首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Co-operativity in seminal ribonuclease function. Kinetic studies.   总被引:6,自引:0,他引:6       下载免费PDF全文
Maltose-maleimide was synthesized as a potential affinity label for the facilitative hexose carrier with selectivity for exofacial sulphydryl groups. This reagent, although probably a mixture of isomers, did not significantly penetrate the plasma membrane of human erythrocytes at concentrations below 5 mM at 37 degrees C. When allowed to react to completion, it irreversibly inhibited the uptake of 3-O-methylglucose, with a half-maximal response at about 1.5-2.0 mM-reagent. The rate of transport inactivation was a saturable function of the maltose-maleimide concentration. Studies of reaction kinetics and effects of known transport inhibitors demonstrated that irreversible reaction occurred on the exofacial outward-facing carrier, although not at a site involved in substrate binding. Reaction of intact erythrocytes with [14C]maltose-maleimide resulted in labelling of a broad band 4.5 protein of Mr (average) 45,000-66,000 in electrophoretic gels. This protein was very likely the hexose carrier, since its labelling was inhibited by cytochalasin B. Exofacial band 4.5 labelling was stoichiometric with respect to transport inhibition, yielding an estimated 300,000 carriers/cell. These results suggest that the exofacial sulphydryl which reacts with maltose-maleimide is distinct from the substrate binding site on the hexose carrier, but that it confers substantial labelling selectivity to impermeant maleimides. Additionally, the high efficiency of carrier labelling obtained with maltose-maleimide is useful in quantifying numbers of carriers in whole cells.  相似文献   

2.
Treatment of human erythrocytes with the membrane-impermeant carbodiimide 1-ethyl-3-[3-(trimethylammonio)propyl]carbodiimide (ETC) in citrate-buffered sucrose leads to irreversible inhibition of phosphate-chloride exchange. The level of transport inhibition produced was dependent on the concentration of citrate present during treatment, with a maximum of approx. 60% inhibition. [14C]Citric acid was incorporated into Band 3 (Mr = 95,000) in proportion to the level of transport inhibition, reaching a maximum stoichiometry of 0.7 mol citrate per mol Band 3. The citrate label was localized to a 17 kDa transmembrane fragment of the Band 3 polypeptide. Citrate incorporation was prevented by the transport inhibitors 4,4'-diisothiocyano- and 4,4'-dinitrostilbene-2,2'-disulfonate. ETC plus citrate treatment also dramatically reduced the covalent labeling of Band 3 by [3H]4,4'-diisothiocyano-2,2'-dihydrostilbene disulfonate (3H2DIDS). Noncovalent binding of stilbene disulfonates to modified Band 3 was retained, but with reduced affinity. We propose that the inhibition of anion exchange in this case is due to carbodiimide-activated citrate modification of a lysine residue in the stilbenedisulfonate binding site, forming a citrate-lysine adduct that has altered transport function. The evidence is consistent with the hypothesis that the modified residue may be Lys a, the lysine residue involved in the covalent reaction with H2DIDS. Treatment of erythrocytes with ETC in the absence of citrate resulted in inhibition of anion exchange that reversed upon prolonged incubation. This reversal was prevented by treatment in the presence of hydrophobic nucleophiles, including phenylalanine ethyl ester. Thus, inhibition of anion exchange by ETC in the absence of citrate appears to involve modification of a protein carboxyl residue(s) such that both the carbodiimide- and the nucleophile-adduct result in inhibition.  相似文献   

3.
J M May 《Biochemistry》1989,28(4):1718-1725
Sulfhydryl-reactive derivatives of glucosamine were synthesized as potentially transportable affinity labels of the human erythrocyte hexose carrier. N-Maleoylglycyl derivatives of either 6- or 2-amino-2-deoxy-D-glucopyranose were the most potent inhibitors of 3-O-methylglucose uptake, with concentrations of half-maximal irreversible inhibition of about 1 mM. Surprisingly, these derivatives were very poorly transported into erythrocytes. They reacted rather with an exofacial sulfhydryl on the carrier following a reversible binding step, the latter possibly to the exofacial substrate binding site. However, their reactivity was determined primarily by access to the exofacial sulfhydryl, which, as predicted by the one-site model of transport, required a carrier conformation with the exofacial substrate binding site exposed. Once reacted, the carrier was "locked" in a conformation unable to reorient inwardly and bind cytochalasin B. In intact erythrocytes the N-maleoylglycyl derivative of 2-[3H]glucosamine labeled predominantly an Mr 45,000-66,000 protein on gel electrophoresis in a quantitative and cytochalasin B inhibitable fashion. By use of changes in carrier conformation induced by competitive transport inhibitors in a "double" differential labeling method, virtually complete selectivity of labeling of the carrier protein was achieved, the latter permitting localization of the reactive exofacial sulfhydryl to an Mr 18,000-20,000 tryptic fragment of the carrier.  相似文献   

4.
Inhibition of hexose transport by N-ethylmaleimide was studied with regard to alkylation of different types of sulfhydryl group on the hexose carrier of the human erythrocyte. Uptake of 3-O-methylglucose was progressively and irreversibly inhibited by N-ethylmaleimide, with a half-maximal effect at 10-13 mM. A sulfhydryl group known to exist on the exofacial carrier was not involved in transport inhibition by N-ethylmaleimide, since reversible protection of this group by the impermeant sulfhydryl reagent 5,5'-dithiobis(2-nitrobenzoic acid) had no effect on the ability of N-ethylmaleimide to inhibit transport, or on its ability to decrease the affinity of the exofacial carrier for maltose. Nevertheless, the exofacial sulfhydryl was quite reactive with N-ethylmaleimide, since it was possible using a differential labeling technique to specifically label this group in protein-depleted ghosts with a half-maximal effect at 0.3 mM N-[3H]ethylmaleimide, and to localize it to the Mr 19,000 tryptic carrier fragment. Transport inhibition by N-ethylmaleimide correlated best with labeling of a single cytochalasin B-sensitive internal sulfhydryl group on the glycosylated Mr 23,000-40,000 tryptic fragment of the carrier, which was half-maximally labeled at about 4 mM reagent. Whereas N-ethylmaleimide readily alkylates the exofacial carrier sulfhydryl, it inhibits transport by reacting with at least one internal carrier sulfhydryl located on the glycosylated tryptic carrier fragment.  相似文献   

5.
R L Shelton  R G Langdon 《Biochemistry》1985,24(10):2397-2400
The covalent affinity probe maltosyl isothiocyanate (MITC) has been used previously to identify the glucose transporter of human erythrocytes as a component of band 3. By use of limited proteolysis, the site on the Mr 100 000 protein to which MITC attaches has been localized to a 17 000-dalton region near the center of the polypeptide chain which is intimately associated with the membrane. The erythrocyte anion transporter, which is probably homologous to the glucose carrier, has a corresponding segment which is known to bind the covalent affinity label 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid [Ramjeesingh, M., Gaarn, A., & Rothstein, A. (1980) Biochim. Biophys. Acta 559, 127-139]. These results suggest that, in addition to having structural features in common, the two carrier proteins may be quite similar with regard to functional organization.  相似文献   

6.
Band 3 of the human erythrocyte is involved in anion transport and binding of the cytoskeleton to the membrane bilayer. Human erythrocytes were treated to incorporate varying concentrations of DIDS (4,4′-diisothiocyanostilbene-2,2′-disulfonic acid) a non-penetrating, irreversible inhibitor of anion transport, and both functions of Band 3 were analyzed. The rate of efflux of 35SO4. was measured and the binding of cytoskeletal components to the membrane was evaluated by extracting the membranes with 0.1 n NaOH and analyzing for the peptides remaining with the membrane. It was found that 0.1 n NaOH extracts all the extrinsic proteins from membranes of untreated cells, while, in the case of the membranes from cells treated with DIDS, a portion of the cytoskeletal components, spectrin (Bands 1 and 2) and Band 2.1 (ankyrin, syndein) remain with the membrane. The amount of these cytoskeletal components remaining with the membrane depends on the concentrations of DIDS incorporated. The effect of DIDS on the extractability of the spectrin-Band 2.1 complex correlates well with DIDS inhibition of anion transport (r = 0.91). At DIDS concentrations which completely inhibit anion transport, about 10% of total spectrin-Band 2.1 complex remains unextracted. Another anion-transport inhibitor, pyridoxal phosphate, has no effect on binding of the cytoskeleton to the membrane. On the other hand, digestion of DIDS-pretreated intact erythrocytes with Pronase, chymotrypsin, or trypsin releases the tight binding of Band 3 to cytoskeleton on the inside of the membrane. Since trypsin does not hydrolyze Band 3 the data suggest that a second membrane protein which is trypsin sensitive may be involved with Band 3 in cytoskeletal binding.  相似文献   

7.
Transport of pyridoxal 5-phosphate (PLP) into erythrocytes was inhibited by inhibitors of anion transport including stilbene disulfonate compounds, indicating that it is mediated by Band 3 protein. When erythrocytes were treated with PLP and large amounts of free lysine and NaBH4, two membrane-spanning fragments of Band 3 (Mr = 17,000 and 35,000) were specifically labeled. When the cells were pretreated with 4,4'-dinitrostilbene 2,2'-disulfonate, the labeling in the 35,000-dalton fragment was inhibited. Erythrocytes labeled by PLP in both the 17,000- and 35,000-dalton fragments transported PLP at a decreased rate, whereas the cells labeled in only the 17,000-dalton fragment had essentially the same transport activity as the control when 4,4'-dinitrostilbene 2,2'-disulfonate was removed. The extent of inhibition of transport of inorganic phosphate in the labeled cells was similar to that of PLP. The results indicate that the 35,000-dalton fragment participates in the anion transport of the cell membrane.  相似文献   

8.
Androgenic steroids, which are potent inhibitors of facilitated hexose transport in human erythrocytes, were tested as possible natural photolabels of the hexose carrier protein. Androstenedione, which inhibited 3-O-methylglucose uptake half-maximally at 30-50 microM (EC50), was the most potent inhibitor of the photolabile steroids tested. It appeared to interact directly with the carrier, since it (1) inhibited equilibrium [3H]cytochalasin B binding to high affinity D-glucose-sensitive sites in both intact cells (EC50 = 63 microM) and protein-depleted ghosts (EC50 = 61 microM), (2) inhibited cytochalasin B photolabeling of the band 4.5 carrier region in electrophoretic gels of protein-depleted ghosts (EC50 = 50 microM), and (3) underwent photoincorporation into the same gel region in a D-glucose- and cytochalasin B-sensitive fashion. However, Dixon plots for inhibition of both cytochalasin B binding and transport were upward-curving, indicating the binding of more than one molecule of androstenedione to the carrier. The photoincorporation of androstenedione into band 4.5 protein was both time- and concentration-dependent, and not associated with damage to unlabeled carrier. It probably occurred by activation of the alpha, beta-unsaturated ketone on the steroid rather than indirectly by photoactivation of a group on the carrier protein, as occurs with cytochalasin B. Although androstenedione may bind to more than one region of the carrier, as well as to other non-carrier proteins, tryptic digestion of photolabeled ghosts produced a labeled Mr = 18,000-20,000 fragment, the labeling of which was inhibited by cytochalasin B, and which had an electrophoretic mobility similar to the major labeled tryptic fragment in cytochalasin B-labeled ghosts. These data suggest that androstenedione interacts directly with the hexose carrier and that it or other similar naturally photolabile steroids may serve as useful probes for structural dissection of the carrier protein.  相似文献   

9.
An aryl azide derivative of glucosamine, N-(4-iodoazidosalicyl)-2-amido-2-deoxy-D-glucopyranose (GlcNAs), was synthesized as a potential photoaffinity label for the facilitative hexose carrier. The derivative inhibited hexose uptake into intact human erythrocytes half-maximally at 3.5 mM and was itself slowly transported into cells. However, photolysis of iodinated GlcNAs with leaky erythrocyte ghosts produced appreciable labeling on gel electrophoresis only of Band 6, which is glyceraldehyde-3-phosphate dehydrogenase. Band 6 photolabeling in leaky ghosts by GlcNAs was: saturable, due mostly to the aryl azide moiety, inhibited by agents with known affinity for the enzyme including sulfhydryl reagents and the enzyme substrate glyceraldehyde-3-phosphate, and not inhibited by the free-radical scavenger p-aminobenzoic acid. Moreover, GlcNAs also inhibited erythrocyte glyceraldehyde-3-phosphate dehydrogenase activity in a dose-dependent fashion in the dark and more potently following irradiation. In resealed ghosts, Band 6 labeling was decreased by D-glucose, reflecting inhibition of carrier-mediated uptake of the agent. GlcNAs appears to be a specific photoaffinity label for erythrocyte glyceraldehyde-3-phosphate dehydrogenase, and therefore potentially useful for studies of enzyme activity, compartmentation, or membrane association.  相似文献   

10.
The putative hexose transport component of Band 4.5 protein of the human erythrocyte membrane was covalently photolabelled with [3H]cytochalasin B. Its transmembrane topology was investigated by electrophoretically monitoring the effect of proteinases applied to intact erythrocytes, unsealed ghosts, and a reconstituted system. Band 4.5 was resistant to proteolytic digestion at the extracellular face of the membrane in intact cells at both high and low ionic strengths. Proteolysis at the cytoplasmic face of the membrane in ghosts or reconstituted vesicles resulted in cleave of the transporter into two membrane-bound fragments, a peptide of about 30 kDa that contained its carbohydrate moiety, and a 20 000 kDa nonglycosylated peptide that bore the cytochalasin B label. Because it is produced by a cleavage at the cytoplasmic face and because the carbohydrate moiety is known to be exposed to the outside, the larger fragment must cross the bilayer. It has been reported that the Band 4.5 sugar transporter may be derived from Band 3 peptides by endogenous proteolysis, but the cleavage pattern found in the present study differs markedly from that previously reported for Band 3. Minimization of endogenous proteolysis by use of fresh cells, proteinase inhibitors, immediate use of ghosts and omission of the alkaline wash resulted in no change in the incorporation of [3H]cytochalasin B into Band 4.5, and no labelling of Band 3 polypeptides. These results suggest that the cytochalasin B binding component of Band 4.5 is not the product of proteolytic degradation of a Band 3 component.  相似文献   

11.
The binding of eosin-isothiocyanate (eosin-NCS) and iodoacetamido-eosin (IA-eosin) to band 3 proteins in the membrane of human erythrocytes is characterized by studying the effect of these probes on the anion transport system. Although the unbrominated fluorescein precursors do not affect anion transport, both eosin labels are strong inhibitors of sulphate exchange in intact erythrocytes. 50% inhibition is obtained by binding 4.7 · 105 or 6.0 · 105 molecules/cell for eosin-NCS and IA-eosin, respectively. Both eosin probes are irreversibly bound and occupy common binding sites with 4,4′-diisothiocyano-1,2-diphenyl-ethane-2,2′-disulfonic acid (H2DIDS), although other sites are labeled as well. The inhibition of anion transport is light independent and can therefore not be attributed to a photosensitizing action of the eosin probes. Both eosin derivatives, however, inactivate acetylcholinesterase upon illumination of air-equilibrated samples of hemoglobin-free labeled ghosts. The inactivation of the enzyme is accompanied by the formation of protein aggregates as visualized by polyacrylamide gel electrophoresis. These effects are not observed when intact erythrocytes are illuminated in the presence of eosin probes suggesting a protective effect of hemoglobin during the labeling procedure. Protection of ghosts from photo-oxidation is achieved by displacing air with argon. These results are discussed in relation to the use of these and similar probes to measure protein diffusion in membranes.  相似文献   

12.
Irradiation of intact rat adipocytes with high intensity ultraviolet light in the presence of 0.5 microM [3H] cytochalasin B results in the labeling of Mr 43,000 and 46,000 proteins that reside in the plasma membrane fraction. In contrast to the Mr 46,000 protein, the Mr 43,000 component is not observed in the microsome fraction and exhibits lower affinity for [3H]cytochalasin B. Photolabeling of the Mr 43,000 protein is inhibited by cytochalasin D, indicating it is not a hexose transporter component. The Mr 46,000 protein exhibits characteristics expected for the glucose transporter such that D-glucose or 3-O-methylglucose but not cytochalasin D inhibits its photolabeling with [3H] cytochalasin B. Furthermore, insulin addition to intact cells either prior to or after photoaffinity labeling of the Mr 46,000 protein causes a redistribution of this component from the low density microsomes to the plasma membrane fraction, as expected for the hexose transporter. Photolabeling of transporters in both the low density microsome and plasma membrane fractions is inhibited when intact cells are equilibrated with 50 mM ethylidene glucose prior to irradiation with [3H]cytochalasin B. Incubation of intact cells with 50 mM ethylidene glucose for 1 min at 15 degrees C leads to an intracellular concentration of only 2 mM. Under these conditions, the photoaffinity labeling in intact cells of hexose transporters that fractionate with the low density microsomes is unaffected, indicating these transporters are not exposed to the extracellular medium. In contrast, photolabeling in intact insulin-treated cells of hexose transporters that fractionate with the plasma membrane is inhibited under these incubation conditions. The results demonstrate that insulin action results in the exposure to the extracellular medium of previously sequestered hexose transporters.  相似文献   

13.
Reversible binding of DIDS [4,4'-diisothiocyanato-2,2'-stilbenedisulphonate] to Band 3 protein, the anion exchanger located in erythrocyte plasma membrane, was studied in human erythrocytes. For this purpose, the tritiated form of DIDS ([3H]DIDS) has been synthesized and the filtering technique has been used to follow the kinetics of DIDS binding to the sites on Band 3 protein. The obtained results showed monophasic kinetics both for dissociation and association of the 'DIDS--Band 3' complex at 0 degree C in the presence of 165 mM KCl outside the cell (pH 7.3). A pseudo-first order association rate constant k+1 was determined to be (3.72 +/- 0.42) x 10(5) M-1 s-1, while the dissociation rate constant K-1 was determined to be (9.40 +/- 0.68) x 10(-3) s-1. The dissociation constant KD, calculated from the measured values of k-1 and k+1, was found to be 2.53 x 10(-8) M. The standard thermodynamics parameters characterizing reversible DIDS binding to Band 3 protein at 0 degree C were calculated. The mean values of the activation energies for the association and dissociation steps in the DIDS binding mechanism were determined to be (34 +/- 9) kJ mole-1 and (152 +/- 21) kJ mole-1, respectively. The results provide, for the first time, evidence for the reversibility of DIDS binding to Band 3 protein at 0 degree C. The existence of a stimulatory site is suggested, nearby the transport site on the Band 3 protein. The binding of an anion to this site can facilitate (through electrostatic repulsion interaction between two anions) the transmembrane movement of another anion from the transport site.  相似文献   

14.
The presence of a reactive exofacial sulfhydryl on the human erythrocyte hexose carrier was used to test several predictions of the alternating conformation or one-site model of transport. The cell-impermeant glutathione-maleimide-I (GS-Mal) irreversibly inhibited hexose entry by decreasing the transport Vmax. This effect was potentiated by phloretin and maltose but decreased by cytochalasin B, indicating that under the one-site model the external sulfhydryl is on the outward-facing carrier but that it does not overlap with the exofacial substrate-binding site. Incubation of erythrocytes with maltose competitively inhibited the binding of [3H]cytochalasin B to the inward-facing carrier (Ki = 40 mM). Furthermore, both equilibrium cytochalasin B binding and its photolabeling of the band 4.5 carrier protein were decreased in ghosts prepared from GS-Mal-treated cells. Thus induction of an outward-facing carrier conformation with either maltose or GS-Mal caused the endofacial substrate-binding site to disappear. Dose-response studies of GS-Mal treatment of intact cells suggested that some functional carriers lack a reactive external sulfhydryl, which can be partially regenerated by pretreatment with excess cysteine. These data provide direct support for the one-site model of transport and further define the role of the external sulfhydryl in the transport mechanism.  相似文献   

15.
S-(Bismaleimidomethyl ether)cysteine (Cys-Mal) was synthesized as a probe for reactive thiol groups on the erythrocyte glucose carrier. Although Cys-Mal entered cells, its reaction with intracellular GSH prevented alkylation of endofacial membrane proteins, limiting its effect to the cell surface at concentrations below 5 mM. Cys-Mal irreversibly inhibited hexose transport half-maximally at 1.5 mM by decreasing the maximal rate of transport, with no effect on the affinity of substrate for the carrier. Reaction occurred with the outward-facing form of the carrier, but did not affect the ability of the carrier to change orientation. In intact cells, several exofacial proteins were labelled by [35S]Cys-Mal, including the band-4.5 glucose carrier, the labelling of which occurred on a single site sensitive to transport inhibitors. The reactive exofacial group was a thiol group, since both transport inhibition and band-4.5 labelling by Cys-Mal were abolished by the thiol-specific and impermeant compound 5,5'-dithiobis(2-nitrobenzoic acid). Selectivity for carrier labelling in cells was increased by a double differential procedure, which in turn allowed localization of the exofacial thiol group to the Mr 18,000-20,000 membrane-bound tryptic carrier fragment. In protein-depleted ghosts the exofacial thiol group was preferentially labelled at low concentrations of [35S]Cys-Mal, whereas with the reagent at 10 mM the Mr 26,000-45,000 tryptic carrier fragment was also labelled. Cys-Mal should be useful in the study of carrier thiol-group location and function.  相似文献   

16.
A photoaffinity probe, procaine azide, was employed to determine the sites of interaction of procaine in normal and sickle cell erythrocytes. Studies show that the number of binding sites and affinity of procaine to membranes derived from normal and sickled cell erythrocytes were similar, although procaine retards the in vitro formation of irreversibly sickled cells from cells. The results show that procaine azide, a photoaffinity analogue of procaine, is covalently incorporated into both protein (60–70%) and lipid (40–30%) components of the membrane. Sodium dodecyl sulfate-gel electrophoresis of the labeled ghosts show that procaine binds specifically to band 3 and periodic acid-Schiff staining bands in membranes derived from labeled erythrocytes. Binding of procaine or covalent incorporation of procaine azide into membrane proteins does not affect the phosphate transport. Moreover, pre-treatment of intact erythrocytes with 4,4′-diisothiocyano-2,2′-stilbene disulfonate, an anion transport inhibitor, did not affect either the binding or covalent incorporation of procaine azide into erythrocytes. These results indicate that the binding of procaine azide to Band 3 protein occurs at a locus different than that involved in anion translocation process.  相似文献   

17.
Catabolism of the anion transport protein in human erythrocytes   总被引:2,自引:0,他引:2  
M Morrison  W Grant  H T Smith  T J Mueller  L Hsu 《Biochemistry》1985,24(22):6311-6315
We identified the catabolic products of protein 3 in human erythrocytes. Protein 3, the major protein of the erythrocyte membrane, functions in anion transport and reacts covalently with tritiated 4,4'-diisothiocyano-1,2-diphenylethane-2,2'-disulfonic acid ([3H]DIDS), a very selective inhibitor of anion transport. In this study, [3H]DIDS was used to label protein 3 in the membranes of normal cells and those from a donor heterozygous for a variant of protein 3, defined by its elongated amino-terminal end. Both types of cells contained [3H]DIDS-labeled peptides other than protein 3. A protein fragment of 60K molecular weight was found in normal cells, whereas both 60K and 63K fragments were identified in cells from the heterozygote. These peptides are identical with those generated by treatment of intact erythrocytes with Pronase or chymotrypsin. A polyclonal rabbit antibody specific for the purified 60K fragment of protein 3 was used to detect this protein and its products in the erythrocyte membrane. Autoradiographs of membrane peptides that were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose, and allowed to react with the monospecific antibody showed, in addition to protein 3, a 60K fragment and fragments in the 40K region and in the 20-30K region. Cells containing the protein 3 variant yielded two fragments showing a 3K difference in molecular weight in all three regions, demonstrating that degradation of protein 3 is identical in normal erythrocytes and those heterozygous for the variant. This observation also confirms the common derivation of the fragments from protein 3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A C Newton  W H Huestis 《Biochemistry》1988,27(13):4655-4659
Band 3, the erythrocyte anion transporter, transfers spontaneously between human red cells and model membranes. During incubation of intact erythrocytes with sonicated dimyristoylphosphatidylcholine vesicles, the transporter inserts in functional form and native orientation into the liposome bilayer, with the cytoplasmic segment of the protein contacting the lumen of the vesicle [Newton, A. C., Cook, S. L., & Huestis, W. H. (1983) Biochemistry 22, 6110-6117; Huestis, W. H., & Newton, A. C. (1986) J. Biol. Chem. 261, 16274-16278]. When band 3-vesicle complexes are incubated with erythrocytes whose native band 3 has been inhibited irreversibly, reverse transfer of the protein restores anion transport capacity to the cells [Newton, A. C., Cook, S. L., & Huestis, W. H. (1983) Biochemistry 22, 6110-6117]. Here we report the vesicle-mediated transfer of band 3 to human peripheral blood lymphocytes and to cultured murine lymphoma cells (BL/VL3). Subsequent to incubation with protein-vesicle complexes, both lymphoid cell types exhibit a 2-4-fold increase in the rate of chloride uptake. This enhanced permeability is inhibited greater than or equal to 98% by the exofacial band 3 inhibitor 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid, consistent with right-side-out insertion of functional band 3 into the lymphoid cell membrane.  相似文献   

19.
A C Newton  S L Cook  W H Huestis 《Biochemistry》1983,22(26):6110-6117
Band 3, the anion transport protein of human erythrocyte membranes, can be transferred from cells to liposomes and from liposomes back to cell membranes, retaining function and native orientation. After incubation with cells, sonicated phosphatidylcholine vesicles bind a transmembrane protein that comigrates with band 3 on sodium dodecyl sulfate-polyacrylamide gels. Like native red cell band 3, the vesicle-bound protein is cleaved by chymotrypsin into 65- and 30-kdalton fragments and is not cleaved by trypsin. The protein can be cross-linked by copper-phenanthroline oxidation either before or after transfer to vesicles; in either case, the vesicle fractions contain high molecular weight material that is dissociated into 95-kdalton species by mercaptoethanol. Band 3-vesicle complexes contain no detectable cell lipid and are specifically permeable to anions. Greater than 99% of their anion uptake can be blocked by the band 3 inhibitor 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS). Red cells whose band 3 function has been blocked irreversibly by DIDS or eosin maleimide regain part of their anion permeability upon incubation with band 3-vesicle complexes. Under the conditions employed, an average of one copy of functional band 3 is delivered to half of the cells, increasing by 2.3-fold the number of cells containing functional anion transporters. Incubation of pure lipid vesicles or red cell membrane buds with either normal red cells or eosin maleimide inhibited cells has no detectable effect on the cells' anion permeability.  相似文献   

20.
Band 3, the major transmembrane multifunctional protein of human erythrocytes, has been found to be phosphorylated-dephosphorylated on both Ser/Thr- and Tyr-residues by specific protein kinases and protein phosphatases. The results reported here would indicate that the ghosts prepared from human erythrocytes pretreated with DIDS, well known inhibitor of band 3-mediated anion transport, exhibit a markedly reduced Ser/Thr-phosphorylation of spectrin and band 3, when incubated with [gamma-32P]ATP in the presence of Mg2+. On the other hand, Tyr-phosphorylation of this latter protein is practically unchanged or even slightly enhanced. This suggests that Ser/Thr- and Tyr-phosphorylation of band 3 display a different functional role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号