首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural variants of cerato-platanin (CP), a pathogen associated molecular pattern (PAMP) protein produced by Ceratocystis platani (the causal agent of the plane canker stain), have been found to be produced by other four species of the genus Ceratocystis, including five clones of Ceratocystis fimbriata isolated from different hosts. All these fungal strains were known to be pathogenic to plants with considerable importance in agriculture, forestry, and as ornamental plants. The putative premature proteins were deduced on the basis of the nucleotide sequence of genes orthologous to the cp gene of C. platani; the deduced premature proteins of Ceratocystis populicola and Ceratocystis variospora reduced the total identity of all the others from 87.3% to 60.3%. Cerato-populin (Pop1), the CP-orthologous protein produced by C. populicola, was purified and characterized. Pop1 was a well-structured α/β protein with a different percentage of the α-helix than CP, and it self-assembled in vitro in ordered aggregates. Moreover, Pop1 behaved as PAMP, since it stimulated poplar leaf tissues to activate defence responses able to reduce consistently the C. populicola growth. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Aerial conidia are central dispersing structures for most fungi and represent the infectious propagule for entomopathogenic fungus Beauveria bassiana, thus the active ingredients of commercial mycoinsecticides. Although a number of formic-acid-extractable (FAE) cell wall proteins from conidia have been characterized, the functions of many such proteins remain obscure. We report that a conidial FAE protein, termed CP15, isolated from B. bassiana is related to fungal tolerance to thermal and oxidative stresses. The full-length genomic sequence of CP15 was shown to lack introns, encoding for a 131 amino acid protein (15.0 kDa) with no sequence identity to any known proteins in the NCBI database. The function of this new gene with two genomic copies was examined using the antisense-RNA method. Five transgenic strains displayed various degrees of silenced CP15 expression, resulting in significantly reduced conidial FAE protein profiles. The FAE protein contents of the strains were linearly correlated to the survival indices of their conidia when exposed to 30-min wet stress at 48°C (r 2 = 0.93). Under prolonged 75-min heat stress, the median lethal times (LT50s) of their conidia were significantly reduced by 13.6–29.5%. The CP15 silenced strains were also 20–50% less resistant to oxidative stress but were not affected with respect to UV-B or hyperosmotic stress. Our data indicate that discrete conidial proteins may mediate resistance to some abiotic stresses, and that manipulation of such proteins may be a viable approach to enhancing the environmental fitness of B. bassiana for more persisting control of insect pests in warmer climates.  相似文献   

3.

Background  

Capping protein (CP), a heterodimer of α and β subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three isoforms of CPβ produced by alternatively splicing from one gene; lower organisms have one gene and one isoform.  相似文献   

4.
5.
Citrus is one of the most economically important fruit crops in the world. Citrus psorosis is a serious disease affecting mainly oranges and mandarins in Argentina and Uruguay. The causal agent is Citrus psorosis virus (CPsV), an ophiovirus with a tripartite ssRNA genome of negative polarity. The coat protein (CP), the most abundant viral protein in infected plants, has been used to detect CPsV by TAS‐ELISA, but only biological indexing, requiring 1 year, is the current and validated technique for diagnosis of citrus psorosis. In this study, a SYBR Green RT‐qPCR protocol was developed, with primers designed to the most conserved region of the cp gene. We tested their specificity and sensitivity in comparison with TAS‐ELISA. This RT‐qPCR was applied successfully to field samples from Argentina, to a variety of isolates from different countries maintained in the greenhouse, to young seedlings and old trees from a psorosis natural transmission plot, and to transgenic citrus expressing the cp gene of CPsV or a fragment thereof. This method allowed accurate quantification of viral titer and cp gene expression in transgenic plants, which could not be detected previously. The sensitivity and reliability of quantitative CPsV detection were improved with greater speed using commercial reagents, and the sensitivity was three orders of magnitude higher than that of TAS‐ELISA. All these data encourage its validation.  相似文献   

6.
The eukaryotic genome contains a putative ATPase gene family that encodes proteins with one or two highly conserved domain(s) of approximately 230 amino acids. These proteins have diverse cellular functions and mutation in at least one member of the family has been associated with human disease, while mutations in other family members are known to cause cell cycle defects in yeast. Therefore it is of interest to map more family members and so we have localized PSMC5 (the thyroid hormone receptor-interacting protein, TRIP1) and PSMC3 (the Tat-binding protein, TBP1) to chromosomes 17q24– q25 and 11p12–p13, respectively. We also present the map position of a probable PSMC3 processed pseudogene locus on chromosome 9p. Received: 18 July 1996  相似文献   

7.
The Fenna–Matthews–Olson protein is a water-soluble protein found only in green sulfur bacteria. Each subunit contains seven bacteriochlorophyll (BChl) a molecules wrapped in a string bag of protein consisting of mostly β sheet. Most other chlorophyll-binding proteins are water-insoluble proteins containing membrane-spanning α helices. We compared an FMO consensus sequence to well-characterized, membrane-bound chlorophyll-binding proteins: L & M (reaction center proteins of proteobacteria), D1 & D2 (reaction center proteins of PS II), CP43 & CP47 (core proteins of PS II), PsaA & PsaB (reaction center proteins of PS I), PscA (reaction center protein of green sulfur bacteria), and PshA (reaction center protein of heliobacteria). We aligned the FMO sequence with the other sequences using the PAM250 matrix modified for His binding-site identities and found a signature sequence (LxHHxxxGxFxxF) common to FMO and PscA. (The two His residues are BChl a. binding sites in FMO.) This signature sequence is part of a 220-residue C-terminal segment with an identity score of 13%. PRSS (Probability of Random Shuffle) analysis showed that the 220-residue alignment is better than 96% of randomized alignments. This evidence supports the hypothesis that FMO protein is related to PscA. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Two hypotheses account for the evolution of the inner antenna light-harvesting proteins of oxygenic photosynthesis in cyanobacteria, algae, and plants: one in which the CP43 protein of photosytem II gave rise to the extrinsic CP43-like antennas of cyanobacteria (i.e. IsiA and Pcb proteins), as a late development, and the other in which CP43 and CP43-like proteins derive from an ancestral protein. In order to determine which of these hypotheses is most likely, we analyzed the family of antenna proteins by a variety of phylogenetic techniques, using alignments of the six common membrane-spanning helices, constructed using information on the antenna proteins’ three-dimensional structure, and surveyed for evidence of factors that might confound inference of a correct phylogeny. The first hypothesis was strongly supported. As a consequence, we conclude that the ancestral photosynthetic apparatus, with 11 membrane-spanning helices, split at an early stage during evolution to form, on the one hand, the reaction center of photosystem II and, on the other hand, the ancestor of inner antenna proteins, CP43 (PsbC) and CP47 (PsbB). Only much later in evolution did the CP43 lineage give rise to the CP43’ proteins (IsiA and Pcb) of cyanobacteria. [Reviewing Editor: Dr. Patrick Keeling]  相似文献   

9.
10.
The transferrin receptor family is represented by at least seven different homologous proteins in primates. Transferrin receptor (TfR1) is a type II membrane glycoprotein that, as a cell surface homodimer, binds iron-loaded transferrin as part of the process of iron transfer and uptake. Other family members include transferrin receptor 2 (TfR2), glutamate carboxypeptidase II (GCP2 or PSMA), N-acetylated α-linked acidic dipeptidase-like protein (NLDL), N-acetylated α-linked acidic dipeptidase 2 (NAALAD2), and prostate-specific membrane antigen-like protein (PMSAL/GCPIII). We compared 86 different sequences from 24 different species, from mammals to fungi. Through this comparison, we have identified several highly conserved residues specific to each family not previously associated with clinical mutations. The evolutionary history of the TfR/GCP2 family shows repeated episodes of duplications consistent with recent theories that nondispensable, slowly evolving genes are more likely to form multiple gene families. [Reviewing Editor: Dr. Gail Simmons]  相似文献   

11.
Ribosome-inactivating proteins (RIPs) represent a type of protein that universally inactivates the ribosome thus inhibiting protein biosynthesis. Curcin-L was a type I RIP found in Jatropha curcas L.. Its expression could be activated in leaves by treatments with abscisic acid, salicylic acid, polyethylene glycol, temperature 4, 45°C and ultraviolet light. A 654 bp fragment of a 5′ flanking region preceding the curcin-L gene, designated CP2, was cloned from the J. curcas genome and its expression pattern was studied via the expression of the β-glucuronidase (GUS) gene in transgenic tobacco. Analysis of GUS activities showed that the CP2 was leaf specific, and was able to drive the expression of the reporter gene under stress-induction conditions. Analysis of a series of 5′-deletions of the CP2 suggested that several promoter motifs were necessary to respond to environmental stresses.  相似文献   

12.
Summary Signal transduction across biological membranes is modulated by a family of related GTP-binding proteins termed G proteins. These G proteins have a heterotrimeric structure composed of α, β, and γ subunits. The α subunits of the G proteins bind GTP and appear to determine the biochemical specificity of the protein. We have recently cloned and characterized cDNA encoding two G-protein α subunits, αi and αh. The former is a substrate for ADP-ribosylation by pertussis toxin. The protein corresponding to αh has not yet been identified. These cDNAs encode proteins, which demonstrate 90% sequence identity to one another and also show marked similarity to other G proteins. The present studies were designed to determine whether the genes for these related proteins are clustered on a single human chromosome. Genomic DNA isolated from a panel of mouse-human hybrid cell lines was analyzed by hybridization to cDNAs for αi and αh. Based on the distribution patterns of αi and αh in cell hybrids, the gene for αi was assigned to human chromosome 7, and the gene for αh assigned to chromosome 12. These data suggest that the G-protein gene family may be distributed over at least two human chromosomes.  相似文献   

13.
14.
Total proteins in the pollen of Humulus scandens Lour, one of the most popular aeroallergens in China, were analyzed by two-dimensional electrophoresis in the current study. The proteins were extracted by Trichloracetic acid (TCA) method, and then separated by isoelectric focusing as the first dimension and SDS-PAGE as the second dimension. The spots of proteins were visualized by staining with Coomassie Brilliant Blue. After analysis with software (ImageMaster 2D), 122 different proteins were detected; isoelectric point (pI), Molecular weight (MW) and relative volume of each protein in the pollen were also discovered. This is the first high-resolution, two-dimensional protein map of the pollen of Humulus scandens Lour in China. Our finding has built a solid foundation for identification, characterization, gene cloning and standardization of allergenic proteins in the pollen of Humulus scandens Lour for further studies. Translated from Journal of Wuhan Botanical Research, 2006, 24(1): 58–62 [译自: 武汉植物研究]  相似文献   

15.
The compact (dwarf) plant architecture is an important trait in cucumber (Cucumis sativus L.) breeding that has the potential to be used in once-over mechanical harvest of cucumber production. Compact growth habit is controlled by a simply inherited recessive gene cp. With 150 F2:3 families derived from two inbred cucumber lines, PI 308915 (compact vining) and PI 249561 (regular vining), we conducted genome-wide molecular mapping with microsatellite (simple sequence repeat, SSR) markers. A framework genetic map was constructed consisting of 187 SSR loci in seven linkage groups (chromosomes) covering 527.5 cM. Linkage analysis placed cp at the distal half of the long arm of cucumber Chromosome 4. Molecular markers cosegregating with the cp locus were identified through whole genome scaffold-based chromosome walking. Fine genetic mapping with 1,269 F2 plants delimited the cp locus to a 220 kb genomic DNA region. Annotation and function prediction of genes in this region identified a homolog of the cytokinin oxidase (CKX) gene, which may be a potential candidate of compact gene. Alignment of the CKX gene homologs from both parental lines revealed a 3-bp deletion in the first exon of PI 308915, which can serve as a marker for marker-assisted selection of the compact phenotype. This work also provides a solid foundation for map-based cloning of the compact gene and understanding the molecular mechanisms of the dwarfing in cucumber.  相似文献   

16.
In this study, a simple procedure is described for patterning biotin on a glass substrate and then selectively immobilizing proteins of interest onto the biotin-patterned surface. Microcontact printing (μCP) was used to generate the micropattern of biotin and to demonstrate the selective immobilization of proteins by using enhanced green fluorescent protein (EGFP) as a model protein, of which the C-terminus was fused to a core streptavidin (cSA) gene ofStreptomyces avidinii. Confocal fluorescence microscopy was used to visualize the pattern of the immobilized protein (EGFP-cSA), and surface plasmon resonance was used to characterize biological activity of the immobilized EGFP-cSA. The results suggest that this strategy, which consists of a combination of μμCP and cSA-fused proteins, is an effective way for fabricating biologically active substrates that are suitable for a wide variety of applications, one such being the use in protein-protein assays. These authors equally contributed to this study  相似文献   

17.
Rhodobacter capsulatus contains lhaA and pucC genes that have been implicated in light-harvesting complex 1 and 2 (LH1 and LH2) assembly. The proteins encoded by these genes, and homologues in other photosynthetic organisms, have been classified as the bacteriochlorophyll delivery (BCD) family of the major facilitator superfamily. A new BCD family phylogenetic tree reveals that several PucC, LhaA and Orf428-related sequences each form separate clusters, while plant and cyanobacterial homologues cluster more distantly. The PucC protein is encoded in the pucBACDE superoperon which also codes for LH2 α (PucA) and β (PucB) proteins. PucC was previously shown to be necessary for formation of LH2. This article gives evidence indicating that PucC has a shepherding activity that keeps the homologous α and β proteins of LH1 and LH2 apart, allowing LH1 to assemble properly. This shepherding function was indicated by a 62% reduction in LH1 levels in ΔLHII strains carrying plasmids encoding pucBA along with a C-terminally truncated pucC gene. More severe reductions in LH1 were seen when the truncated pucC gene was co-expressed in the presence of C-terminal PucC::PhoA fusion proteins. It appears that interaction between truncated PucC::PhoA fusion proteins and the truncated PucC protein disrupts LH1 assembly, pointing towards a PucC dimeric or multimeric functional unit.  相似文献   

18.
 The interleukin (IL)-1 family of proteins plays an important role in inflammatory and defense mechanisms. The recently characterized IL1HY1 cDNA encodes a new member of the IL-1 receptor antagonist family (IL-1ra). In this report, we describe the complete nucleotide sequence of the human IL1HY1 gene. We sequenced approximately 7600 nucleotides and found four coding exons ranging in size from 55 to 2288 nucleotides. The 5′ untranslated region is formed by one of two alternatively used exons and one invariably present exon which also contains the region encoding the first nine amino acids of the protein. IL1HY1 and IL-1ra intron positions are well conserved within the protein-coding region, providing evidence that these genes arose from a duplication of a primordial IL-1 receptor antagonist gene. Received: 15 October 1999 / Revised: 30 December 1999  相似文献   

19.
The Rho family small GTPases Rho, Rac, and Cdc42 regulate cell shape and motility through the actin cytoskeleton. These proteins cycle between a GTP-bound “on” state and a GDP-bound “off” state and are negatively regulated by GTPase-activating proteins (GAPs), which accelerate the small GTPase’s intrinsic hydrolysis of bound GTP to GDP. Drosophila RhoGAP68F is similar to the mammalian protein p50RhoGAP/Cdc42GAP, which exhibits strong GAP activity toward Cdc42. We find that, despite the strong similarities between RhoGAP68F and p50RhoGAP/Cdc42GAP, RhoGAP68F is most effective as a GAP for RhoA. These in vitro data are supported by the in vivo analysis of mutants in RhoGAP68F. We demonstrate through the characterization of two alleles of the RhoGAP68F gene that RhoGAP68F participates in gastrulation of the embryo, a morphogenetic event driven by cell constriction that involves RhoA signaling. We propose that RhoGAP68F functions as a regulator of RhoA signaling during gastrulation.  相似文献   

20.
Cellulosimicrobium cellulans (also known with the synonyms Cellulomonas cellulans, Oerskovia xanthineolytica, and Arthrobacter luteus) is an actinomycete that excretes yeast cell wall lytic enzyme complexes containing endo-β-1,3-glucanases [EC 3.2.1.39 and 3.2.1.6] as key constituents. Three genes encoding endo-β-1,3-glucanases from two C. cellulans strains have been cloned and characterised over the past years. The βglII and βglII A genes from strain DSM 10297 (also known as O. xanthineolytica LL G109) encoded proteins of 40.8 and 28.6 kDa, respectively, whereas the β-1,3-glucanase gene from strain ATCC 21606 (also known as A. luteus 73–14) encoded a 54.5 kDa protein. Alignment of their deduced amino acid sequences reveal that βglII and βglII A have catalytic domains assigned to family 16 of glycosyl hydrolases, whereas the catalytic domain from the 54.5 kDa glucanase belongs to family 64. Notably, both βglII and the 54.5 kDa β-1,3-glucanase are multidomain proteins, having a lectin-like C-terminal domain that has been assigned to family 13 of carbohydrate binding modules, and that confers to β-1,3-glucanases the ability to lyse viable yeast cells. Furthermore, βglII may also undergo posttranslational proteolytic processing of its C-terminal domain, resulting in a truncated enzyme retaining its glucanase activity but with very low yeast-lytic activity. In this review, the diversity in terms of structural and functional characteristics of the C. cellulans β-1,3-glucanases has been compiled and compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号