首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Variations in the mass spectral profiles of multiple housekeeping proteins of 126 strains representing Salmonella enterica subsp. enterica (subspecies I), S. enterica subsp. salamae (subspecies II), S. enterica subsp. arizonae (subspecies IIIa), S. enterica subsp. diarizonae (subspecies IIIb), S. enterica subsp. houtenae (subspecies IV), and S. enterica subsp. indica (subspecies VI), and Salmonella bongori were analyzed to obtain a phylogenetic classification of salmonellae based on whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometric bacterial typing. Sinapinic acid produced highly informative spectra containing a large number of biomarkers and covering a wide molecular mass range (2,000 to 40,000 Da). Genus-, species-, and subspecies-identifying biomarker ions were assigned on the basis of available genome sequence data for Salmonella, and more than 200 biomarker peaks, which corresponded mainly to abundant and highly basic ribosomal or nucleic acid binding proteins, were selected. A detailed comparative analysis of the biomarker profiles of Salmonella strains revealed sequence variations corresponding to single or multiple amino acid changes in multiple housekeeping proteins. The resulting mass spectrometry-based bacterial classification was very comparable to the results of DNA sequence-based methods. A rapid protocol that allowed identification of Salmonella subspecies in minutes was established.  相似文献   

2.
Genes of Salmonella enterica serovar Typhimurium LT2 expected to be specifically present in Salmonella were selected using the Basic Local Alignment Search Tool (BLAST) program. The 152 selected genes were compared with 11 genomic sequences of Salmonella serovars, including Salmonella enterica subsp. I and IIIb and Salmonella bongori (V), and were clustered into 17 groups by their comparison patterns. A total of 38 primer pairs were constructed to represent each of the 17 groups, and PCR was performed with various Salmonella subspecies including Salmonella enterica subsp. I, II, IIIa, IIIb, IV, VI, and V to evaluate a comprehensive DNA-based scheme for identification of Salmonella subspecies and the major disease-causing Salmonella serovars. Analysis of PCR results showed that Salmonella enterica subsp. I was critically divided from other subspecies, and Salmonella strains belonging to S. enterica subsp. I were clustered based on their serovars. In addition, genotypic relationships within S. enterica subsp. I by PCR results were investigated. Also, Salmonella signature genes, Salmonella enterica serovar Typhimurium signature genes, and Salmonella enterica subsp. I signature genes were demonstrated based on their PCR results. The described PCR method suggests a rapid and convenient method for identification of Salmonella serovars that can be used by nonspecialized laboratories. Genome sequence comparison can be a useful tool in epidemiologic and taxonomic studies of Salmonella.  相似文献   

3.
Comparative methods for analyzing whole genome sequence (WGS) data enable us to assess the genetic information available for reconstructing the evolutionary history of pathogens. We used the comparative approach to determine diagnostic genes for Salmonella enterica subspecies I. S. enterica subsp. I strains are known to infect warm-blooded organisms regularly while its close relatives tend to infect only cold-blooded organisms. We found 71 genes gained by the common ancestor of Salmonella enterica subspecies I and not subsequently lost by any member of this subspecies sequenced to date. These genes included many putative functional phenotypes. Twenty-seven of these genes are found only in Salmonella enterica subspecies I; we designed primers to test these genes for use as diagnostic sequence targets and data mined the NCBI Sequence Read Archive (SRA) database for draft genomes which carried these genes. We found that the sequence specificity and variability of these amplicons can be used to detect and discriminate among 317 different serovars and strains of Salmonella enterica subspecies I.  相似文献   

4.
Genes of Salmonella enterica serovar Typhimurium LT2 expected to be specifically present in Salmonella were selected using the Basic Local Alignment Search Tool (BLAST) program. The 152 selected genes were compared with 11 genomic sequences of Salmonella serovars, including Salmonella enterica subsp. I and IIIb and Salmonella bongori (V), and were clustered into 17 groups by their comparison patterns. A total of 38 primer pairs were constructed to represent each of the 17 groups, and PCR was performed with various Salmonella subspecies including Salmonella enterica subsp. I, II, IIIa, IIIb, IV, VI, and V to evaluate a comprehensive DNA-based scheme for identification of Salmonella subspecies and the major disease-causing Salmonella serovars. Analysis of PCR results showed that Salmonella enterica subsp. I was critically divided from other subspecies, and Salmonella strains belonging to S. enterica subsp. I were clustered based on their serovars. In addition, genotypic relationships within S. enterica subsp. I by PCR results were investigated. Also, Salmonella signature genes, Salmonella enterica serovar Typhimurium signature genes, and Salmonella enterica subsp. I signature genes were demonstrated based on their PCR results. The described PCR method suggests a rapid and convenient method for identification of Salmonella serovars that can be used by nonspecialized laboratories. Genome sequence comparison can be a useful tool in epidemiologic and taxonomic studies of Salmonella.  相似文献   

5.
This study was designed to develop a multiplex PCR method with five specific primer pairs for the detection of Salmonella spp., Salmonella subspecies I, Salmonella enterica serovars Typhimurium, Typhi and Enteritidis. A multiplex PCR was constructed with five primer pairs for the detection of Salmonella and pathogenic Salmonella serovars, including a specific primer pair for Salmonella Typhi, based on the sequence comparison between genomic DNA sequences of 12 Salmonella strains. Each primer pair was specifically targeted to Salmonella spp., Salmonella subspecies I, Salmonella Typhimurium, Typhi and Enteritidis. This multiplex PCR was evaluated with various DNAs of Salmonella serovars that yielded high specificity for amplifying the expected PCR products of Salmonella serovars. Using this primer pair, a set of multiplex PCR was performed for the rapid identification of salmonellae and major pathogenic Salmonella serovars. Although this multiplex PCR method will need to be evaluated for a wide range of Salmonella serovars among multilaboratories, it should be useful for identifying clinically significant strains of Salmonella serovars rapidly and accurately without the need for serological testing.  相似文献   

6.
A competitive enzyme immunoassay using a murine monoclonal antibody M105 directed against a genus-specific epitope in the Salmonella lipopolysaccharide was used to identify over 200 strains of Salmonella submitted to the National Laboratory for Enteric Pathogens. The immunoassay rapidly identified 208 strains of Salmonella representative of subspecies I, II, IIIa, IIIb, IV, and V, including 89 different serotypes from 26 O serogroups. The competitive enzyme immunoassay did not give positive results with 3 strains of Citrobacter freundii and 4 strains of Escherichia coli which were submitted to our laboratory as suspect Salmonella.  相似文献   

7.
E F Boyd  D L Hartl 《Genetics》1998,149(3):1183-1190
The spv operon is common to all Salmonella virulence plasmids. DNA hybridization analysis indicates that the spv region is limited in distribution to serovars of Salmonella enterica subspecies I, II, IIIa, IV, and VII and is absent from Salmonella bongori isolates. Among strains of subspecies II, IIIa, and VII, all isolates examined contained sequences that hybridized with the spv region. However, among isolates of subspecies I, DNA sequences capable of hybridizing with the spv region were found in some isolates of certain serovars. Furthermore, in isolates of subspecies I, the virulence plasmid was found in the same set of isolates as an F-related plasmid, as determined by the presence of the spv region of the virulence plasmid and the finO, traD, and repA sequences of the F-plasmid. The concordance of the virulence plasmid and all three F-plasmid sequences in subspecies I serovar Choleraesuis, Paratyphi, and Typhimurium is most easily explained if the spv region is carried in an F-related plasmid in these isolates. In contrast, among S. enterica subspecies II, IIIa, IV, and VII, the isolates that contain spv sequences did not hybridize with an F-related plasmid or any other identifiable plasmid. With the use of pulse-field gel electrophoresis, the spv region in subspecies II, IIIa, and VII was found to be encoded on the chromosome. Analysis of the phylogenetic distribution of spv among Salmonella isolates and comparative nucleotide sequence analysis of spvA and spvC suggests that the spv region was acquired very recently, after speciation of the salmonellae.  相似文献   

8.
The variation in the lengths of the internal transcribed spacer (ITS) between 16S and 23S rRNA genes of 101 strains representing 58 serotypes of Salmonella enterica (used for Salm. choleraesuis) subsp. enterica (I), salamae (II), arizonae (IIIa), diarizonae (IIIb), houtenae (IV) and indica (VI) was used for typing by PCR amplification. Ten fragment lengths were observed by denaturing polyacrylamide gel electrophoresis on an automatic DNA sequencer resulting in 21 unique fragment patterns. Ten out of the 58 serotypes showed specific patterns but 48 serotypes were not fully differentiated. More than one ITS pattern was observed in seven serotypes. Five of the 21 fragment patterns contained representatives of more than one subspecies. Under non-denaturing electrophoresis conditions, serotype specificity was obtained but precise ITS fragment length determination was not possible. DNA sequence comparison between ITSs of individual rrn operons is needed to further interpret ITS diversity within Salm. enterica at serotype and subspecies levels.  相似文献   

9.
Aim:  To develop a novel multiplex polymerase chain reaction (PCR) assay with six primer pairs for Salmonella subspecies identification.
Methods and Results:  Five primer pairs were chosen to detect the genes ( fljB , mdcA , gatD , stn and STM4057) responsible for several phenotypic traits or encoding (sub) species-specific regions. A primer pair for invA was added to simultaneously detect Salmonella . The combination of these primer pairs was expected to give unique results to all subspecies, including Salmonella bongori. The multiplex PCR assay was optimized and evaluated with 53 Salmonella strains representing all S. enterica subspecies, S. bongori and five non- Salmonella strains. The multiplex PCR assay revealed that the genotypes were well correlated with the phenotypes in the Salmonella strains tested. The unique band patterns to their subspecies were generated from 94·3% (50/53) of the Salmonella strains, and no product from other strains by the multiplex PCR assay.
Conclusions:  The multiplex PCR assay we developed was found to be a rapid, specific and easy to perform method compared with traditional biochemical tests for Salmonella subspecies identification, especially for rapid screening of large numbers of samples.
Significance and Impact of the Study:  The assay will be useful for characterizing Salmonella isolates from reptiles, which belong to various subspecies, and therefore add to the scientific understanding of reptile-associated Salmonellosis.  相似文献   

10.
Salmonella enteritidis is now the most common Salmonella serovar in many countries. We have used cloned DNA probes to analyze genome interrelationships between strains chosen to represent the current S. enteritidis pandemic, and included designated type strains of the seven subspecies of Salmonella in order to compare the levels of discrimination of probes. DNA sequence divergence and rearrangements were analyzed in and around the rfa, fim and umuDC loci, and around insertion sites of the Salmonella-specific DNA insertion element, IS200. The S. enteritidis isolates showed a high degree of genome homogeneity. Chromosomal genetic loci exhibited characteristic DNA sequence divergence between subspecies of Salmonella, but no intraserovar divergence or difference with the subspecies I type strain was observed for S. enteritidis. The locus umuDC was not found in S. enteritidis. S. enteritidis contains a conserved and a variable site of insertion of insertion sequence IS200 and the analysis of DNA rearrangements around the second of these sites showed that three distinct evolutionary lines or races exist within pandemic isolates associated with human gasteroenteritis. IS200 profiles of a range of U.K. isolates of the epidemic phage type PT4 showed that all belonged to a single clonal line.  相似文献   

11.
Virulence and persistence in the BALB/c mouse gut was tested for 32 strains of Salmonella enterica for which genome sequencing is complete or underway, including 17 serovars within subspecies I (enterica), and two representatives of each of the other five subspecies. Only serovar Paratyphi C strain BAA1715 and serovar Typhimurium strain 14028 were fully virulent in mice. Three divergent atypical Enteritidis strains were not virulent in BALB/c, but two efficiently persisted. Most of the other strains in all six subspecies persisted in the mouse intestinal tract for several weeks in multiple repeat experiments although the frequency and level of persistence varied considerably. Strains with heavily degraded genomes persisted very poorly, if at all. None of the strains tested provided immunity to Typhimurium infection. These data greatly expand on the known significant strain-to-strain variation in mouse virulence and highlight the need for comparative genomic and phenotypic studies.  相似文献   

12.
The genus Salmonella consists of over 2,200 serovars that differ in their host range and ability to cause disease despite their close genetic relatedness. The genetic factors that influence each serovar's level of host adaptation, how they evolved or were acquired, their influence on the evolution of each serovar, and the phylogenic relationships between the serovars are of great interest as they provide insight into the mechanisms behind these differences in host range and disease progression. We have used an Salmonella enterica serovar Typhimurium spotted DNA microarray to perform genomic hybridizations of various serovars and strains of both S. enterica (subspecies I and IIIa) and Salmonella bongori to gain insight into the genetic organization of the serovars. Our results are generally consistent with previously published DNA association and multilocus enzyme electrophoresis data. Our findings also reveal novel information. We observe a more distant relationship of serovar Arizona (subspecies IIIa) from the subspecies I serovars than previously measured. We also observe variability in the Arizona SPI-2 pathogenicity island, indicating that it has evolved in a manner distinct from the other serovars. In addition, we identify shared genetic features of S. enterica serovars Typhi, Paratyphi A, and Sendai that parallel their unique ability to cause enteric fever in humans. Therefore, whereas the taxonomic organization of Salmonella into serogroups provides a good first approximation of genetic relatedness, we show that it does not account for genomic changes that contribute to a serovar's degree of host adaptation.  相似文献   

13.
Biochemically atypical strains belonging to 11 genera of Salmonella subspecies I in the number of 200 were collected in Poland in the years 1980-1991 were tested by means of 22 biochemical tests. Atypical property stability was detected in 164 strains. Most stable properties were following: ability to ferment lactose, lack of ability of dulcitol fermentation, lack of hydrosulfide production and lack of lysine decarboxylation. Atypical properties were occurring singularly or clusters numbering two or three. Identification procedure for Salmonella accepted in this country enables proper diagnosis of an atypical strain, however it requires application of supplemental biochemical tests. These strains were tested for susceptibility of 15 antimicrobial agents and no correlation between antibiotic resistance and occurrence of one or several atypical properties has been found.  相似文献   

14.
Aims: To evaluate the outer membrane porin F gene (ompF) for the specific detection of Salmonella species by real‐time PCR assay. Methods and Results: Two hundred and eighteen isolates belonging to Salmonella enterica (subspecies I‐VI) and Salmonella bongori were examined using primers designed to detect the ompF gene. The DNA of the bacteria was extracted from pure culture. The target was present in all the 218 Salmonella isolates including all the subspecies of Salm. enterica and Salm. bongori. The ompF gene was absent in 180 non‐Salmonella strains tested. The limit of detection was determined to be three colony forming units per reaction in pure culture. In artificially contaminated food experiments with ten or less colony forming units per 25 g, the assay was successful in identifying the target in 100% of the samples after 22‐ to 24‐h incubation in enrichment broth. Conclusions: Based on this study, the ompF gene is 100% inclusive for Salmonella species and 100% exclusive for non‐Salmonella species for the strains tested. Significance and Impact of the Study: ompF gene was present in all the Salmonella strains tested and has the potential to be a good target for the rapid molecular identification of Salmonella.  相似文献   

15.
The aim of this study was to compare some of the properties of 28 lactose-positive and 28 lactose-negative Salmonella agona strains isolated from faeces of infants hospitalized in the same hospital. Some of biochemical properties, sensitivity to 14 antibiotics and chemotherapeutic agents and sensitivity to bacteriophages used for typing of this Salmonella genus were tested. Results of biochemical examinations revealed that lactose-fermenting strains retain the remaining of Salmonella of subspecies I. Two biochemical features are of particular importance: the ability to ferment lactose on all lactose containing media and a lack of the ability to produce H2S on Kligler medium. These two features differentiate lactose-fermenting strains of Salmonella from non-lactose fermenting ones. Antibiotic sensitivity pattern differed between lactose-positive and lactose-negative strains. Lactose-positive strains showed higher degree of resistance than lactose-negative strains. The differences in resistance were seen in the case of chloramphenicol, doxycycline, gentamicin and tetracycline. Both lactose-positive and lactose-negative strains were sensitive to colistin, neomycin, nitrofurantoin and nalidixic acid. They were resistant to ampicillin, cloxacillin, rifampicin, streptomycin, sulfatiazol and biseptol. Bacteriophage typing revealed that all lactose-negative strains isolated in this study from clinical samples belonged to the same phage pattern V. Lactose-positive strains belonged to two phage types VB and XI. Type VB prevailed.  相似文献   

16.
Arylamines including aniline (I), 1-naphthylamine (II), 2-naphthylamine (III), 2-aminofluorene (IV), 1-aminoanthracene (V) and 1-aminopyrene (VI) were treated with 4 equivalent amounts of nitrite at pH3 and 37 degrees C for 4 h. The reaction mixtures of I, IV, V and VI showed mutagenicity to Salmonella typhimurium TA98 and TA100 strains without metabolic activation. The numbers of His+ revertant colonies to TA98 strain were 110/0.05 mumole I, 970/0.055 mumole IV, 620/0.10 mumole V and 870/0.02 mumole VI. These arylamines were converted into mutagens with diazoquinone, diazonium and nitro functions depending on their structures. The mutagen from I was p-diazoquinone (I2). The mutagen from IV was highly unstable fluorene-2-diazonium salt (IV1). The mutagens from V were N3O3-introduced anthracene (V1-1) and 1-nitroanthracene (V2), and those from VI were unidentified nitro-introduced compound (VI1) and 1-nitropyrene (VI2).  相似文献   

17.
Haemolysin patterns of 175 strains of different Salmonella enterica subspecies enterica serovars isolated from different animal sources and places were determined using 11 different blood agar media made with either non-washed horse/sheep erythrocytes or with washed erythrocytes of cattle, sheep, horse, goat, rabbit, guinea pig, and human A, O and B blood groups. Study on 47 strains belonging to 10 serovars of Salmonella from buffalo meat (buffen), 42 strains of 11 serovars from goat meat (chevon): 16 strains of Salmonella enterica serovar Paratyphi B and 25 of S. enterica serovar Paratyphi B var Java from fish, meat, meat products and clinical cases; 45 isolates of S. Abortusequi from aborted mares (18), fetal contents (21), aborted donkey mares (2) and 4 reference strains, revealed that all host restricted Salmonella namely, S. enterica serovar Gallinarum, S. enterica serovar Anatum, S. enterica serovar Abortusequi and S. enterica serovar Paratyphi B could be divided into different haemolysin types based on their inability to produce haemolysis on one or more types of blood agar, while strains of all zoonotic Salmonella serovars induced haemolysis on all the 9 types of blood agar made of washed erythrocytes. None of 175 Salmonella could produce hemolytic colonies on blood agar made of non-washed horse/ sheep erythrocytes. Haemolysin type I (lysing all types of washed erythrocytes) was the commonest one among all serovars except S. Abortusequi, none of which lysed horse erythrocytes. Salmonella enterica serovar Abortusequi having hemolytic activity against sheep erythrocytes were more invasive but had lesser ability to survive in sheep mononuclear cells than non-hemolytic strains. Multiplicity of haemolysins appeared significant epidemiological tool.  相似文献   

18.
In this study we tested 74 Salmonella strains of all eight Salmonella groups and were able to demonstrate the presence of two high-pathogenicity island types in strains of Salmonella groups IIIa, IIIb, and VI. Most high-pathogenicity island-positive isolates produced yersiniabactin under iron-limited conditions and were positive for the high-molecular-weight proteins HMWP1 and HMWP2.  相似文献   

19.
The study was undertaken to understand effects and survival of S. enterica subspecies enterica serovar Typhimurium (S. Typhimurium), a zoonotic serovar, on maize seed germination and plant growth. All the four strains of S. enterica subspecies enterica serovar Typhimurium significantly reduced germination of maize seeds in sprouting plates as well as in soil. About > or =2.7x10(3) Salmonella cfu ml(-1) of soaking water, while > or =2.7x10(7) Salmonella cfu g(-1) soil were required to significantly inhibit germination of maize. Similar inhibition of germination could be observed using > or = 16 mg of bacteria free Salmonella cell lysate (CL) protein per g of soil or > or =0.5 mg of CL protein per ml of soaking water in sprouting plates. At the constant dose of 3.6x10(7) to 3.8x10(7) Salmonella cfu or 5 mg cell lysate protein ml(-1) of soaking water, four strains of Salmonella significantly reduced germination, however difference between strains was insignificant. After germination too, maize growth was affected both by Salmonella organism and CL with little strain-to-strain variation. All Salmonella persisted in growing plants from 15 to 35 days of plant age and up to 190 days in soil. Maize plants once grown for a week in sterile soil were resistant to invasion of S. enterica subspecies enterica serovar Typhimurium in their leaves even in doses as high as 7.6x10(9) cfu g(-1) of soil. Salmonella persisted better and longer in plants grown from contaminated seed sown in loam soil, but rarely in plants grew in sandy soil. All maize plants had Salmonella in their stumps even after 35 days of sowing irrespective of kind of soil, primary source of infection (soil or seed) and type of S. enterica subspecies enterica serovar Typhimurium strain. The study revealed that Salmonella is not only zoonotic but a phytopathogen also.  相似文献   

20.
Utilization of ferrioxamines as sole sources of iron distinguishes Salmonella enterica serotypes Typhimurium and Enteritidis from a number of related species, including Escherichia coli. Ferrioxamine supplements have therefore been used in preenrichment and selection media to increase the bacterial growth rate while selectivity is maintained. We characterized the determinants involved in utilization of ferrioxamines B, E, and G by S. enterica serotype Typhimurium by performing siderophore cross-feeding bioassays. Transport of all three ferric siderophores across the outer membrane was dependent on the FoxA receptor encoded by the Fur-repressible foxA gene. However, only the transport of ferrioxamine G was dependent on the energy-transducing protein TonB, since growth stimulation of a tonB strain by ferrioxamines B and E was observed, albeit at lower efficiencies than in the parental strain. Transport across the inner membrane was dependent on the periplasmic binding protein-dependent ABC transporter complex comprising FhuBCD, as has been reported for other hydroxamate siderophores of enteric bacteria. The distribution of the foxA gene in the genus Salmonella, as indicated by DNA hybridization studies and correlated with the ability to utilize ferrioxamine E, was restricted to subspecies I, II, and IIIb, and this gene was absent from subspecies IIIa, IV, VI, and VII (formerly subspecies IV) and Salmonella bongori (formerly subspecies V). S. enterica serotype Typhimurium mutants with either a transposon insertion or a defined nonpolar frameshift (+2) mutation in the foxA gene were not able to utilize any of the three ferrioxamines tested. A strain carrying the nonpolar foxA mutation exhibited a significantly reduced ability to colonize rabbit ileal loops compared to the foxA+ parent. In addition, a foxA mutant was markedly attenuated in mice inoculated by either the intragastric or intravenous route. Mice inoculated with the foxA mutant were protected against subsequent challenge by the foxA+ parent strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号