共查询到20条相似文献,搜索用时 0 毫秒
1.
THIERRY LENGAGNE FLORENT ARTHAUD MICKAËL CORMIER PIERRE JOLY 《Biological journal of the Linnean Society. Linnean Society of London》2007,92(4):755-762
When pairing with high quality females, a male increases its fitness through an increased number and/or quality of sired offsprings. In anurans, size has often been used as a measure of female quality. In the present study, we examined the effects of pairing with large females for small males in the common toad, Bufo bufo . For the first time in anurans, we show a fitness cost for males to maintain amplexus with a large female. Indeed, although we did not detect any effect of male size on male pairing success in a first breeding event in the presence of other competing males, when males that were successful in the first breeding event were tested for a second time, male pairing success strongly decreased when they had been first paired with a large female. However, the higher fecundity of large females (1.52-fold more than that of small females) may override this pairing cost, especially because high fertilization rate was not linked to male/female body size ratio. Indeed, we did not detect any difference in egg fertilization success between small males paired with large and small females. Our results suggest that predictable cues of female reproductive value exist in common toads, thus meeting a prerequisite of the occurrence of male mate choice. Male mate choice, probably underestimated in anurans, may be particularly important in species where the breeding season is short and the number of mating events for a male is limited. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 755–762. 相似文献
2.
Jussi Lehtonen Geoff A. Parker Lukas Schärer 《Evolution; international journal of organic evolution》2016,70(5):1129-1135
There is a clear tendency in nature for males to compete more strongly for fertilizations than females, yet the ultimate reasons for this are still unclear. Many researchers—dating back to Darwin and Bateman—have argued that the difference is ultimately driven by the fact that males (by definition) produce smaller and more numerous gametes than females. However, this view has recently been challenged, and a formal validation of the link between anisogamy and sex roles has been lacking. Here, we develop mathematical models that validate the intuition of Darwin and Bateman, showing that there is a very simple and general reason why unequal gamete numbers result in unequal investment in sexually competitive traits. This asymmetry does not require multiple mating by either sex, and covers traits such as mate searching, where the male bias has been difficult to explain. Furthermore, our models show males and females are predicted to diverge more strongly when the fertilization probability of each female gamete is high. Sex roles thus ultimately trace back to anisogamy and the resulting consequences for the fertilization process. 相似文献
3.
Paolo Innocenti 《Biological reviews of the Cambridge Philosophical Society》2012,87(3):631-638
Females in many taxa experience postmating activation of their immune system, independently of any genital trauma or pathogenic attack arising from male‐female genital contact. This response has always been interpreted as a product of natural selection as it either prepares the female immune system for antigens arising from an implanted embryo (in the case of placental mammals), or is a “pre‐emptive strike” against infection or injury acquired during mating. While the first hypothesis has empirical support, the second is not entirely satisfactory. Recently, studies that have experimentally dissected the postmating responses of Drosophila melanogaster females point to a different explanation: male reproductive peptides/proteins that have evolved in response to postmating male‐male competition are directly responsible for activating particular elements of the female immune system. Thus, in a broad sense, males may be said to be immunogenic to females. Here, we discuss a possible direct role of sexual selection/sexual conflict in immune system evolution, in contrast to indirect trade‐offs with other life‐history traits, presenting the available evidence from a range of taxa and proposing ways in which the competing hypotheses could be tested. The major implication of this review is that immune system evolution is not only a product of natural selection but also that sexual selection and potentially sexual conflict enforces a direct selective pressure. This is a significant shift, and will compel researchers studying immune system evolution and ecological immunity to look beyond the forces generated by parasites and pathogens to those generated by the male ejaculate. 相似文献
4.
REBECCA S. LEGRAND DOUGLASS H. MORSE 《Biological journal of the Linnean Society. Linnean Society of London》2000,71(4):643-664
Sexual size dimorphism is often a likely outcome of the interplay between natural selection and sexual selection, with female size dictated primarily by natural selection that maximizes fecundity and male size by sexual selection that maximizes reproductive opportunities. Attention to male fitness has focused heavily on direct male-male conflict selecting for superior male size and/or fighting ability, although male reproductive traits vary immensely among animals. An alternative, advanced by Michael Ghiselin, posits highly mobile dwarf males as a strategy for finding relatively immobile females in low-density populations. Adult male crab spiders Misumena vatia , sit-and-wait predators, are strikingly smaller, much more active, and relatively longer-legged than their females. This size difference results largely from males having two fewer instars than females, which simultaneously results in marked protandry. Populations of M. vatia often were small and of low density, with a female-biased sex ratio and an operational sex ratio that changed strikingly over the season. Sexual selection through scramble competition (locating the female first) should favour this suite of characters in males of low-density populations. Although direct male-male contests favoured large males, the low densities of adult males and the dispersed, relatively immobile females led to low levels of direct intrasexual contest. Females exaggerated the problem of males in finding them by providing few cues to their presence, a pattern consistent with indirect mate choice. In addition to favouring high mobility, scramble competition favoured males that selected flowers attracting many prey, the sites most often occupied by females. 相似文献
5.
Ryosuke Motani Da-yong Jiang Olivier Rieppel Yi-fan Xue Andrea Tintori 《Proceedings. Biological sciences / The Royal Society》2015,282(1815)
The evolutionary history of sexual selection in the geologic past is poorly documented based on quantification, largely because of difficulty in sexing fossil specimens. Even such essential ecological parameters as adult sex ratio (ASR) and sexual size dimorphism (SSD) are rarely quantified, despite their implications for sexual selection. To enable their estimation, we propose a method for unbiased sex identification based on sexual shape dimorphism, using size-independent principal components of phenotypic data. We applied the method to test sexual selection in Keichousaurus hui, a Middle Triassic (about 237 Ma) sauropterygian with an unusually large sample size for a fossil reptile. Keichousaurus hui exhibited SSD biased towards males, as in the majority of extant reptiles, to a minor degree (sexual dimorphism index −0.087). The ASR is about 60% females, suggesting higher mortality of males over females. Both values support sexual selection of males in this species. The method may be applied to other fossil species. We also used the Gompertz allometric equation to study the sexual shape dimorphism of K. hui and found that two sexes had largely homogeneous phenotypes at birth except in the humeral width, contrary to previous suggestions derived from the standard allometric equation. 相似文献
6.
Extravagant secondary sexual characters show sexual size dimorphismin some species but are completely sex limited in others. Sexualornamentation has been hypothesized to benefit mainly malesthrough sexual selection, but the costs of secondary sexualcharacters initially would be experienced by both sexes. Theevolution of sexual size dimorphism of ornaments and, eventually,the complete sex-limited expression of these characters, willdepend on the effects of sexual and natural selection on thetwo sexes. A phylogenetic analysis controlling for similaritiesdue to common ancestry of 60 independent evolutionary originsof feather ornamentation in birds was used to investigate ecologicalfactors correlated with sexual size dimorphism and sex-limitedexpression of secondary sexual characters. When the size ofan ornament is large relative to body size, the trait willbe particularly costly for females, resulting in selectionfor increased sexual size dimorphism of the ornament. Indeed,sexual size dimorphism of ornaments was positively relatedto the relative size of male ornaments but was unrelated torelative size of female ornaments. Species with polygynousand lekking mating systems with little or no male parentalcare (in particular nest building and incubation) demonstratedsex-limited expression of ornaments as compared to monogamousspecies. Species with no food provisioning of offspring by themale showed a trend for increased sexual size dimorphism ofornaments. Therefore, large natural selection costs duringreproduction imposed by the expression of secondary sexualcharacters are related to the evolution of sexual size dimorphismof ornaments and eventually their complete loss from females. 相似文献
7.
Isobel Booksmythe Brian Mautz Jacqueline Davis Shinichi Nakagawa Michael D. Jennions 《Biological reviews of the Cambridge Philosophical Society》2017,92(1):108-134
Females can benefit from mate choice for male traits (e.g. sexual ornaments or body condition) that reliably signal the effect that mating will have on mean offspring fitness. These male‐derived benefits can be due to material and/or genetic effects. The latter include an increase in the attractiveness, hence likely mating success, of sons. Females can potentially enhance any sex‐biased benefits of mating with certain males by adjusting the offspring sex ratio depending on their mate's phenotype. One hypothesis is that females should produce mainly sons when mating with more attractive or higher quality males. Here we perform a meta‐analysis of the empirical literature that has accumulated to test this hypothesis. The mean effect size was small (r = 0.064–0.095; i.e. explaining <1% of variation in offspring sex ratios) but statistically significant in the predicted direction. It was, however, not robust to correction for an apparent publication bias towards significantly positive results. We also examined the strength of the relationship using different indices of male attractiveness/quality that have been invoked by researchers (ornaments, behavioural displays, female preference scores, body condition, male age, body size, and whether a male is a within‐pair or extra‐pair mate). Only ornamentation and body size significantly predicted the proportion of sons produced. We obtained similar results regardless of whether we ran a standard random‐effects meta‐analysis, or a multi‐level, Bayesian model that included a correction for phylogenetic non‐independence. A moderate proportion of the variance in effect sizes (51.6–56.2%) was due to variation that was not attributable to sampling error (i.e. sample size). Much of this non‐sampling error variance was not attributable to phylogenetic effects or high repeatability of effect sizes among species. It was approximately equally attributable to differences (occurring for unknown reasons) in effect sizes among and within studies (25.3, 22.9% of the total variance). There were no significant effects of year of publication or two aspects of study design (experimental/observational or field/laboratory) on reported effect sizes. We discuss various practical reasons and theoretical arguments as to why small effect sizes should be expected, and why there might be relatively high variation among studies. Currently, there are no species where replicated, experimental studies show that mothers adjust the offspring sex ratio in response to a generally preferred male phenotype. Ultimately, we need more experimental studies that test directly whether females produce more sons when mated to relatively more attractive males, and that provide the requisite evidence that their sons have higher mean fitness than their daughters. 相似文献
8.
Mating success in males of the lek mating ant species,Pogonomyrmex occidentalis, increases with increased body size. We estimated the magnitude of the selection coefficients on components of size by collecting males in copula and comparing their morphology to that of males that were collected at the lek but that were not mating. Four characters, body mass, head width, wing length, and leg length, were measured for a sample of 225 mating and 324 nonmating males and 225 females. Significant direct selection favors increased wing length and leg length. Multiple regression of transformed variables (principal components) indicated that the increased mating success of larger males is a function of all four characters. We found no evidence of positive assortative mating on the basis of any individual character or on the multivariate general size variable (the first principal component). 相似文献
9.
Olsson M Shine R Wapstra E Uivari B Madsen T 《Evolution; international journal of organic evolution》2002,56(7):1538-1542
Sexual dimorphism is widespread in lizards, with the most consistently dimorphic traits being head size (males have larger heads) and trunk length (the distance between the front and hind legs is greater in females). These dimorphisms have generally been interpreted as follows: (1) large heads in males evolve through male-male rivalry (sexual selection); and (2) larger interlimb lengths in females provide space for more eggs (fecundity selection). In an Australian lizard (the snow skink, Niveoscincus microlepidotus), we found no evidence for ongoing selection on head size. Trunk length, however, was under positive fecundity selection in females and under negative sexual selection in males. Thus, fecundity selection and sexual selection work in concert to drive the evolution of sexual dimorphism in trunk length in snow skinks. 相似文献
10.
Males and females frequently have different fitness optima for shared traits, and as a result, genotypes that are high fitness as males are low fitness as females, and vice versa. When this occurs, biasing of offspring sex-ratio to reduce the production of the lower-fitness sex would be advantageous, so that for example, broods produced by high-fitness females should contain fewer sons. We tested for offspring sex-ratio biasing consistent with these predictions in broad-horned flour beetles. We found that in both wild-type beetles and populations subject to artificial selection for high- and low-fitness males, offspring sex ratios were biased in the predicted direction: low-fitness females produced an excess of sons, whereas high-fitness females produced an excess of daughters. Thus, these beetles are able to adaptively bias sex ratio and recoup indirect fitness benefits of mate choice. 相似文献
11.
P. E. Hopwood A. J. Moore T. Tregenza N. J. Royle 《Journal of evolutionary biology》2016,29(3):541-550
Male parents face a choice: should they invest more in caring for offspring or in attempting to mate with other females? The most profitable course depends on the intensity of competition for mates, which is likely to vary with the population sex ratio. However, the balance of pay‐offs may vary among individual males depending on their competitive prowess or attractiveness. We tested the prediction that sex ratio and size of the resource holding male provide cues regarding the level of mating competition prior to breeding and therefore influence the duration of a male's biparental caring in association with a female. Male burying beetles, Nicrophorus vespilloides were reared, post‐eclosion, in groups that differed in sex ratio. Experimental males were subsequently translocated to the wild, provided with a breeding resource (carcass) and filmed. We found no evidence that sex ratio cues prior to breeding affected future parental care behaviour but males that experienced male‐biased sex ratios took longer to attract wild mating partners. Smaller males attracted a higher proportion of females than did larger males, securing significantly more monogamous breeding associations as a result. Smaller males thus avoided competitive male–male encounters more often than larger males. This has potential benefits for their female partners who avoid both intrasexual competition and direct costs of higher mating frequency associated with competing males. 相似文献
12.
《Ethology, Ecology and Evolution》2012,24(2):155-160
In a laboratory study of sexual selection in Drosophila melanogaster, the mating advantage of larger males was seen to change with the sex ratio. Larger males were more successful in achieving copulations when the sex ratio was equal or when males were more abundant and thus under competitive conditions. Male size also influenced order of mating, as larger males mated earlier than smaller ones. Assortative mating for wing length was not consistent. 相似文献
13.
R. F. Oliveira J. A. Miranda N. Carvalho E. J. Gonçalves M. S. Grober R.S Santos 《Journal of fish biology》2000,57(6):1416-1428
Larger male Azorean rock-pool blennies Parablennius sanguinolentus parvicornis received more female visits, were courted more often by females and received more spawnings. Larger males also received a higher number of male intrusions, attacked more conspecifics and defended larger territories. Larger males showed more nest cleaning behaviour and a marginally non-significant trend for higher egg fanning rate. Male courtship, male attack rate against conspecifics and parental behaviour were all correlated with the frequency of female spawnings received by each male even when controlling for male size, suggesting that these behaviour patterns influence male mating success. On the other hand, a positive partial correlation was found between female courtship and the frequency of female spawnings, controlling for the number of female visits, which suggests a role for female mate choice on male mating success. Finally, males nesting in chambers in the bottom of pools received more spawnings than males nesting either in crevices or under boulders. However, nest opening area was associated significantly negatively with male mating success, when controlling for male size. Thus, the present data suggest strongly that male characteristics overrule nest characteristics in determining male mating success in the Azorean rock-pool blenny. 相似文献
14.
Robert Poulin 《Biological journal of the Linnean Society. Linnean Society of London》1997,62(4):567-580
Females are larger than males in most invertebrate taxa, a phenomenon believed to result from the pressures exerted on female body size by size-dependent fecundity. Male-male competition, which can act on male body size, is not thought to play as important a role in the evolution of sexual size dimorphism in invertebrates as it apparently does in some vertebrate groups. Here, using a comparative approach, the relationship between sexual size dimorphism and adult sex ratio is examined across 46 natural populations (41 species) and 30 experimental populations (21 species) of parasitic nematodes. If male-male competition via physical contests is important, relative male size should increase as the sex ratio becomes less female-biased. This is exactly what was found in the analyses, where residuals of male size regressed on female size were used as measures of sexual size dimorphism. This result was independent of any phylogenetic influences, and was obtained for both natural and experimental nematode populations. In addition, there was no evidence of any Allometric relationship between male and female body size. The average ratio of male size to female size was roughly constant across all species and independent of body size. The results are consistent with a role for male-male competition in explaining specific deviations from the average ratio of male to female body size, suggesting a significant role for sexual selection in the evolution of nematode body sizes. 相似文献
15.
Although many studies examine the form of sexual selection in males, studies characterizing this selection in females remain sparse. Sexual selection on females is predicted for sex‐role‐reversed Mormon crickets, Anabrus simplex, where males are choosy of mates and nutrient‐deprived females compete for matings and nutritious nuptial gifts. We used selection analyses to describe the strength and form of sexual selection on female morphology. There was no positive linear sexual selection on the female body size traits predicted to be associated with male preferences and female competition. Instead, we detected selection for decreasing head width and mandible length, with stabilizing selection as the dominant form of nonlinear selection. Additionally, we tested the validity of a commonly used instantaneous measure of mating success by comparing selection results with those determined using cumulative mating rate. The two fitness measures yielded similar patterns of selection, supporting the common sampling method comparing mated and unmated fractions. 相似文献
16.
Tamás Székely András Liker Robert P. Freckleton Claudia Fichtel Peter M. Kappeler 《Proceedings. Biological sciences / The Royal Society》2014,281(1788)
Adult sex ratio (ASR) is a central concept in population demography and breeding system evolution, and has implications for population viability and biodiversity conservation. ASR exhibits immense interspecific variation in wild populations, although the causes of this variation have remained elusive. Using phylogenetic analyses of 187 avian species from 59 families, we show that neither hatching sex ratios nor fledging sex ratios correlate with ASR. However, sex-biased adult mortality is a significant predictor of ASR, and this relationship is robust to 100 alternative phylogenetic hypotheses, and potential ecological and life-history confounds. A significant component of adult mortality bias is sexual selection acting on males, whereas increased reproductive output predicts higher mortality in females. These results provide the most comprehensive insights into ASR variation to date, and suggest that ASR is an outcome of selective processes operating differentially on adult males and females. Therefore, revealing the causes of ASR variation in wild populations is essential for understanding breeding systems and population dynamics. 相似文献
17.
M. Jirotkul 《Journal of fish biology》2000,56(3):739-741
The opportunity for sexual selection was greater when the operational sex ratio (OSR) in guppies Poecilia reticulata was biased towards males. This could be due to an increase in both male-male competition and female mate choice under male-biased OSR. 相似文献
18.
19.
Jaco M. Greeff 《Evolutionary ecology》1995,9(5):550-558
Summary Many fig wasp species have dimorphic males. These males often mate in different localities; one typically disperses before mating whereas the other does not disperse. In 1979 a model was developed for offspring allocation in dimorphic fig wasps, but it assumed that females only lay a single egg per fig. This assumption is not realistic and precludes any effects local mate competition (LMC) may exert on morph abundance. I develop a model without these restrictions and show that the optimal proportions of each morph is determined by two parameters. Firstly, the proportion of the non-dispersing morph is affected by the mean number of females that oviposit in a patch. This effect is due to the negative correlation between LMC between brothers and the number of females that oviposit in a patch. Secondly, the proportions of both male morphs correlate with the expected proportion of females which will mate with each morph. The separation of the two parameters generalizes the model to any other species which is spatially structured and which has two male morphs or even two alternative mating strategies. A comparison of two models shows that parent—offspring conflict involving morph ratios will not have far reaching consequences. I test these models using the 1979 model's data and both models accurately predict the variation in morph ratios in six species of dimorphic fig wasps. 相似文献
20.
Robin M. Hare Leigh W. Simmons 《Biological reviews of the Cambridge Philosophical Society》2019,94(3):929-956
For sexual selection to act on a given sex, there must exist variation in the reproductive success of that sex as a result of differential access to mates or fertilisations. The mechanisms and consequences of sexual selection acting on male animals are well documented, but research on sexual selection acting on females has only recently received attention. Controversy still exists over whether sexual selection acts on females in the traditional sense, and over whether to modify the existing definition of sexual selection (to include resource competition) or to invoke alternative mechanisms (usually social selection) to explain selection acting on females in connection with reproduction. However, substantial evidence exists of females bearing characters or exhibiting behaviours that result in differential reproductive success that are analogous to those attributed to sexual selection in males. Here we summarise the literature and provide substantial evidence of female intrasexual competition for access to mates, female intersexual signalling to potential mates, and postcopulatory mechanisms such as competition between eggs for access to sperm and cryptic male allocation. Our review makes clear that sexual selection acts on females and males in similar ways but sometimes to differing extents: the ceiling for the elaboration of costly traits may be lower in females than in males. We predict that current and future research on female sexual selection will provide increasing support for the parsimony and utility of the existing definition of sexual selection. 相似文献