetative cells. The fluorescent vacuoles were not observed in the dead cells. The fluorescent vacuoles in the cytoplasm were lost in starved cells which are able to form an aggregate and to differentiate. The fluorescent vacuoles were not lost but decreased slightly in the cytoplasm of full grown cells and of cells grown in liquid nutrient medium for an extended period of time (stationary phase cells). On a solid substratum, fluorescent vacuoles were also lost from the cells, where the vegetative cells aggregate and form a slug-shaped mass of cells. The whole slug showed homogeneous fluorescence. In a finally constructed fruiting body, the spore mass showed fluorescence. In a spore mass, the fluorescence was not observed in the spores but in the interspore space of the spore mass. It is suggested that vegetative cells secrete fluorescent substance into the inter-cellular space in the mass of cells during development.  相似文献   

9.
N. Iijima  A. Amagai  Y. Maeda 《Protoplasma》1991,160(2-3):72-76
Summary Dictyostelium mucoroides-7 (Dm 7) and a mutant MF 1 derived from it exhibit two developmental pathways: sorocarp formation occurs during the asexual process, and macrocyst formation during the sexual cycle. The two developmental pathways are mainly regulated by two chemical substances: 3,5-cyclic adenosine monophosphate (cAMP) and ethylene. Recently, we have demonstrated that cytoplasmic pH (pHi) has a critical role for the choice of developmental pathways, higher pHi being favourable to macrocyst formation. Thereupon, attention was riveted to the relation of pHi to biosynthesis of cAMP and ethylene. Effect of pHi on the production and release of ethylene, a potent inducer of macrocyst formation, was examined, using the two facing culture method. The result showed that lowered pHi inhibits ethylene production, thus resulting in a failure of cells to form macrocysts. The accumulation of cAMP, an inhibitor of macrocyst formation, was found to vary depending on extracellular pH (pHo), but diethylstilbestrol (DES) that is a proton pump inhibitor and also an inhibitor of macrocyst formation had no significant effect on the accumulation. Taken together these results indicate that higher pHi may induce macrocyst formation through enhancement of ethylene production rather than inhibition of cAMP synthesis.Abbreviations cAMP 3,5-cyclic adenosine monophosphate - pHi cytoplasmic pH - pHo extracellular pH - ACC 1-1-aminocyclopropane-1-carboxylic acid  相似文献   

10.
The implication of histone H1 kinase activity for the G2/M transition during the cell cycle was investigated usingDictyostelium discoideum Ax-2. Histone H1 kinase with its activity was purified from cell extracts by the use of p13suc1 affinity gel. In the vegetative cell cycle, the activity of histone H1 kinase including Cdc2 kinase was found using synchronized Ax-2 cells to be highest just before the entry into mitosis. The activity also was markedly enhanced just prior to the M phase from which developing cells (possibly prespore cells) reinitiate their cell cycle at the mound-tipped aggregate stage. These results strongly suggest the importance of Cdc2 kinase activity in the G2 to M phase transition during the cell cycle, as the case for other eukaryotic cells.  相似文献   

11.
Summary We have used homologous recombination to disrupt the gene which codes for p34 and p31, two polypeptides related to a cAMP-binding protein (CABP1) in Dictyostelium discoideum. By screening a total of 80 independent transformants by Southern blotting, four mutants have been isolated. Two of these mutants were analyzed in detail. Our results indicate that, while a null allele has not been obtained, both mutants express drastically reduced levels of truncated p34 and p31. Phenotypic analysis has demonstrated that both of them grow significantly more slowly than wild-type controls when bacteria are used as a food source. Interestingly, this growth defect is not seen when the cells are cultured axenically. In addition, the mutants possess an altered developmental profile. They complete development approximately 3 h later than wild-type controls. These results indicate that p34 and p3l play roles in both growth and development in this organism.  相似文献   

12.
The three basic cell types in the migrating slug of Dictyostelium discoideum show differential chemotactic response to cyclic AMP (cAMP) and differential sensitivity to suppression of the chemotaxis by ammonia. The values of these parameters indicate a progressive maturation of chemotactic properties during the transdifferentiation of slug cell types. We present a model that explains the localization of the three cell types within the slug based on these chemotactic differences and on the maturation of their chemotactic properties.  相似文献   

13.
A soluble protein was isolated from Mougeotia by chloropromazine-sepharose 4 B affinity chromatography. The protein matches the properties of calmodulin in terms of heat stability, Ca2+-dependent electrophoretic mobility in sodium-dodecyl-sulfate polyacrylamide gels, and its ability to activate cyclic nucleotide phosphodiesterase in a Ca2+-dependent manner. Phytochrome-mediated chloroplast reorientational movement in Mougeotia was inhibited by the calmodulin antagonist trifluoperazine, a hydrophobic compound, or N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a hydrophilic compound; 50% inhibition (IC50) of chloroplast movement is caused by 20–50 mol l-1 trifluoperazine or 100 mol l-1 W-7. The Ca2+-calmodulin may act as an intermediate in the chloroplast reorientational response in Mougeotia governed by phytochrome.Abbreviations EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - SDS sodium dodecyl sulfate - W-7 N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide  相似文献   

14.
Summary The role of F-actin in cell differentiation ofUromyces appendiculatus (bean rust fungus) germlings was examined by treating differentiating and nondifferentiating germlings with the actin-binding drugs cytochalasin E (CE) and phalloidin. Prolonged exposure of urediospores to 5×10–3–5 × 10–5 M CE induced nuclear division in up to 28–45% of the resulting germlings, whereas the rate of mitosis in established germlings exposed to these concentrations of CE was significantly lower (4–11%). Germlings treated with CE shifted from polarized apical growth to spherical expansion, cytoplasmic microfilaments were depolymerized, and nuclear inclusions became enlarged. Differentiating germlings exposed to a 10 minute pulse of 5×10–6M CE before the initiation of septum formation prevented the establishment of the F-actin septal ring and growth of the crosswall delimiting the appressorium. Although these CE treatments resulted in morphological and nuclear events similar to those occurring during normal appressorium formation, transient microfilament depolymerization was not sufficient to induce differentiation. Phalloidin stabilized cytoplasmic microfilaments, especially posteriorly-located microfilaments, but did not affect differentiation, nor did it significantly inhibit the effects of CE.Abbrevations CE cytochalasin E - DAPI 4,6-diamidino-2-phenylindole - DMSO dimethyl sulfoxide - F-actin filamentous actin  相似文献   

15.
The hypersensitive response (HR) involves programmed cell death (PCD) in response to pathogen infection. To investigate the pathogen resistance signaling pathway, we previously identified the Arabidopsis mutant cpr22, which displays constitutive activation of multiple defense responses including HR like cell death. The cpr22 mutation has been identified as a 3 kb deletion that fuses two cyclic nucleotide-gated ion channel (CNGC)-encoding genes, ATCNGC11 and ATCNGC12, to generate a novel chimeric gene, ATCNGC11/12. In this study, we conducted a characterization of cell death induced by transient expression of ATCNGC11/12 in Nicotiana benthamiana. Electron microscopic analysis of this cell death showed similar characteristics to PCD, such as plasma membrane shrinkage and vesicle formation. The hallmark of animal PCD, fragmentation of nuclear DNA, was also observed in ATCNGC11/12-induced cell death. The development of cell death was significantly suppressed by caspase-1 inhibitors, suggesting the involvement of caspases in this process. Recently, vacuolar processing enzyme (VPE) was isolated as the first plant caspase-like protein, which is involved in HR development. In VPE-silenced plants development of cell death induced by ATCNGC11/12 was much slower and weaker compared to control plants, suggesting the involvement of VPE as a caspase in ATCNGC11/12-induced cell death. Complementation analysis using a Ca2+ uptake deficient yeast mutant demonstrated that the ATCNGC11/12 channel is permeable to Ca2+. Additionally, calcium channel blockers such as GdCl3 inhibited ATCNGC11/12-induced HR formation, whereas potassium channel blockers did not. Taken together, these results indicate that the cell death that develops in the cpr22 mutant is indeed PCD and that the chimeric channel, ATCNGC11/12, is at the point of, or up-stream of the calcium signal necessary for the development of HR.  相似文献   

16.
Summary The regulation of voltage-dependent Ca2+ channels by protein phosphorylation and dephosphorylation was studied using tonoplast-free cells ofNitellopsis. Since the Ca2+-channel activation has a dominant role in the membrane excitation of tonoplast-free cells (T. Shiina and M. Tazawa,J. Membrane Biol. 96:263–276, 1987), it seems to be reasonable to assume that any change of the membrane excitability reflects a modulation of the Ca2+ channel. When agents that enhance phosphoprotein dephosphorylation (protein kinase, inhibitor, phosphoprotein phosphatase-1, -2A) were introduced to the intracellular surface of the plasmalemma (twice-perfused tonoplast-free cells), the membrane potential depolarized and the membrane resistance decreased under current-clamp experiments. By contrast, when cells were challenged with agents that enhance protein phosphorylation (phosphoprotein phosphatase inhibitor-1, -naphthylphosphate), the membrane potential hyperpolarized, and the membrane resistance increased. When phosphoprotein phosphatase-1 or -2A was perfused, the current-voltage (I–V) curve which was obtained under ramp voltage-clamp condition exhibited the so-called N-shaped characteristic, indicating an acceleration of the Ca2+-channel activation. This effect was suppressed by the addition of phosphoprotein phosphatase inhibitors. ATP--S, which is assumed to stimulate protein phosphorylation, decreased the inward current in theI–V curve. The dependence of the Ca2+-channel activation on intracellular ATP was different between the once-perfused and twice-perfused cells. In once-perfused cells, the membrane excitability was reduced by low intracellular ATP concentration. By contrast, in twice-perfused cells, excitability was enhanced by ATP.  相似文献   

17.
The regulation of cytosolic Ca2+ has been investigated in growing root-hair cells of Sinapis alba L. with special emphasis on the role of the plasmamembrane Ca2+-ATPase. For this purpose, erythrosin B was used to inhibit the Ca2+-ATPase, and the Ca2+ ionophore A23187 was applied to manipulate cytosolic free [Ca2+] which was then measured with Ca2+-selective microelectrodes. (i) At 0.01 M, A23187 had no effect on the membrane potential but enhanced the Ca2+ permeability of the plasma membrane. Higher concentrations of this ionophore strongly depolarized the cells, also in the presence of cyanide. (ii) Unexpectedly, A23187 first caused a decrease in cytosolic Ca2+ by 0.2 to 0.3 pCa units and a cytosolic acidification by about 0.5 pH units, (iii) The depletion of cytosolic free Ca2+ spontaneously reversed and became an increase, a process which strongly depended on the external Ca2+ concentration, (iv) Upon removal of A23187, the cytosolic free [Ca2+] returned to its steady-state level, a process which was inhibited by erythrosin B. We suggest that the first reaction to the intruding Ca2+ is an activation of Ca2+ transporters (e.g. ATPases at the endoplasmic reticulum and the plasma membrane) which rapidly remove Ca2+ from the cytosol. The two observations that after the addition of A23187, (i) Ca2+ gradients as steep as-600 mV could be maintained and (ii) the cytosolic pH rapidly and immediately decreased without recovery indicate that the Ca2+-exporting plasma-membrane ATPase is physiologically connected to the electrochemical pH gradient, and probably works as an nH+/Ca2+-ATPase. Based on the finding that the Ca2+-ATPase inhibitor erythrosin B had no effect on cytosolic Ca2+, but caused a strong Ca2+ increase after the addion of A23187 we conclude that these cells, at least in the short term, have enough metabolic energy to balance the loss in transport activity caused by inhibition of the primary Ca2+-pump. We further conclude that this ATPase is a major Ca2+ regulator in stress situations where the cytosolic Ca2+ has been shifted from its steady-state level, as may be the case during processes of signal transduction.Abbreviations and Symbols EB erythrosin B - Em membrane potential - pCa negative logarithm of the Ca2+ concentration This work was supported by the Deutche Forschungsgemeinschaft (H.F.) and the Alexander-von-Humboldt-Foundation (A.T.).  相似文献   

18.
In this work we demonstrate a differentiation-induced up-regulation of the expression of plasma membrane Ca2+ATPase (PMCA) isoforms being present in various gastric/colon cancer cell types. We found PMCA1b as the major isoform in non-differentiated cancer cell lines, whereas the expression level of PMCA4b was significantly lower. Cell differentiation initiated with short chain fatty acids (SCFAs) and trichostatin A, or spontaneous differentiation of post-confluent cell cultures resulted in a marked induction of PMCA4b expression, while only moderately increased PMCA1b levels. Up-regulation of PMCA4b expression was demonstrated both at the protein and mRNA levels, and closely correlated with the induction of established differentiation markers. In contrast, the expression level of the Na+/K+-ATPase or that of the sarco/endoplasmic reticulum Ca2+ATPase 2 protein did not change significantly under these conditions. In membrane vesicles obtained from SCFA-treated gastric/colon cancer cells a marked increase in the PMCA-dependent Ca2+ transport activity was observed, indicating a general increase of PMCA function during the differentiation of these cancer cells. Because various PMCA isoforms display distinct functional characteristics, we suggest that up-regulated PMCA expression, together with a major switch in PMCA isoform pattern may significantly contribute to the differentiation of gastric/colon cancer cells. The analysis of PMCA expression may provide a new diagnostic tool for monitoring the tumor phenotype.  相似文献   

19.
Abstract

Protriptyline, a tricyclic anti-depressant, is used primarily to treat the combination of symptoms of anxiety and depression. However, the effect of protriptyline on prostate caner is unknown. This study examined whether the anti-depressant protriptyline altered Ca2+ movement and cell viability in PC3 human prostate cancer cells. The Ca2+-sensitive fluorescent dye fura-2 was used to measure [Ca2+]i. Protriptyline evoked [Ca2+]i rises concentration-dependently. The response was reduced by removing extracellular Ca2+. Protriptyline-evoked Ca2+ entry was inhibited by store-operated channel inhibitors (nifedipine, econazole and SKF96365), protein kinase C activator (phorbol 12-myristate 13 acetate, PMA) and protein kinase C inhibitor (GF109203X). Treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydr-oquinone (BHQ) in Ca2+-free medium inhibited 60% of protriptyline-evoked [Ca2+]i rises. Conversely, treatment with protriptyline abolished BHQ-evoked [Ca2+]i rises. Inhibition of phospholipase C with U73122 suppressed 50% of protriptyline-evoked [Ca2+]i rises. At concentrations of 50–70?µM, protriptyline decreased cell viability in a concentration-dependent manner; which were not reversed by chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). Collectively, in PC3 cells, protriptyline evoked [Ca2+]i rises by inducing phospholipase C-associated Ca2+ release from the endoplasmic reticulum and other stores, and Ca2+ influx via protein kinase C-sensitive store-operated Ca2+ channels. Protriptyline caused cell death that was independent of [Ca2+]i rises.  相似文献   

20.
Summary The effects of agents known to interfere with Ca2+ release processes of endoplasmic reticulum were investigated in bradykinin (BK)-stimulated bovine aortic endothelial cells (BAE cells), via the activation of Ca2+-activated potassium channels [K(Ca2+) channels]. In cell-attached patch experiments, the external application of caffeine (1 mm) caused a brief activation of K(Ca2+) channels in Ca2+-free and Ca2+-containing external solutions. The application of BK (10 nm) during cell stimulation by caffeine (1–20 mm) invariably led to a drastic channel activation which was maintained during a recording period longer than that observed in caffeine-free conditions. In addition, the cell exposure to caffeine (20 mm) during the BK stimulation enhanced systematically the channel activation process. Since a rapid inhibition of BK-evoked channel activity was also produced by removing caffeine from the bath medium, it is proposed that the sustained single-channel response recorded in the concomittant presence of both agents was due to their synergic action on internal stores and/or the external Ca2+ entry pathway resulting in an increased [Ca2+]i. In addition, the local anesthetic, procaine, depressed the initial BK-induced K(Ca2+) channel activity and completely blocked the secondary phase of the channel activation process related to the external Ca2+ influx into stimulated cells. In contrast, this blocking effect of procaine was not observed on the initial caffeine-elicited channel activity and could not suppress the external Ca2+-dependent phase of this channel activation process. Our results confirm the existence of at least two pharmacologically distinct types of Ca2+-release from internal stores in BAE cells: an inositol 1,4,5-triphosphate (InsP3)-dependent and a caffeine-induced Ca2+-release process.The authors would like to thank Dr. A. Diarra for his contribution to the fluorescence measurements and Diane Vallerand for preparing cell cultures. These data were presented in part at the 14th Scientific Meeting of the International Society of Hypertension (Madrid, Spain, June 14–18, 1992), and have been published in abstract form in the Journal of Hypertension (1992). Dominique Thuringer is a fellow of the Heart and Stroke Foundation of Canada. Rémy Sauvé is a senior fellow from the Fonds de la Recherche en Santé du Québec. This work was supported by a grant from the Medical Research Council of Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号