首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Xu X  Yu Y  Shi Y 《Biotechnology letters》2011,33(4):763-768
Growth and sporulation of Verticillium lecanii on inert and organic carriers (sugar-cane bagasse, corncob, rice straw, polyurethane foam and activated carbon) in a solid-state fermentation process was studied. Sugar-cane bagasse and polyurethane foam produced 1010 spores g−1 dry carrier whereas corncob, rice straw, and activated carbon yielded, respectively 8 × 109, 4 × 109, and 3 × 108 spores g−1. Chitinase activity of the conidia was in the following order: sugar-cane bagasse (3.3 U mg−1) > wheat bran (3.0 U mg−1) > polyurethane foam (2.7 U mg−1). There was no significant difference (2.5–2.7 U mg−1) in the proteinase activity among the conidia from the three cultures. Scanning electron microscopy shows that aerial mycelium freely penetrated into the internal area of polyurethane foam. Sugar-cane bagasse provided enough area for vegetative hyphae to attach. Of the carriers analyzed, polyurethane foams and sugar-cane bagasse were the best carriers for V. lecanii growth and spore production.  相似文献   

3.
Xanthomonas campestris pv phaseoli produced an extracellular endoinulinase (9.24 ± 0.03 U mL−1) in an optimized medium comprising of 3% sucrose and 2.5% tryptone. X. campestris pv. phaseoli was further subjected to ethylmethanesulfonate mutagenesis and the resulting mutant, X. campestris pv. phaseoli KM 24 demonstrated inulinase production of 22.09 ± 0.03 U mL−1 after 18 h, which was 2.4-fold higher than that of the wild type. Inulinase production by this mutant was scaled up using sucrose as a carbon source in a 5-L fermenter yielding maximum volumetric (21,865 U L−1 h−1) and specific (119,025 U g−1 h−1) productivities of inulinase after 18 h with an inulinase/invertase ratio of 2.6. A maximum FOS production of 11.9 g L−1 h−1 and specific productivity of 72 g g−1 h−1 FOS from inulin were observed in a fermenter, when the mutant was grown on medium containing 3% inulin and 2.5% tryptone. The detection of mono- and oligosaccharides in inulin hydrolysates by TLC analysis indicated the presence of an endoinulinase. This mutant has potential for large-scale production of inulinase and fructooligosaccharides.  相似文献   

4.
Xylose reductase (XR) is the enzyme that catalyzes the first step of xylose metabolism. Although XRs from various yeasts have been characterized, little is known about this enzyme in Debaryomyces hansenii. In the present study, response surface analysis was used to determine the optimal conditions for D. hansenii UFV-170 XR activity. The influence of pH and temperature, ranging from 4.0 to 8.0 and from 25 to 55°C, respectively, was evaluated by a 22 central composite design face-centered. The F-test (ANOVA) and the Student’s t test were performed to evaluate the statistical significance of the model and the regression coefficients, respectively. The NADPH-dependent XR activity varied from 0.502 to 2.53 U mL−1, corresponding to 0.07–0.352 U mg−1, whereas the NADH-dependent one was almost negligible. The model predicted with satisfactory correlation (R 2 = 0.940) maximum volumetric activity of 2.27 U mL−1 and specific activity of 0.300 U mg−1 at pH 5.3 and 39°C, which were fairly confirmed by additional tests performed under these conditions. The enzyme proved very stable at low temperature (4°C), keeping its activity almost entirely after 360 min, which corresponded to the half-time at 39°C. On the other hand, at temperatures ≥50°C it was lost almost completely after only 20 min.  相似文献   

5.
Cholesterol oxidase activity was studied during biotransformation of cholesterol to androsta-1,4-diene-3,17-dione (ADD) by Chryseobacterium gleum. Spent LB media, containing cholesterol (3 mM≈1 g l−1) where the bacterium was grown for 24 h, at 30°C with constant shaking at 120 rpm, had the highest enzyme activity (167 U mg−1). The growing cells produced 0.076 g ADD from 1 g cholesterol l−1.  相似文献   

6.
Trehalose synthase (TSII) from Corynebacterium nitrilophilus NRC was successively purified by ammonium sulphate precipitation, ion exchange chromatography on DEAE-cellulose and gel filtration chromatography on Sephadex G-100 columns. The specific activity of the trehalose synthase was increased ~200-fold, from 0.14 U mg−1 protein to 28.3 U mg−1 protein. TSII was found to be a monomeric protein with a molecular weight of 67–69 kDa. Characterization of the enzyme exhibited optimum pH and temperature were 7.5 and 35°C, respectively. The purified enzyme was stable from pH 6.6 to 7.8 and able to prolong its thermal stability up to 35°C. The enzyme activity was inhibited strongly by Zn2+, Hg2+ and Cu2+ and moderately by Ba2+, Fe2+, Pb2+ and Ni2+. Other metal ions Ca2+, Mg2+, Co2+, Mn2+ and EDTA had almost no effect.  相似文献   

7.
A putative ribose-5-phosphate isomerase (RpiB) from Streptococcus pneumoniae was purified with a specific activity of 26.7 U mg−1 by Hi-Trap Q HP anion exchange and Sephacryl S-300 HR 16/60 gel filtration chromatographies. The native enzyme existed as a 96-kDa tetramer with activity maxima at pH 7.5 and 35°C. The RpiB exhibited isomerization activity with l-lyxose, l-talose, d-gulose, d-ribose, l-mannose, d-allose, l-xylulose, l-tagatose, d-sorbose, d-ribulose, l-fructose, and d-psicose and exhibited particularly high activity with l-form monosaccharides such as l-lyxose, l-xylulose, l-talose, and l-tagatose. With l-xylulose (500 g l−1) and l-talose (500 g l−1) substrates, the optimum concentrations of RpiB were 300 and 600 U ml−1, respectively. The enzyme converted 500 g l−1 l-xylulose to 350 g l−1 l-lyxose after 3 h, and yielded 450 g l−1 l-tagatose from 500 g l−1 l-talose after 5 h. These results suggest that RpiB from S. pneumoniae can be employed as a potential producer of l-form monosaccharides.  相似文献   

8.
A Psychrotolerant alkaline protease producing bacterium IIIM-ST045 was isolated from a soil sample collected from the Thajiwas glacier of Kashmir, India and identified as Stenotrophomonas sp. on the basis of its biochemical properties and 16S ribosomal gene sequencing. The strain could grow well within a temperature range of 4–37°C however, showed optimum growth at 15°C. The strain was found to over-produce proteases when it was grown in media containing lactose as carbon source (157.50 U mg−1). The maximum specific enzyme activity (398 U mg−1) was obtained using soya oil as nitrogen source, however, the inorganic nitrogen sources urea, ammonium chloride and ammonium sulphate showed the lowest production of 38.9, 62.2 and 57.9 U mg−1. The enzyme was purified to 18.45 folds and the molecular weight of the partially purified protease was estimated to be ~55 kDa by SDS-PAGE analysis. The protease activity increased as the increase in enzyme concentration while as the optimum enzyme activity was found when casein (1% w/v) was used as substrate. The enzyme was highly active over a wide range of pH from 6.5 to 12.0 showing optimum activity at pH 10.0. The optimum temperature for the enzyme was 15°C. Proteolytic activity reduced gradually with higher temperatures with a decrease of 56% at 40°C. The purified enzyme was checked for the removal of protein containing tea stains using a silk cloth within a temperature range of 10–60°C. The best washing efficiency results obtained at low temperatures indicate that the enzyme may be used for cold washing purposes of delicate fabrics that otherwise are vulnerable to high temperatures.  相似文献   

9.
A polyhydroxyalkanote depolymerase gene from Thermobifida sp. isolate BCC23166 was cloned and expressed as a C-terminal His6-tagged fusion in Pichia pastoris. Primary structure analysis revealed that the enzyme PhaZ-Th is a member of a proposed new subgroup of SCL-PHA depolymerase containing a proline–serine repeat linker. PhaZ-Th was expressed as two glycosylated forms with apparent molecular weights of 61 and 70 kDa, respectively. The enzyme showed esterase activity toward p-nitrophenyl alkanotes with V max and K m of 3.63 ± 0.16 μmol min−1 mg−1 and 0.79 ± 0.12 mM, respectively, on p-nitrophenyl butyrate with optimal activity at 50–55°C and pH 7–8. Surface plasmon resonance (SPR) analysis demonstrated that PhaZ-Th catalyzed the degradation of poly-[(R)-3-hydroxybutyrate] (PHB) films, which was accelerated in (R)-3-hydroxyvalerate copolymers with a maximum degradation rate of 882 ng cm−2 h−1 for poly[(R)-3-hydroxybutyrate-co-3-hydroxyvalerate] (12 mol% V). Surface deterioration, especially on the amorphous regions of PHB films was observed after exposure to PhaZ-Th by atomic force microscopy. The use of P. pastoris as an alternative recombinant system for bioplastic degrading enzymes in secreted form and a sensitive SPR analytical technique will be of utility for further study of bioplastic degradation.  相似文献   

10.
Pyranose dehydrogenase (PDH) is a fungal flavin-dependent sugar oxidoreductase that is highly interesting for applications in organic synthesis or electrochemistry. The low expression levels of the filamentous fungus Agaricus meleagris as well as the demand for engineered PDH make heterologous expression necessary. Recently, Aspergillus species were described to efficiently secrete recombinant PDH. Here, we evaluate recombinant protein production with expression hosts more suitable for genetic engineering. Expression in Escherichia coli resulted in no soluble or active PDH. Heterologous expression in the methylotrophic yeast Pichia pastoris was investigated using two different signal sequences as well as a codon-optimized sequence. A 96-well plate activity screening for transformants of all constructs was established and the best expressing clone was used for large-scale production in 50-L scale, which gave a volumetric yield of 223 mg L−1 PDH or 1,330 U L−1 d−1 in space–time yield. Purification yielded 13.4 g of pure enzyme representing 95.8% of the initial activity. The hyperglycosylated recombinant enzyme had a 20% lower specific activity than the native enzyme; however, the kinetic properties were essentially identical. This study demonstrates the successful expression of PDH in the eukaryotic host organism P. pastoris paving the way for protein engineering. Additionally, the feasibility of large-scale production of the enzyme with this expression system together with a simplified purification scheme for easy high-yield purification is shown.  相似文献   

11.
The production of lignocellulolytic enzymes by eleven basidiomycetes species isolated from two ecosystems of Georgia was investigated for the first time under submerged (SF) and solid-state fermentation (SSF) of lignocellulosic by-products. Notable intergeneric and intrageneric differences were revealed with regard to the extent of hydrolase and oxidase activity. Several fungi produced laccase along with hydrolases in parallel with growth during the trophophase, showing that the synthesis of this enzyme is not connected with secondary metabolism. The lignocellulosic substrate type had the greatest impact on enzyme secretion. Some of the substrates significantly stimulated lignocellulolytic enzyme synthesis without supplementation of the culture medium with specific inducers. Exceptionally high carboxymethyl cellulase (CMCase, 122 U ml−1) and xylanase (195 U ml−1) activities were revealed in SF of mandarin peelings by Pseudotremella gibbosa IBB 22 and of residue after ethanol production (REP) by Fomes fomentarius IBB 38, respectively. The SSF of REP by T. pubescens IBB 11 ensured the highest level of laccase activity (24,690 U l−1), whereas the SSF of wheat bran and SF of mandarin peels provided the highest manganese peroxidase activity (570–620 U l−1) of Trichaptum biforme IBB 117. Moreover, the variation of lignocellulosic growth substrate provides an opportunity to obtain enzyme preparations containing different ratios of individual enzymes.  相似文献   

12.
Two carotenoid 1,2-hydratase (CrtC) genes from the photosynthetic bacteria Rubrivivax gelatinosus and Thiocapsa roseopersicina were cloned and expressed in Escherichia coli in an active form and purified by affinity chromatography. The biochemical properties of the recombinant enzymes and their substrate specificities were studied. The purified CrtCs catalyze cofactor independently the conversion of lycopene to 1-HO- and 1,1′-(HO)2-lycopene. The optimal pH and temperature for hydratase activity was 8.0 and 30°C, respectively. The apparent K m and V max values obtained for the hydration of lycopene were 24 μM and 0.31 nmol h−1 mg−1 for RgCrtC and 9.5 μM and 0.15 nmol h−1 mg−1 for TrCrtC, respectively. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis revealed two protein bands of 44 and 38 kDa for TrCrtC, which indicate protein processing. Both hydratases are also able to convert the unnatural substrate geranylgeraniol (C20 substrate), which functionally resembles the natural substrate lycopene.  相似文献   

13.
The purpose of the present research is to study the production of thermophilic alkaline protease by a local isolate, Streptomyces sp. CN902, under solid state fermentation (SSF). Optimum SSF parameters for enzyme production have been determined. Various locally available agro-industrial residues have been screened individually or as mixtures for alkaline protease production in SSF. The combination of wheat bran (WB) with chopped date stones (CDS) (5:5) proved to be an efficient mixture for protease production as it gave the highest enzyme activity (90.50 U g−1) when compared to individual WB (74.50 U g−1) or CDS (69.50 U g−1) substrates. This mixed solid substrate was used for the production of protease from Streptomyces sp. CN902 under SSF. Maximal protease production (220.50 U g−1) was obtained with an initial moisture content of 60%, an inoculum level of 1 × 108 (spore g−1 substrate) when incubated at 45°C for 5 days. Supplementation of WB and CDS mixtures with yeast extract as a nitrogen source further increased protease production to 245.50 U g−1 under SSF. Our data demonstrated the usefulness of solid-state fermentation in the production of alkaline protease using WB and CDS mixtures as substrate. Moreover, this approach offered significant benefits due to abundant agro-industrial substrate availability and cheaper cost.  相似文献   

14.
A genetic transformation system has been developed for callus cells of Crataegus aronia using Agrobacterium tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with 5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this is the first time to report an Agrobacterium-mediated transformation system in Crataegus aronia.  相似文献   

15.
Shoot cultures of vanilla (Vanilla planifolia) showed a progressive change toward hyperhydricity syndrome (HHS) leading to the necrosis of shoot buds when transferred to liquid medium of shake-flask type from solid (gelled) medium (S). HHS was also associated with severe damage at cellular and subcellular levels, an increase in free polyamines (PAs) and accumulation of water, a decrease in quantities of chlorophyll and protein, and drastic changes in reducing and nonreducing sugars. Spermine was by far the major polyamine in all the analyzed cultures. The progression toward and onset of HHS showed higher activities of antioxidant enzymes, indicative of the shoots’ defensive efforts against oxidative stress. The specific enzyme activities of normal and H2 stages were 342.6 and 350.35 U mg−1 protein for peroxidase (POD, EC 1.11.1.11), 38.4 and 30.38 U mg−1 protein for superoxide dismutase (SOD, EC 1.15.1.1), and 71.3 and 82.75 U mg−1 protein for catalase (CAT, EC 1.11.1.6), respectively. The kinetic parameters of the culture medium suggested that nutrient utilization was normal in HHS and that the severe biochemical alterations and cellular damage were mainly due to oxidative stress.  相似文献   

16.
Nitrilase of Nocardia globerula NHB-2 was induced by short-chain aliphatic nitriles (valeronitrile > isobutyronitrile > butyronitrile > propionitrile) and exhibited activity towards aromatic nitriles (benzonitrile > 3-cyanopyridine > 4-cyanopyridine > m-tolunitrile > p-tolunitrile). Hyperinduction of nitrilase (6.67 U mgDCW−1, 18.7 U mL−1) was achieved in short incubation time (30 h, 30°C) through multiple feeding of isobutyronitrile in the growth medium. The nitrilase of this organism exhibits both substrate and product inhibition effects. In a fed batch reaction at 1 L scale using hyperinduced resting cells corresponding to 10 U mL−1 nitrilase activity (1.5 mgDCW mL−1), a total of 123.11 g nicotinic acid was produced at a rate of 24 g h−1 gDCW−1.  相似文献   

17.
Staphylococcus saprophyticus strains ATCC 15305, ATCC 35552, and ATCC 49907 were found to require l-proline but not l-arginine for growth in a defined culture medium. All three strains could utilize l-ornithine as a proline source and contained l-ornithine aminotransferase and Δ1-pyrroline-5-carboxylate reductase activities; strains ATCC 35552 and ATCC 49907 could use l-arginine as a proline source and had l-arginase activity. The proline requirement also could be met by l-prolinamide, l-proline methyl ester, and the dipeptides l-alanyl-l-proline and l-leucyl-l-proline. The bacteria exhibited l-proline degradative activity as measured by the formation of Δ1-pyrroline-5-carboxylate. The specific activity of proline degradation was not affected by addition of l-proline or NaCl but was highest in strain ATCC 49907 after growth in Mueller–Hinton broth. A membrane fraction from this strain had l-proline dehydrogenase activity as detected both by reaction of Δ1-pyrroline-5-carboxylate with 2-aminobenzaldehyde (0.79 nmol min−1 mg−1) and by the proline-dependent reduction of p-iodonitrotetrazolium (20.1 nmol min−1 mg−1). A soluble fraction from this strain had Δ1-pyrroline-5-carboxylate dehydrogenase activity (88.8 nmol min−1 mg−1) as determined by the NAD+-dependent oxidation of dl1-pyrroline-5-carboxylate. Addition of l-proline to several culture media did not increase the growth rate or final yield of bacteria but did stimulate growth during osmotic stress. When grown with l-ornithine as the proline source, S. saprophyticus was most susceptible to the proline analogues L-azetidine-2-carboylate, 3,4-dehydro-dl-proline, dl-thiazolidine-2-carboxylate, and l-thiazolidine-4-carboxylate. These results indicate that proline uptake and metabolism may be a potential target of antimicrobial therapy for this organism.  相似文献   

18.
Cynara cardunculus suspension cells were transformed by particle bombardment to overexpress the cypro11 gene coding for cyprosin B. Green fluorescent protein, used as a visual reporter through mgfp4-ER gene, facilitates the screening of transformed cells at the initial stages when antibiotics cause generalized cell death. mgfp4-ER lacks a cryptic intron and has an endoplasmic reticulum target sequence, these traits conferring an adequate use as screenable marker for transformed cells. Selected transformed cells, grown in a bioreactor, produced 3.8 g dcw l−1 of biomass, 80 mg l−1 of total protein and 2,060 U ml−1 of enzymatic activity. Specific activity of cyprosin B, purified by anionic-exchange chromatography, was 215 U mg−1 with a purification degree of 8.3-fold. The cyprosin B activity is optimal at 42°C for pH 5.1 and is inhibited by pepstatin A. The results encourage the overexpression of cypro11 gene in transformed C. cardunculus cells leading to high yields of cyprosin B production in bioreactor, which can be considered adequate for industrial production.  相似文献   

19.
Dielectric barrier discharge plasma was used to generate a stable strain of Klebsiella pneumoniae (designated to as Kp-M2) with improved 1,3-propanediol production. The specific activities of glycerol dehydrogenase, glycerol dehydatase and 1,3-propanediol oxidoreductase in the crude cell extract increased from 0.11, 9.2 and 0.15 U mg−1, respectively, for wild type to 0.67, 14.4 and 1.6 U mg−1 for Kp-M2. The glycerol flux of Kp-M2 was redistributed with the flux to the reductive pathway being increased by 20% in batch fermentation. The final 1,3-propanediol concentrations achieved by Kp-M2 in batch and fed-batch fermentations were 19.9 and 76.7 g l−1, respectively, which were higher than those of wild type (16.2 and 49.2 g l−1). The results suggested that dielectric barrier discharge plasma could be used as an effective approach to improve 1,3-propanediol production in K. pneumoniae.  相似文献   

20.
A genetic transformation protocol for green ash (Fraxinus pennsylvanica) hypocotyl explants was developed. Green ash hypocotyls were transformed using Agrobacterium tumefaciens strain EHA105 harboring binary vector pq35GR containing the neomycin phosphotransferase (nptII) and β-glucuronidase (GUS) fusion gene, and an enhanced green fluorescent protein gene. Pre-cultured hypocotyl explants were transformed in the presence of 100 μM acetosyringone using 90 s sonication plus 10 min vacuum-infiltration. Kanamycin at 20 mg l−1 was used for selecting transformed cells. Adventitious shoots regenerated on Murashige and Skoog medium supplemented with 13.3 μM 6-benzylaminopurine, 4.5 μM thidiazuron, 50 mg l−1 adenine sulfate, and 10% coconut water. GUS- and polymerase chain reaction (PCR)-positive shoots from the cut ends of hypocotyls were produced via an intermediate callus stage. Presence of the GUS and nptII genes in GUS-positive shoots were confirmed by PCR and copy number of the nptII gene in PCR-positive shoots was determined by Southern blotting. Three transgenic plantlets were acclimatized to the greenhouse. This transformation and regeneration system using hypocotyls provides a foundation for Agrobacterium-mediated transformation of green ash. Studies are underway using a construct containing the Cry8Da protein of Bacillus thuringiensis for genetic transformation of green ash.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号