首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
王丹凤  杨广  陈文锋 《昆虫学报》2019,62(6):769-778
非编码RNA(ncRNA)是生物体细胞内一类重要的调控分子,其介导的昼夜节律调控日益受到研究者的重视。本文主要以黑腹果蝇Drosophila melanogaster和哺乳动物的相关研究为背景,阐述了微小RNA(miRNA)和长链非编码RNA(lncRNA)对昼夜节律的调控。miRNA介导的昼夜节律调控包括:生物体内(尤其是钟神经元中)具有节律性表达的miRNA;输入系统和miRNA存在相互调控,这主要是通过光照这个授时因子起作用;miRNA可直接调控核心振荡器,还可以调控其他基因而间接影响到核心振荡器;miRNA对输出系统的调控主要集中在代谢取食节律、运动节律、睡眠节律等。昼夜节律可调控lncRNA的表达,同时lncRNA也可调控昼夜节律,且lncRNA对基因调控范围广,作用机制复杂,这些都具有广阔的研究前景。本文将有助于进一步深入研究ncRNA对昼夜节律的调控。  相似文献   

2.
果蝇Neurexin(DNRX)在突触的结构发育和突触功能上发挥着重要的作用.然而迄今为止,DNRX的时间和空间表达模式还没有被系统地研究.本研究建立了一株新的DNRX-Gal4转基因果蝇品系,评价了这株转基因Gal4品系在三龄幼虫脑中的表达模式,发现其与内源性的DNRX的表达模式是一致的.接下来利用DNRX-Gal4/UAS-Reporter系统地分析了DNRX在时间和空间上的表达模式.结果显示,DNRX在胚胎、幼虫和成虫时期均表达在中枢神经元和运动神经元,而在神经胶质细胞没有表达.在果蝇神经肌肉接头(NMJs)中,DNRX既表达在突触前也表达在突触后区域.DNRX也被发现表达在唾液腺、肠、翅膀和腿.在成虫脑中,DNRX表达在许多不同的脑区,包括蘑菇体(MBs)、触角叶(AL)和视盘.有趣的是,DNRX在控制节律的颜料释散因子(PDF)阳性的clock神经元里也有表达,同时发现DNRX在蘑菇体的表达是与果蝇的嗅觉联想式学习记忆相关的.  相似文献   

3.
40多年前的遗传筛选鉴定了第一个果蝇生物钟基因period,开启了果蝇生物钟调控机制的研究。随着更多生物钟基因被发现,一个由转录水平的调控及转录后水平的修饰组成的负反馈环路模型逐步形成,被认为是调控昼夜节律的核心分子机制。生物钟驱动果蝇脑内约150个神经元的活动,这些神经元在不同的环境条件下通过不同的方式互作,共同调控果蝇的行为节律。昼夜环境变化中最显著的是明暗变化。蓝光受体cryptochrome在光对昼夜节律的调控中起重要作用。  相似文献   

4.
【目的】灵活操控靶基因的表达水平对于研究基因的功能十分重要。Gal4/UAS系统已被广泛应用于调控基因表达,可研究果蝇Drosophila等模式生物复杂的生物学问题。受采用载体的特性及插入位点的影响,Gal4或UAS转基因品系在构建好之后,其调控靶基因的能力基本是确定的。本研究旨在在现有Gal4/UAS系统的基础上,开发一种新的策略,实现在果蝇翅芽中灵活操控wingless(wg)基因的表达水平。【方法】用遗传学手段将黑腹果蝇Drosophila melanogaster品系的UAS-wg和UAS-wg-RNAi转基因重组到同一黑腹果蝇品系中。将该重组黑腹果蝇品系与dpp-Gal4黑腹果蝇品系杂交,同时驱动UAS-wg和UAS-wg-RNAi在果蝇幼虫翅芽中共表达。杂交子代幼虫分别放置在不同的温度(18, 25和30℃)下培养。将幼虫翅芽解剖并进行免疫组化染色,测量染色的荧光强度,分析翅芽中wg的表达水平。【结果】在低温(18℃)下,UAS-wg在基因表达调控中起主要作用,wg表现为超表达,但其超表达的效率可被UAS-wg-RNAi有效地削弱。相反,在高温(30℃)下,UAS-wg-RNAi起主导作用,wg的表达受到抑制。并且通过转换温度,可实现wg在翅芽发育的不同阶段在超表达和抑制之间相互转化,从而灵活地操控wg基因在翅芽中的表达水平。【结论】该方法可以灵活操控果蝇翅芽中wg基因的表达水平,对于调控转基因的表达有重要的意义。  相似文献   

5.
昆虫生物钟分子调控研究进展   总被引:3,自引:2,他引:1  
昆虫生物钟节律的研究是人类了解生物节律的重要途径。昆虫在生理和行为上具有广泛的节律活动,如运动、睡眠、学习记忆、交配、嗅觉等节律活动,其中昼夜活动行为节律的研究广泛而深入。昆虫乃至高等动物普遍具有保守的昼夜节律系统,昼夜生物钟节律主要包括输入系统:用于接受外界光和温度等环境信号并传入核心振荡器,使得生物时钟与环境同步;核心时钟系统:自我维持的昼夜振荡器;输出系统:将生物钟产生的信号传递出去而控制生物行为和生理的节律变化。早期分子和遗传学研究主要关注昼夜节律振荡器的分子机制及神经生物学,阐明了昼夜生物钟节律的主要分子机制及相关神经网络。最近更多的研究关注生物钟信号是如何输入和输出。本文以果蝇运动节律的相关研究为主要内容,围绕生物钟输入系统、振荡器、输出系统这3个组成部分对昆虫生物钟研究进展进行总结。  相似文献   

6.
Hsp22对SCA3/MJD转基因果蝇的神经保护作用研究   总被引:1,自引:0,他引:1  
为了探讨Hsp22在SCA3/MJD发病机制中的作用.选用GMR-GAL4和elav-GAL4驱动子,利用经典的GAL4-UAS系统,将含有78个CAG重复扩增的ataxin-3蛋白片段(MJDtr-Q78)分别在果蝇眼睛和神经系统选择性表达,构建GMR-GAL4/UAS和elav-GAL4/UAS系统SCA3/MJD转基因果蝇模型, 然后利用遗传学方法和热休克反应使Hsp22在SCA3/ MJD转基因果蝇眼睛和神经系统以不同水平过表达.结果表明,Hsp22过表达显著抑制了MJDtr-Q78蛋白的神经毒性,果蝇眼睛视网膜光感受神经元变性明显缓解,果蝇存活能力也显著提高.Hsp22对SCA3/MJD具有保护作用,增强Hsp22表达对SCA3/MJD可能是一种潜在的治疗方法.  相似文献   

7.
果蝇原始生殖细胞(primordial germ cells,PGCs)是生殖干细胞的前体。该群细胞在果蝇幼虫期经历特征性的发育过程,这一过程涉及程序化的细胞命运及行为改变。为系统探讨mi RNA在上述PGCs命运调控中的作用,对雌蝇幼虫发育中的性腺组织进行了mi RNA表达谱分析,发现一组mi RNA分子持续在性腺组织细胞中表达。应用GAL4/UAS遗传操作系统验证了部分候选mi RNAs的功能,获得了mi R-33和mi R-278参与调控果蝇幼虫PGCs有序分化的实验证据。该文为发育过程中功能性mi RNA研究工作的开展提供了有益的借鉴。  相似文献   

8.
为探讨沉默信息调节因子2(Sir2)在SCA3/MJD发病机制中的作用.选用GMR-GAL4 和Nrv2-GAL4驱动子,利用经典的GAL4-UAS系统,将含有78 个CAG 重复扩增的ataxin-3 蛋白片段(MJDtr-Q78)分别在果蝇眼睛和运动神经元内选择性表达,构建GMR-GAL4/UAS 和Nrv2-GAL4/UAS 系统SCA3/MJD 转基因果蝇模型,然后分别在抑制和不抑制自噬的情况下,使Sir2在SCA3/MJD 转基因果蝇眼睛和运动神经元内过表达.结果发现,Sir2过表达明显抑制了SCA3/MJD 转基因果蝇眼睛视网膜光感受神经元变性,显著改善了果蝇运动能力,而在自噬被抑制后,Sir2的作用效果明显减弱,表明Sir2对SCA3/MJD 转基因果蝇具有神经保护作用,而这种神经保护作用需要依赖自噬的功能.  相似文献   

9.
《昆虫知识》2010,(6):1027-1028
近日,Science杂志在线发表了中国科学院生物物理研究所刘力课题组龚哲峰副研究员等人关于发现果蝇幼虫中央脑的两对神经元足以调节果蝇幼虫对于不同光强条件的偏好行为的研究成果。  相似文献   

10.
刘宁  张儒 《昆虫学报》2011,54(10):1087-1093
阿尔茨海默症 (Alzheimer′s disease, AD), 是一种以脑中β-淀粉样蛋白 (β-amyloid peptide, Aβ)沉积为主要病理改变的神经退行性疾病。在果蝇Drosophila模型中建立淀粉样蛋白前体蛋白 (amyloid precursor protein, APP)的剪切通路模拟Aβ的产生过程, 有望建立一种快速筛选治疗AD药物的动物模型。我们利用经典的Gal4/UAS系统, 将现有的APP/BACE/DPsn果蝇品系连续杂交, 通过同源重组的方法构建表达两个拷贝的APP/BACE/DPsn稳定可遗传的转基因果蝇新品系。进一步的实验结果表明: 与不表达APP/BACE/DPsn的对照果蝇w/y; APP/Cyo; BACE-DPsn/TM6BTb相比, 表达两拷贝APP/BACE/DPsn的 w/y; elav-APP; BACE-DPsn果蝇的最长寿命为52 d, 比对照组(69 d)缩短了17 d, 为对照组果蝇的75%; 中位生存时间为39 d, 比对照组(49 d)缩短了10 d, 为对照组的80%; 平均寿命为37 d, 比对照组(47 d)缩短了10 d, 为对照组的79%。同时, 表达两个拷贝APP/BACE/DPsn的果蝇所产卵的羽化时间比对照果蝇延长了3 d; 其羽化成虫的理论值为1∶9 (11%), 而实际羽化率仅为5.2%。结果提示, 由elav-Gal驱动在果蝇泛神经元内过表达APP/BACE/DPsn, 可以缩短果蝇寿命、 干扰果蝇胚胎正常发育。该果蝇有可能作为初步筛选AD治疗药物的动物模型, 为AD治疗新药的发现提供工具。  相似文献   

11.
Choline acetyltransferease (ChAT) is the enzyme catalyzing the biosynthesis of acetylcholine and is considered to be a phenotypically specific marker for cholinergic neurons. We have examined the distribution of ChAT-expressing neurons in the larval nervous system of Drosophila melanogaster by three different but complementary techniques: in situ hybridization with a cRNA probe to ChAT messenger RNA, immunocytochemistry using a monoclonal anti-ChAT antibody, and X-gal staining of transformed animals carrying a reporter gene composed of 7.4 kb of 5 flanking DNA from the ChAT gene fused to a lacZ reporter gene. All three techniques demonstrated ChAT-expressing neurons in the larval visual system. In embryos, the photoreceptor organ (Bolwig's organ) exhibited strong cRNA hybridization signals. The optic lobe of late third-instar larvae displayed ChAT immunoreactivity in Bolwig's nerve and a neuron close to the insertion site of the optic stalk. This neuron's axon ran in parallel with Bolwig's nerve to the larval optic neuropil. This neuron is likely to be a first-order interneuron of the larval visual system. Expression of the lacZ reporter gene was also detected in Bolwig's organ and the neuron stained by anti-ChAT antibody. Our observations indicate that acetylcholine may be a neurotransmitter in the larval photoreceptor cells as well as in a first-order interneuron in the larval visual system of Drosophila melanogaster.This work was supported by a grant from the National Institute of Neurological Disorders and Stroke.  相似文献   

12.
Mazzoni EO  Desplan C  Blau J 《Neuron》2005,45(2):293-300
Circadian pacemaker neurons contain a molecular clock that oscillates with a period of approximately 24 hr, controlling circadian rhythms of behavior. Pacemaker neurons respond to visual system inputs for clock resetting, but, unlike other neurons, have not been reported to transmit rapid signals to their targets. Here we show that pacemaker neurons are required to mediate a rapid behavior. The Drosophila larval visual system, Bolwig's organ (BO), projects to larval pacemaker neurons to entrain their clock. BO also mediates larval photophobic behavior. We found that ablation or electrical silencing of larval pacemaker neurons abolished light avoidance. Thus, circadian pacemaker neurons receive input from BO not only to reset the clock but also to transmit rapid photophobic signals. Furthermore, as clock gene mutations also affect photophobicity, the pacemaker neurons modulate the sensitivity of larvae to light, generating a circadian rhythm in visual sensitivity.  相似文献   

13.
14.
Pre-existing neuronal pathways in the developing optic lobes of Drosophila   总被引:3,自引:0,他引:3  
We have identified a set of larval neurones in the developing adult optic lobes of Drosophila by selectively labelling cells that have undergone only a few mitoses. A cluster of three cells is located in each of the optic lobes near the insertion site of the optic stalk. Their axons fasciculate with fibres of the larval optic nerve, the Bolwig's nerve, and then form part of the posterior optic tract. These cells are likely to be first order interneurones of the larval visual system. Unlike the Bolwig's nerve, they persist into the adult stage. The possibility of a pioneering function of the larval visual system during formation of the adult optic lobe neuropil is discussed.  相似文献   

15.
K J Lee  M Freeman    H Steller 《The EMBO journal》1991,10(4):817-826
Proper development of the larval visual nerve, Bolwig's nerve, of Drosophila melanogaster requires the wild type function of the disconnected (disco) gene. In disco mutants, the nerve does not make stable connections with its targets in the larval brain. We have begun to explore the role of disco in the formation of the nervous system by examining the distribution of disco mRNA and protein in embryos and third instar larvae using in situ hybridization and antibody staining respectively. No differences between the distribution patterns of the two products are detected; disco is expressed in many tissues including both neural and non-neural cells. Many of the cells which express disco undergo extensive movement during development as they participate in major morphogenetic movements. Antibody staining shows that the protein is found in the cell nucleus. Products of the disco gene are detected in cells near the terminus of the growing Bolwig's nerve. In embryos homozygous for either of two mutant alleles of disco, the disco protein is absent near the nerve terminus, although protein distribution elsewhere is indistinguishable from wild type.  相似文献   

16.
In an attempt to study the fates of cells in the dorsal head region of Drosophila embryos at gastrulation, we used the photoactivated gene expression system to mark small numbers of cells in selected mitotic domains. We found that mitotic domain 20, which is a cluster of approximately 30 cells on the dorsal posterior surface, gives rise to various ectodermal cell types in the head, including dorsal pouch epithelium, the optic lobe, and head sensory organs, including Bolwig's organ, the larval photoreceptor organ. We found that the optic lobe and larval photoreceptors share the same origin of a few adjacent cells near the center of mitotic domain 20, suggesting that within the mitotic domain, there is a subdomain from which the larval visual system is specified. In addition to the components of the larval visual system, this central region of mitotic domain 20 also generates a part of the eye-antennal disc placode; cells that gives rise to the adult visual system. We also observed that a significant amount of cell death occurred within this domain and used cell ablation experiments to determine the ability of the embryo to compensate for cell loss.  相似文献   

17.
M. A. Serikaku  J. E. O''Tousa 《Genetics》1994,138(4):1137-1150
The so(mda) (sine oculis-medusa) mutant is the result of a P element insertion at position 43C on the second chromosome. so(mda) causes aberrant development of the larval photoreceptor (Bolwig's) organ and the optic lobe primordium in the embryo. Later in development, adult photoreceptors fail to project axons into the optic ganglion. Consequently optic lobe development is aborted and photoreceptor cells show age-dependent retinal degeneration. The so gene was isolated and characterized. The gene encodes a homeodomain protein expressed in the optic lobe primordium and Bolwig's organ of embryos, in the developing adult visual system of larvae, and in photoreceptor cells and optic lobes of adults. In addition, the SO product is found at invagination sites during embryonic development: at the stomadeal invagination, the cephalic furrow, and at segmental boundaries. The mutant so(mda) allele causes severe reduction of SO embryonic expression but maintains adult visual system expression. Ubiquitous expression of the SO gene product in 4-8-hr embryos rescues all so(mda) mutant abnormalities, including the adult phenotypes. Thus, all deficits in adult visual system development and function result from failure to properly express the so gene during embryonic development. This analysis shows that the homeodomain containing SO gene product is involved in the specification of the larval and adult visual system development during embryogenesis.  相似文献   

18.
Dynamically regulated cell adhesion plays an important role during animal morphogenesis. Here we use the formation of the visual system in Drosophila embryos as a model system to investigate the function of the Drosophila classic cadherin, DE-cadherin, which is encoded by the shotgun (shg) gene. The visual system is derived from the optic placode which normally invaginates from the surface ectoderm of the embryo and gives rise to two separate structures, the larval eye (Bolwig's organ) and the optic lobe. The optic placode dissociates and undergoes apoptotic cell death in the absence of DE-cadherin, whereas overexpression of DE-cadherin results in the failure of optic placode cells to invaginate and of Bolwig's organ precursors to separate from the placode. These findings indicate that dynamically regulated levels of DE-cadherin are essential for normal optic placode development. It was shown previously that overexpression of DE-cadherin can disrupt Wingless signaling through titration of Armadillo out of the cytoplasm to the membrane. However, the observed defects are likely the consequence of altered DE-cadherin mediated adhesion rather than a result of compromising Wingless signaling, as overexpression of a DE-cadherin-alpha-catenin fusion protein, which lacks Armadillo binding sites, causes similar defects as DE-cadherin overexpression. We further studied the genetic interaction between DE-cadherin and the Drosophila EGF receptor homolog, EGFR. If EGFR function is eliminated, optic placode defects resemble those following DE-cadherin overexpression, which suggests that loss of EGFR results in an increased adhesion of optic placode cells. An interaction between EGFR and DE-cadherin is further supported by the finding that expression of a constitutively active EGFR enhances the phenotype of a weak shg mutation, whereas a mutation in rhomboid (rho) (an activator of the EGFR ligand Spitz) partially suppresses the shg mutant phenotype. Finally, EGFR can be co-immunoprecipitated with anti-DE-cadherin and anti-Armadillo antibodies from embryonic protein extracts. We propose that EGFR signaling plays a role in morphogenesis by modulating cell adhesion.  相似文献   

19.
We have used electron-microscopic studies, bromodeoxyuridine (BrdU) incorporation and antibody labeling to characterize the development of the Drosophila larval photoreceptor (or Bolwig's) organ and the optic lobe, and have investigated the role of Notch in the development of both. The optic lobe and Bolwig's organ develop by invagination from the posterior procephalic region. After cells in this region undergo four postblastoderm divisions, a total of approximately 85 cells invaginate. The optic lobe invagination loses contact with the outer surface of the embryo and forms an epithelial vesicle attached to the brain. Bolwig's organ arises from the ventralmost portion of the optic lobe invagination, but does not become incorporated in the optic lobe; instead, its 12 cells remain in the head epidermis until late in embryogenesis when they move in conjunction with head involution to reach their final position alongside the pharynx. Early, before head involution, the cells of Bolwig's organ form a superficial group of 7 cells arranged in a rosette pattern and a deep group of 5 cells. Later, all neurons move out of the surface epithelium. Unlike adult photoreceptors, they do not form rhabdomeres; instead, they produce multiple, branched processes, which presumably carry the photopigment. Notch is essential for two aspects of the early development of the visual system. First, it delimits the number of cells incorporated into Bolwig's organ. Second, it is required for the maintenance of the epithelial character of the optic lobe cells during and after its invagination.  相似文献   

20.
The visual system is one of the input pathways for light into the circadian clock of the Drosophila brain. In particular, extra-retinal visual structures have been proposed to play a role in both larval and adult circadian photoreception. We have analyzed the interactions between extra-retinal structures of the visual system and the clock neurons during brain development. We first show that the larval optic nerve, or Bolwig nerve, already contacts clock cells (the lateral neurons) in the embryonic brain. Analysis of visual system-defective genotypes showed that the absence of the afferent Bolwig nerve resulted in a severe reduction of the lateral neurons dendritic arborization, and that the inhibition of nerve activity induced alterations of the dendritic morphology. During wild-type development, the loss of a functional Bolwig nerve in the early pupa was also accompanied by remodeling of the arborization of the lateral neurons. Approximately 1.5 days later, visual fibers that came from the Hofbauer-Buchner eyelet, a putative photoreceptive organ for the adult circadian clock, were seen contacting the lateral neurons. Both types of extra-retinal photoreceptors expressed rhodopsins RH5 and RH6, as well as the norpA-encoded phospholipase C. These data strongly suggest a role for RH5 and RH6, as well as NORPA, signaling in both larval and adult extra-retinal circadian photoreception. The Hofbauer-Buchner eyelet therefore does not appear to account for the previously described norpA-independent light input to the adult clock. This supports the existence of yet uncharacterized photoreceptive structures in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号