首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 526 毫秒
1.
K T Trevor 《The New biologist》1990,2(11):1004-1014
The murine keratins Endo B and Endo A, which are homologs of the human keratins K18 and K8, constitute the intermediate filaments (IFs) that are found in all simple epithelia of the adult and in the first epithelial derivatives of the early embryo. The cellular role of simple epithelial keratins in development and differentiation was investigated by inducing filament collapse in HR9 endoderm and F9 embryonal carcinoma cells in which mutant Endo B protein was constitutively expressed. By immunolocalization techniques a perturbation of the keratin network was revealed as well as concomitant disruption of vimentin IFs and displacement of surface desmosomal proteins, demonstrating an intimate structural association of Endo B/A filaments with these cellular components. In aggregates of differentiating F9 cells displaying altered Endo A/B IFs, the formation of a compact, polarized visceral endoderm layer was significantly compromised. These results indicate that an intact keratin network influences the three-dimensional formation of cell-cell or cell-substratum contacts in embryonic visceral endoderm.  相似文献   

2.
The cytoskeletal B protein isolated from extraembryonic endodermal cells (Endo B) is a 50-kDa subunit of intermediate filaments that is expressed in trophoblast and extraembryonic endoderm of early mouse embryos. Endo B was compared to cytokeratin D of adult mouse liver by immunoprecipitation, two-dimensional gel electrophoresis, and peptide mapping. The two proteins were indistinguishable. A cDNA probe for Endo B mRNA identified mRNA species of similar size in liver and endoderm, and primer extension analysis indicates that the Endo B mRNAs from the two cell types have similar 5' ends. An internal fragment of the Endo B cDNA was found to cross-hybridize with a conservative domain of a human type I keratin cDNA under low stringency conditions, demonstrating that Endo B is related to type I keratins. However, under stringent conditions necessary for genomic Southern analysis, mouse and human genomic fragments homologous to the Endo B cDNA were distinct from those defined by hybridization with the type I keratin cDNA. These results indicate that Endo B is related to the type I keratin family and expands the number of type I keratin genes identified in both the mouse and human genomes. It is likely that extraembryonic endoderm, one of the first differentiated cell types of the mammalian embryo, and adult liver express the same Endo B gene.  相似文献   

3.
Intermediate filament protein synthesis in preimplantation murine embryos   总被引:20,自引:0,他引:20  
The synthesis of two extraembryonic endodermal cytoskeletal proteins (Endo B, Mr = 50,000; Endo A, Mr = 55,000) was detected by immunoprecipitation at the 4- to 8-cell stage of preimplantation mouse development. The first detectable synthesis of both proteins occurs at about the same time as the earliest allocation of cells to the trophectodermal lineage. Both Endo A and B were identified in the two-dimensional gel pattern of blastocyst cytoskeletal proteins prepared by nonionic detergent and high-salt extraction. Endo A and B were identified as the y and x blastocyst cytoskeletal proteins, respectively, previously described by other investigators. Antibodies to Endo B are shown to react with intermediate filaments at the electron microscopic level, confirming that Endo B is an authentic intermediate filament protein. Previously, the TROMA 1 monoclonal antibody prepared by other investigators was shown to react specifically with Endo A and to decorate trophoblast cytoskeletons but did not react with the inner cell mass of blastocysts. Endo B antibodies are now also shown to decorate trophoblast cytoskeletons.  相似文献   

4.
The insoluble cytoskeletal material remaining after detergent lysis of 'Normal' Murine Mammary Gland (NMuMG) cells, growing on plastic or collagen gel substrata, was analyzed by two-dimensional gel electrophoresis. The identity of the cytoskeletal elements was determined by their solubility properties, electrophoretic separation pattern, and immunoreactivity using monoclonal antibodies against intermediate filament proteins (AIF), keratins (AE1 and AE3) and actin. The electrophoretic pattern of the cytoskeletal elements from the NMuMG cell strain was found to be very similar to that of primary mouse mammary epithelial cells. Both NMuMG and primary mammary epithelial cells when grown on collagen exhibited an increased expression of a 49 kD protein with a pI of 5.6, that appeared to be a cytokeratin. Many of the cytoskeletal proteins remained tightly attached to the collagen gel substratum after cell lysis. These results demonstrate that the NMuMG cell strain has retained a stable expression of cytokeratins that remains responsive to the presence of extracellular matrix material.  相似文献   

5.
A cDNA clone of a keratin-related, intermediate filament protein, designated Endo B, was constructed from size-fractionated parietal endodermal mRNA and characterized. The 1466-nucleotide cDNA insert contains an open reading frame of 1272 nucleotides that would result in 5' and 3' noncoding sequences of 54 and 60 nucleotides, respectively. The predicted amino acid composition, molecular weight (47,400), and peptide pattern correlate well with data obtained on the isolated protein. The predicted amino acid sequence fits easily into the general domain structure suggested for all intermediate filament proteins with a unique amino-terminal head domain, a large conserved central domain of predominantly alpha-helical structure, and a relatively unique carboxyl-terminal or tail domain. Over the entire molecule, Endo B is 43% identical with human 52-kDa epidermal type I keratin. However, over two of the three regions contained in the central domain that are predicted to form coiled-coil structures, the Endo B is 54-68% identical with other type I keratin sequences. This homology, along with the presence of the completely conserved sequence DNARLAADDFR-KYE, which is found in all type I keratins, permits the unambiguous identification of Endo B as a type I keratin. Comparison of the Endo B sequence to other intermediate filament proteins reveals 22 residues which are identical in all intermediate filament proteins regardless of whether filament formation requires only one type of protein subunit (vimentin, desmin, glial fibrillar acidic protein, or a neurofilament protein) or two dissimilar types (type I and type II keratins). Endo B mRNA was detectable in RNA isolated from F9 cells treated with retinoic acid for 48 h. Approximately three to five genes homologous to Endo B were detected in the mouse genome.  相似文献   

6.
Affinity-purified antibodies raised against three flagellar tektins (tektin A, B, and C) from each of two sea urchin species (Lytechinus pictus and Strongylocentrotus purpuratus) were used to study the immunological relationship between tektins and intermediate filament proteins. By immunofluorescence microscopy, several antitektins revealed a staining of intermediate filament-like arrays in three vertebrate cell lines tested. Immunoelectron microscopy substantiated the cross reaction of antitektins with intermediate filaments. When the cells were treated with cytochalasin B, the arrangement of the filaments recognized by anti-(Lp)-tektin B was altered; the alteration observed is typical for keratin filaments. By immunoblot, it was found that anti-(Lp)-tektin B cross reacted with two isoforms or different proteins of approximately 54 kD with pIs of 6.1 and 6.2 in human carcinoma epithelia (HeLa) cells and with two isoforms or different proteins of approximately 55 kD with pIs of 6.1 and 6.3 in pig kidney epithelia (LLC-PK1) cells. Furthermore, when antitektin antibodies were affinity purified with the 54 kD HeLa keratin, these keratin-specific antibodies again restained the original tektins on immunoblots. From these observations, it can be concluded that tektins and keratins are to a certain extent immunologically related. To determine the degree of the immunological relationship, tektin filaments and purified intermediate filaments from HeLa cells were cleaved with alpha-chymotrypsin and examined by quantitative immunoblot analysis. On immunoblots of digested tektins from L. pictus, anti-(Lp)-tektin B recognized several cleavage products in the range of 20 kD to 46 kD. However, when immunoblots of digested intermediate filaments from HeLa cells were probed, the cross reaction of anti-(Lp)-tektin B with HeLa keratins was eliminated by more than 98% within 2 min, suggesting that tektins have epitopes in common with the end domains of certain keratins.  相似文献   

7.
The earliest gene duplications in the evolution of the intermediate filament proteins created the ancestors of acidic keratins, basic keratins, nonepithelial intermediate filament proteins, and lamins. Biochemistry and function of cytoplasmic intermediate filaments differ greatly from those of lamins. Cytoplasmic intermediate filament proteins have a different cellular location than lamins, form different types of supramolecular structures, and are missing a protein segment found in lamins; but the data presented here indicate that the cytoplasmic intermediate filaments do not have a common ancestor separate from the ancestor of lamins. In the non-epithelial intermediate filament branch, the ancestor of neurofilament proteins and the common ancestor of desmin, vimentin, and glial fibrillary acidic protein (GFAP) diverged first. By evolutionary criteria, the intermediate filament protein recently discovered in neuronal cells does not belong to the neurofilament family but is more closely related to desmin, vimentin, and GFAP. Sequences of different sub-domains yield different evolutionary trees, possibly indicating existence of sub- domain-specific functions.   相似文献   

8.
Blumenthal SS  Clark GB  Roux SJ 《Planta》2004,218(6):965-975
In immunoblot assays, at least three putative nuclear intermediate filament (NIF) proteins were detected in nuclear envelope-matrix (NEM) and lamin (L1) fractions of nuclei from plumules of dark-grown pea (Pisum sativum L.) seedlings. These NIF proteins had apparent molecular masses of ca. 65, 60, and 54 kDa (also referred to as p65, p60, and p54), and appeared as multiple isoelectric forms, with pIs ranging from ca. 4.8 to 6.0. Polyclonal and monoclonal antibodies were raised to the 65-kDa NIF protein bands excised from gels after electrophoresis. These anti-pea antibodies were specifically cross-reactive with the pea nuclear p65, p60, and p54 proteins and also with chicken lamins. Sequence alignment of peptide fragments obtained from the 65- and 60-kDa pea NIF proteins showed similarity with animal intermediate filament proteins such as lamins and keratins and with certain plant proteins predicted to have long coiled-coil domains. These pea NIF proteins were further purified and enriched from the NEM fraction using methods similar to those used for isolating animal lamins. When negatively stained and viewed by transmission electron microscopy, the filaments in the pea lamin (L1) fraction appeared to be 6–12 nm in diameter. As assayed by immunofluorescence cytochemistry using a confocal laser-scanning microscope, fixed pea plumule cells displayed uniform as opposed to peripheral nuclear staining by several of the antibody preparations, both polyclonal and monoclonal. This report describes the biochemical and immunological properties of these pea NIF proteins.Abbreviations IF Intermediate filament - L Lamin fraction - LM Lamina-matrix fraction - MAb JLA20 Anti-chicken actin monoclonal antibody - MAb LN43 Anti-human lamin B2 monoclonal antibody - MAb PL19 Anti-pea lamin #19 monoclonal antibody - MAb TIB 131 Anti-intermediate filament monoclonal antibody - N Nuclei fraction - NEM Nuclear envelope-matrix fraction - NIF Nuclear intermediate filament - PAb PL3 Anti-pea lamin #3 polyclonal antibody  相似文献   

9.
1. The major proteins which comprise the high salt/detergent-insoluble cytoskeletal matrix of rat hepatic tumor cells containing abnormal (Mallory body-like) aggregates of intermediate filaments were distinguished on the basis of electrophoretic mobility and differential solubility. 2. Gel electrophoresis of the intermediate filament-enriched cytoskeletal fraction of Mallory body hepatic tumor cells revealed the presence of: (a) intermediate filament proteins typical of cultured liver epithelial cells (cytokeratins A and D, vimentin), (b) some residual actin and, (c) two peptides of Mr = 68,000-72,000. 3. Analysis of the products of filament disassembly/reassembly mixtures indicated that the two Mr = 68,000-72,000 peptide species had the solubility characteristics of nuclear lamins. 4. The presence of nuclear lamin proteins in the high salt/detergent-resistant fraction of cultured liver cells was consistent with the resolution of residual nuclear-like structures in extracted cell monolayers. 5. Thus, while cytokeratin/vimentin-class intermediate filament proteins and nuclear lamins co-isolate from rat liver cells under conditions of high salt/detergent extraction, these two types of cytoskeletal proteins could be distinguished on the basis of their differential solubility and molecular weight.  相似文献   

10.
Embryos obtained by crossing heterozygous t12 mutant mice were labeled metabolically with 14C-amino acids at the mid-morula stage, and the protein pattern of single embryos was examined by two-dimensional polyacrylamide gel electrophoresis. After labeling, the morphology was still normal. The genotypes of the embryos could be identified by the allelic forms of Tcp-1 (p63/6.9) protein on the gel. In t12/t12 embryos, the bulk of syntheses of macromolecules such as proteins and RNAs [poly(A)+, as well as poly(A)-RNA] was normal, however, syntheses of several proteins were markedly reduced. Some of these proteins present in reduced amounts appeared to be components of cytokeratin-type intermediate filaments (endo A and endo B), judging from their insolubility in non-ionic detergent, their appearance in the mid-morula stage, their location in trophectodermal cells, and their electrophoretic mobilities. These observations suggest that mechanisms for the induction of the intermediate filament proteins are defective in embryos homozygous for the t12 mutation. Possible relationships between the morphological abnormalities of the embryos and their defective synthesis of intermediate filaments are discussed.  相似文献   

11.
Murine F9 embryonal carcinoma cells exposed to retinoic acid and dibutyryl cyclic AMP gradually arborize and acquire a neuron-like morphology in monolayer culture. Whether F9 cells can be induced to differentiate into cells with features specific to neural cells is controversial. We analyzed the intermediate filament content and pericellular matrix proteins of F9 cells after exposing them to retinoic acid, dibutyryl cyclic AMP, and nerve growth factor. In long-term cultures, a great majority of the cells appeared neuron-like, but showed intra- and pericellular laminin and type IV collagen, and frequently cytokeratin filaments as well. Several monoclonal antibodies to neurofilaments did not react with these cells in immunofluorescence or immunoblotting, though they recognize either all or individual mouse neurofilament triplet proteins. Polyclonal antibodies to neurofilament proteins gave a diffuse, nonfibrillar, vinblastine-resistant fluorescence in the morphologically neuron-like cells, but in immunoblotting failed to reveal polypeptides compatible with neurofilament triplet proteins. In long-term cultures, most of the cells appeared to have partially or totally lost the intermediate filaments. This was confirmed with anti-IFA antibodies which normally react with all intermediate filament proteins. The F9-derived cells did not respond to nerve growth factor in any detectable way. We conclude that the morphologically neuron-like derivatives of F9 cells display characteristics of modified parietal endoderm-like cells and do not show unequivocal features of neural cells.  相似文献   

12.
Ubiquitin cross-reactive protein (UCRP), a 15-kDa interferon-induced protein, is a sequence homolog of ubiquitin that is covalently ligated to intracellular proteins in a parallel enzymatic reaction and is found at low levels within cultured cell lines and human tissues not exposed to interferon. Ubiquitin and UCRP ligation reactions apparently target distinct subsets of intracellular proteins, as judged from differences in the distributions of the respective adducts revealed on immunoblots. In this study, successive passages of the human lung carcinoma line A549 in the presence of neutralizing antibodies against alpha and beta interferons had no effect on the levels of either free or conjugated UCRP, indicating that these UCRP pools are constitutively present within uninduced cells and are thus not a consequence of autoinduction by low levels of secreted alpha/beta interferon. In an effort to identify potential targets for UCRP conjugation, the immunocytochemical distribution of UCRP was examined by using affinity-purified polyclonal antibodies against recombinant polypeptide. UCRP distributes in a punctate cytoskeletal pattern that is resistant to extraction by nonionic detergents (e.g., Triton X-100) in both uninduced and interferon-treated A549 cells. The cytoskeletal pattern colocalizes with the intermediate filament network of epithelial and mesothelial cell lines. Immunoblots of parallel Triton X-100-insoluble cell extracts suggest that the cytoskeletal association largely results from the noncovalent association of UCRP conjugates with the intermediate filaments rather than direct ligation of the polypeptide to structural components of the filaments. A significant increase in the sequestration of UCRP adducts on intermediate filaments accompanies interferon induction. These results suggest that UCRP may serve as a trans-acting binding factor directing the association of ligated target proteins to intermediate filaments.  相似文献   

13.
I Hanukoglu  E Fuchs 《Cell》1982,31(1):243-252
We have determined the DNA sequence of a cloned cDNA that is complementary to the mRNA for the 50 kilodalton (kd) human epidermal keratin. This provides the first amino acid sequence for a cytoskeletal keratin. Comparison of this sequence with those of other keratins reveals an evolutionary relationship between the cytoskeletal and the microfibrillar keratins, but shows no homology to matrix or feather keratins. The 50 kd keratin shares 28%-30% homology with partial sequences of other intermediate filament proteins, which suggests that keratins may be the most distantly related members of this class of fibrous proteins. Our computer analyses predict that the 50 kd keratin contains two long alpha-helical domains separated by a cluster of helix-inhibitory residues in the middle of the protein. These findings indicate that despite major sequence divergence among intermediate filament proteins, they retain sequences compatible with secondary structural features that appear to be common to all of them.  相似文献   

14.
A monoclonal antibody to rat hepatoma keratin demonstrates a close association of intermediate filaments with the nucleus in hepatoma cells. Immunoblot analysis of nuclear fractions and immunofluorescence of nuclei both prepared by standard procedures, indicate that intermediate filament proteins are consistently present. Sodium citrate extraction of these preparations diminishes the amount of intermediate filament proteins but does not totally remove the antigenic moieties, suggesting a tight association of intermediate filaments with nuclei. The results from both immunoblot analysis and immunofluorescent localization demonstrate the increased amount of keratins associated with hepatoma cell nuclei.  相似文献   

15.
A polypeptide of 54-kDa molecular mass (p54) induced by molecularly cloned human interferon gamma (rIFN-gamma) in human amnion U cells was characterized biochemically and immunologically. Rabbit polyclonal antibody to p54 was prepared using p54 purified from human amnion U cells as the immunogen. As measured by immunoprecipitation of [35S]methionine pulse-labeled extracts or by immunoblot analysis of unlabeled extracts, the synthesis of p54 was greatly elevated in three human cell lines treated with IFN-gamma, amnion U, fibroblast GM2767, and fibroblast F153. Moreover, the rabbit anti-p54 polyclonal antibody preparation cross-reacted with cytoskeleton-associated polypeptides prepared from human cells and from sea urchin embryos. By use of a monoclonal antibody probe directed against the common domain of intermediate filaments (anti-intermediate filament antibody), it was established that intermediate filament components are also induced by rIFN-gamma. Anti-p54 polyclonal antibody cross-reacted with anti-intermediate filament antibody-recognized, rIFN-gamma-induced polypeptides. Thus, it appears that p54 may be an IFN-induced cytoskeleton-associated polypeptide.  相似文献   

16.
The Arabidopsis thaliana genome encodes about 386 proteins with coiled-coil domains of at least 50 amino acids in length. In mammalian systems, many coiled-coil proteins are part of various cytoskeletal networks including intermediate filament protein, actin-binding proteins and MAP (microtubule-associated proteins). Immunological evidence suggests that some of these cytoskeletal proteins, such as lamins, keratins and tropomyosins, may be conserved in Arabidopsis. However, coiled-coil proteins are of low complexity, and thus, traditional sequence comparison algorithms, such as BLAST may not detect homologies. Here, we use the PROPSEARCH algorithm to detect putative coiled-coil cytoskeletal protein homologues in Arabidopsis. This approach reveals putative intermediate filament protein homologues of filensin, lamin and keratin; putative actin-binding homologues of ERM (ezrin/radixin/moesin), periplakin, utrophin, tropomyosin and paramyosin, and putative MAP homologues of restin/CLIP-170 (cytoplasmic linker protein-170). We suggest that the AtFPP (Arabiopsis thaliana filament-like plant protein) and AtMAP70 (Arabidopsis microtubule-associated protein 70) families of coiled-coil proteins may, in fact, be related to lamins and function as intermediate filament proteins.  相似文献   

17.
《The Journal of cell biology》1993,120(5):1251-1261
Keratins 1 (K1) and 10 (K10) are the predominant cytoskeletal intermediate filaments of epidermal cells during transition from the proliferative to the terminal differentiation stage. In situ, formation of the K1/K10 intermediate filament network occurs in the cytoplasm of cells with a preexisting cytoskeleton composed of keratins 5 and 14. To define cytoskeletal interactions permissive for formation of the K1/K10 filamentous network, active copies of mouse K1 and K10 genes were introduced into fibroblasts (NIH 3T3) which do not normally express these proteins. Transient and stable transfectants, as well as heterokaryons produced by fusions with epithelial cells, were evaluated for expression of K1 and K10 proteins and filament formation using specific antibodies. In contrast to keratin pairs K5/K14 and K8/K18, the K1/K10 pair failed to form an extensive keratin filament network on its own, although small isolated dense K1/K10 filament bundles were observed throughout the cytoplasm by EM. K1 and K10 filaments integrated only into the preexisting K5/K14 network upon fusion of the NIH 3T3 (K1/K10) cells with epithelial cells expressing endogenous K5/K14 or with NIH 3T3 cells which were transfected with active copies of the K5 and K14 genes. When combinations of active recombinant gene constructs for keratins 1, 5, 10, and 14 were tested in transient NIH 3T3 transfections, the most intact cytokeratin network observed by immunofluorescence was formed by the K5/K14 pair. The K1/K14 pair was capable of forming a cytoskeletal network, but the network was poorly developed, and usually perinuclear. Transfection of K10 in combination with K5 or K1 resulted in cytoplasmic agglomerates, but not a cytoskeleton. These results suggest that the formation of the suprabasal cytoskeleton in epidermis is dependent on the preexisting basal cell intermediate filament network. Furthermore, restrictions on filament formation appear to be more stringent for K10 than for K1.  相似文献   

18.
19.

Background

As a key player in suppression of colon tumorigenesis, Adenomatous Polyposis Coli (APC) has been widely studied to determine its cellular functions. However, inconsistencies of commercially available APC antibodies have limited the exploration of APC function. APC is implicated in spindle formation by direct interactions with tubulin and microtubule-binding protein EB1. APC also interacts with the actin cytoskeleton to regulate cell polarity. Until now, interaction of APC with the third cytoskeletal element, intermediate filaments, has remained unexamined.

Results

We generated an APC antibody (APC-M2 pAb) raised against the 15 amino acid repeat region, and verified its reliability in applications including immunoprecipitation, immunoblotting, and immunofluorescence in cultured cells and tissue. Utilizing this APC-M2 pAb, we immunoprecipitated endogenous APC and its binding proteins from colon epithelial cells expressing wild-type APC. Using Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS), we identified 42 proteins in complex with APC, including β-catenin and intermediate filament (IF) proteins lamin B1 and keratin 81. Association of lamin B1 with APC in cultured cells and human colonic tissue was verified by co-immunoprecipitation and colocalization. APC also colocalized with keratins and remained associated with IF proteins throughout a sequential extraction procedure.

Conclusion

We introduce a versatile APC antibody that is useful for cell/tissue immunostaining, immunoblotting and immunoprecipitation. We also present evidence for interactions between APC and IFs, independent of actin filaments and microtubules. Our results suggest that APC associates with all three major components of the cytoskeleton, thus expanding potential roles for APC in the regulation of cytoskeletal integrity.  相似文献   

20.
The VacA toxin produced by Helicobacter pylori acts inside cells and induces the formation of vacuoles arising from late endosomal/lysosomal compartments. Using VacA as bait in a yeast two-hybrid screening of a HeLa cell library, we have identified a novel protein of 54 kDa (VIP54), which interacts specifically with VacA, as indicated by co-immunoprecipitation and binding experiments. VIP54 is expressed in cultured cells and many tissues, with higher expression in the brain, muscle, kidney and liver. Confocal immunofluorescence microscopy with anti-VIP54 affinity- purified antibodies shows a fibrous pattern typical of intermediate filaments. Double label immunofluorescence performed on various cell lines with antibodies specific to different intermediate filament proteins revealed that VIP54 largely co-distributes with vimentin. In contrast to known intermediate filament proteins, VIP54 is predicted to contain approximately 50% of helical segments, but no extended coiled-coil regions. The possible involvement of this novel protein in interactions between intermediate filaments and late endosomal compartments is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号