首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 429 毫秒
1.
Ploidy levels inEmpetrum (crowberry) from the Czech Republic and from one adjacent locality in Poland were estimated by flow cytometry to examine cytotype distribution patterns at large (within the country), medium (within mountain ranges) and small (within particular localities) spatial scales. Diploid, triploid, and tetraploid individuals were found. Triploids are reported from Central Europe for the first time; they occurred in the Krkono?e Mts. Exclusively diploid plants were observed in three mountain ranges (the Kru?né hory Mts., Labské pískovce Mts., Adr?pa?sko-Teplické skály Mts.), exclusively tetraploids were observed in the Jeseníky Mts., and both cytotypes were observed in the ?umava Mts., Jizerské hory Mts. and Krkono?e Mts. Except for the latter mountain range, diploids and tetraploids were always found in different habitats. Spatial isolation is supposed to be the main barrier preventing cytotype mating. A mosaic-like sympatric occurrence of different cytotypes was demonstrated in the Krkono?e Mts., where peat bogs and rocky places were not spatially separated. Eight of 11 localities studied there were inhabited by diploids and tetraploids (five localities), diploids and triploids (one locality) or all three ploidy levels (two localities). Diploid and triploid plants occasionally intermingled at 0.3 × 0.3 m. Flower sex in crowberries was strongly associated with ploidy level: diploids usually had unisexual flowers, the tetraploids bore exclusively bisexual flowers. However, a few diploid plants with hermaphrodite flowers occurred in one population in the Krkono?e Mts.  相似文献   

2.
We have investigated genetic variability among 56 individuals of the apogamous Dryopteris affinis complex from 9 populations in Switzerland and Austria using inter-simple sequence repeats. Our sample included 6 diploids, 48 triploids, and 1 tetraploid and 1 pentaploid plant each. We found genetic differences between and within the different ploidy levels. All diploids genetically differed from each other. In contrast, among the triploid plants we only found seven different genotypes of which one was rather common. The tetraploid and pentaploid individuals were nested among the diploids and triploids. No hypotheses have yet been proposed to explain the origin of genetic variations such as those documented here. We hope that this study stimulates new ideas about the position and the genetic background of this taxonomically difficult species group, in particular, and of apogamous species complexes in ferns in general.  相似文献   

3.
BACKGROUND AND AIMS: Polyploidy is viewed as an important mechanism of sympatric speciation, but only a few studies have documented patterns of distribution and ecology of different cytotypes in their contact zone. Aster amellus agg. (Asteraceae) is one of the species with documented multiple ploidy levels. The aim of this study was to determine spatial distribution and ecology of two cytotypes, diploid (2n = 18) and hexaploid (2n = 54), of Aster amellus agg. at their contact zone in the Czech Republic. METHODS: Root-tip squashes and flow cytometry were used to determine the ploidy of 2175 individuals from 87 populations. To test whether some differences in ecology between the two ploidy levels exist, in each locality relevés were recorded and abiotic conditions of the sites were studied by estimating potential direct solar radiation, Ellenberg indicator values and above-ground biomass. KEY RESULTS: Together with diploid and hexaploids, minorite cytotypes (triploid, pentaploid and nonaploid) were found. No significant ecological differences between diploid and hexaploid cytotypes were found. In spite of this, no population consisting of both of the two basic cytotypes was found. CONCLUSIONS: The results of this study show that the contact zone of diploid and hexaploid cytotypes in the Czech Republic is much more diffuse than indicated in previous records. Although populations of both cytotypes occur in close proximity (the closest populations of different cytotypes were 500 m apart), each individual population consists of only one basic ploidy level. This was unexpected since there are no clear differences in abiotic conditions between populations. Taken together with the absence of an intermediate tetraploid cytotype and with reference to published world distributional patterns of different ploidy levels, this suggests a secondary contact zone. Detailed genetic study is, however, necessary to confirm this.  相似文献   

4.
We studied hybridization between the diploid Centaurea pseudophrygia and the tetraploid C. jacea by performing crossing experiments and screening natural populations using flow cytometry. The experiments confirm that the studied species exhibit strong reproductive isolation. Interspecific hybrids were formed at a low frequency, including triploids (originating from reduced gametes) and tetraploids (involving unreduced gametes of the diploids). In contrast, hybrids were almost absent among seeds and adult plants of natural mixed populations and among the offspring from experimental pollinations with a mixture of pollen of both ploidy levels. We found that mixed pollination is an important mechanism for preventing hybridization between plants of different ploidy levels and sustaining the reproduction of the tetraploids. A mentor effect (induced selfing in the presence of pollen of different ploidy levels) was observed in both diploids and tetraploids, reinforcing the reproductive isolation between cytotypes. Higher ploidy levels (pentaploid, hexaploid) involving unreduced gametes of the tetraploid species were identified. Notably, pentaploids were discovered for the first time in Centaurea sect. Jacea. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 93–106.  相似文献   

5.
Co-occurrence of sexual diploid and apomictic triploidTaraxacum sectionRuderalia has been reported frequently. Many suggestions have been put forward with respect to the existence of an ecological differentiation between the cytotypes. In a study of 116Ruderalia populations in the area around Neuchatel (Switzerland) such a habitat differentiation has been proven. Large differences in the diploid/triploid ratio have been found between different field types. Adjacent fields of different types sometimes had significantly different cytotype ratios. In a canonical correspondence analysis significant vegetation differences were found between fields with mainly diploidRuderalia and fields with mainly triploidRuderalia. Two environmental indicators were significantly positively correlated with ploidy levels, altitude with diploids, and the percentage of therophytes in a vegetation with triploids. The percentage of therophytes is thought to be an indicator of the amount of disturbance due to human activities. At lower altitudes, the diploid/triploid ratio is largely determined by the amount of disturbance. Highly-disturbed fields contain mainly triploids whereas relatively stable fields contain mainly diploids. At higher altitudes there are mainly diploids. The presence of triploidTaraxacum sect.Ruderalia in the region around Neuchatel appears to be the result of the high amount of human activities of the last few hundred years. Whether the triploid presence is due to immigration or to local formation from diploids is yet unknown.  相似文献   

6.
Aim  To assess evidence for geographical and environmental range expansion through polyploidy in wild potatoes ( Solanum sect. Petota ). There are diploids, triploids, tetraploids, pentaploids and hexaploids in this group.
Location  Wild potatoes occur from the south-western USA (Utah and Colorado), throughout the tropical highlands of Mexico, Central America and the Andes, to Argentina, Chile and Uruguay.
Methods  We compiled 5447 reports of ploidy determination, covering 185 of the 187 species, of which 702 determinations are presented here for the first time. We assessed the frequency of cytotypes within species, and analysed the geographical and climatic distribution of ploidy levels.
Results  Thirty-six per cent of the species are entirely or partly polyploid. Multiple cytotypes exist in 21 species, mostly as diploid and triploid, but many more may await discovery. We report the first chromosome count (2 n = 24) for Solanum hintonii . Diploids occupy a larger area than polyploids, but diploid and tetraploid species have similar range sizes, and the two species with by far the largest range sizes are tetraploids. The fraction of the plants that are polyploids is much higher from Mexico to Ecuador than farther south. Compared with diploids, triploids tend to occur in warmer and drier areas, whereas higher-level polyploids tend to occur in relatively cold areas. Diploids are absent from Costa Rica to southern Colombia, the wettest part of the group's range.
Main conclusions  These results suggest that polyploidy played an important role in this group's environmental differentiation and range expansion.  相似文献   

7.
Summary The microdistribution of diploid and tetraploid plants of Dactylis glomerata L. was examined and related to their immediate environment in several sites in central Galicia, where morphologically indistinguishable individuals of both ploidies grow in sympatry. The two related cytotypes differed in habitat preference. Diploids were mainly confined to the low-density forest-floor habitat in woodlands of mostly ancient origin, whereas tetraploids were widespread in varied habitats but clearly predominant in open areas, particularly in disturbed anthropic sites. The in situ comparison of plant performance showed that where plants of each ploidy were more common they produced more tillers, panicles and seeds. This habitat preference closely reflected differences in life-history characteristics. The tetraploids had an early and short flowering time almost always completed before the aestival drought, whereas the diploids began to flower several weeks later and flowered throughout the drought. Comparisons along artificial gradients of soil water availability and light transmittance indicated that the cytotypes had distinct physiological requirements which probably originated in metabolic and more general genetic differentiation and could be directly attributable to ploidy. Habitat differentiation increases the species' colonizing ability. It also amplifies divergence in reproductive strategy between diploids and tetraploids, which reduces ineffective crossing between cytotypes and thereby permits them to coexist in sympatry. The effect of hybridization at the polyploid level on the differentiation between cytotypes was assessed from the recent introduction of a foreign tetraploid entity into the study area. Hybridization between the two distinct tetraploids was found to increase habitat differentiation between the diploids and the tetraploids, but the major part of this differentiation is probably attributable to ploidy itself.  相似文献   

8.
Ploidy levels sometimes vary among individuals or populations, particularly in plants. When such variation exists, accurate determination of cytotype can inform studies of ecology or trait variation and is required for population genetic analyses. Here, we propose and evaluate a statistical approach for distinguishing low‐level ploidy variants (e.g. diploids, triploids and tetraploids) based on genotyping‐by‐sequencing (GBS) data. The method infers cytotypes based on observed heterozygosity and the ratio of DNA sequences containing different alleles at thousands of heterozygous SNPs (i.e. allelic ratios). Whereas the method does not require prior information on ploidy, a reference set of samples with known ploidy can be included in the analysis if it is available. We explore the power and limitations of this method using simulated data sets and GBS data from natural populations of aspen (Populus tremuloides) known to include both diploid and triploid individuals. The proposed method was able to reliably discriminate among diploids, triploids and tetraploids in simulated data sets, and this was true for different levels of genetic diversity, inbreeding and population structure. Power and accuracy were minimally affected by low coverage (i.e. 2×), but did sometimes suffer when simulated mixtures of diploids, autotetraploids and allotetraploids were analysed. Cytotype assignments based on the proposed method closely matched those from previous microsatellite and flow cytometry data when applied to GBS data from aspen. An R package (gbs2ploidy) implementing the proposed method is available from CRAN.  相似文献   

9.
? Premise of the study: Polyploids are often hypothesized to have distinct and broader niches than their diploid progenitors. Differences in geographic distributions between diploid and polyploids are frequently used to infer niche differentiation and increased breadth, but they are seldom used to test these hypotheses explicitly. ? Methods: Niche overlap and breadth were compared for diploids, tetraploids, and hexaploids of three taxa in the Claytonia perfoliata complex (C. parviflora, C. perfoliata, and C. rubra) with the use of species distribution models. Resampling and randomization approaches were used to test hypotheses of niche differentiation, breadth, and conservatism. ? Key results: Niche differentiation was detected between polyploid and diploid cytotypes assigned to the same taxon (e.g., C. parviflora 2× vs. 4×) but not between hexaploids and tetraploids within a taxon (e.g., C. parviflora 4× vs. 6×). Individual hexaploid cytotypes had broader ecological niches than individual diploid cytotypes. However, as a group the three hexaploid taxa did not exceed the combined niche breadth of the three diploids, suggesting that polyploidy does not result in transgressive niche breadth for this group. Niche overlap was lowest among diploids and was highest among the three hexaploid cytotypes, consistent with introgression associated with polyploidy resulting in greater ecological similarity. Although cytotypes possessed nonidentical niches, after accounting for environmental differences among ranges, cytotypes were more similar than expected, suggesting niche conservatism and similar responses to environmental characteristics. ? Conclusions: These results suggest that polyploids occupy distinct and broader niches relative to diploids but that cytotypes also share fundamentally similar responses to environmental variation across ploidy levels.  相似文献   

10.
We explored the fine-scale distribution of cytotypes of the mountain plant Senecio carniolicus along an altitudinal transect in the Eastern Alps. Cytotypes showed a statistically significant altitudinal segregation with diploids exclusively found in the upper part of the transect, whereas diploids and hexaploids co-occurred in the lower range. Analysis of accompanying plant assemblages revealed significant differences between cytotypes along the entire transect but not within the lower part only, where both cytotypes co-occur. This suggests the presence of ecological differentiation between cytotypes with the diploid possessing the broader ecological niche. No tetraploids were detected, indicating the presence of strong crossing barriers. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Kao RH 《Annals of botany》2008,101(1):145-152
BACKGROUND AND AIMS: Polyploidy is a central force structuring genetic diversity in angiosperms, but its ecological significance and modes of origin are not fully understood. This work investigated the patterns of coexistence and molecular relatedness of polyploids in the perennial herb, Arnica cordifolia. METHODS: The local- and broad-scale distributions of cytotypes were analysed using flow cytometry. Samples were collected from both roadside and understorey habitats to test the hypothesis of niche separation between triploids and tetraploids. The nuclear rDNA internal transcribed spacer (ITS) and plastid rpl16 spacer, trnL intron plus trnL-trnF spacer and trnK 3' intron regions were sequenced. KEY RESULTS: Broad-scale sampling established that both triploids and tetraploids were common throughout the range of the species, pentaploids were rare, and diploids were not found. Local-scale sampling revealed coexistence of both triploids and tetraploids within the majority of sites. Triploids and tetraploids were equally represented in the understorey and roadside habitat. Triploids were more variable than tetraploids, but both cytotypes shared polymorphisms in ITS. CONCLUSIONS: Coexistence of cytotypes appears to be the norm in A. cordifolia, but habitat differentiation (roadside vs. understorey) is not supported as a coexistence mechanism. Molecular analyses supported multiple events creating triploids but revealed a lack of variation in the tetraploids. Additionally, sequence polymorphisms in ITS suggested a hybridization event prior to polyploidization.  相似文献   

12.
In many polyploid species, polyploids often have different suites of floral traits and different flowering times than their diploid progenitor species. We hypothesized that such differences in floral traits in polyploids may subsequently affect their interactions with pollinating and other insect visitors. We measured floral morphology and flowering phenology in 14 populations of diploid and autotetraploid Heuchera grossulariifolia Rydb. (Saxifragaceae), determined if repeated evolution of independent polyploid lineages resulted in differentiation in floral morphology among those lineages, and ascertained if there was a consistent pattern of differentiation among genetically similar diploid and autotetraploid populations. In addition, we evaluated the differences in suites of floral visitors within a natural community where diploids and autotetraploids occur sympatrically. Overall, flowers of autotetraploid plants were larger and shaped differently than those of diploids, had a different flowering phenology than that of diploids, and attracted different suites of floral visitors. In comparison with flowers of diploids, tetraploid floral morphology varied widely from pronounced differences between cytotypes in some populations to similar flower shapes and sizes between ploidal levels in other populations. Observations of floral visitors to diploids and autotetraploids in a natural sympatric population demonstrated that the cytotypes had different suites of floral visitors and six of the 15 common visitors preferentially visited one ploidy more frequently. Moreover, we also found that floral morphology differed among independent autotetraploid origins, but there was no consistent pattern of differentiation between genetically similar diploid and autotetraploid populations. Hence, the results suggest that the process of polyploidization creates the potential for attraction of different suites of floral visitors. Multiple origins of polyploidy also presents the opportunity for new or different plant-insect interactions among independent polyploid lineages. These differences in turn may affect patterns of gene flow between diploids and polyploids and also among plants of independent polyploid origin. Polyploidy, therefore, may result in a geographic mosaic of interspecific interactions across a species' range, contributing to diversification in both plant and insect groups.  相似文献   

13.
Aim Biotic homogenization, the replacement of local biota by non‐indigenous and locally expanding species, is among the major effects of species invasions. Almost all studies related to this topic are focused on the species level, on taxonomic homogenization. Homogenization effects on trait diversity (functional homogenization) may be very important for ecosystem functioning, but they are rarely analysed, especially not at different spatial scales within a single study. This paper aims to examine how the presence of alien species (species introduced since 1500 ad ) affects the distribution of ploidy levels in the German flora at different spatial scales. Location Germany. Methods We used a resampling method and the Morisita–Horn dissimilarity index to calculate dissimilarities of ploidy level within and between alien and indigenous plants at three different spatial scales in Germany: (1) the entire country as one location, (2) between grid cells, and (3) within grid cells of a lattice covering Germany. Results We found a significant differentiation effect within grid cells of c. 130 km2, with alien plants increasing the variability of ploidy levels. The differentiation effect varies according to the scale used. At the coarsest scale (entire Germany), ploidy levels of alien plants tend to be more homogeneous in composition compared with those of native plants. At the intermediate scale (between grid cells), and even more pronounced at a small scale (within grid cells), ploidy levels are more heterogeneously distributed across Germany than those of native plant species. Main conclusions Homogenization of ploidy levels at a large scale (entire Germany) and differentiation at a small scale (within grid cells) is comparable with the patterns found in taxonomic homogenization analyses. This analysis is a first step towards understanding the impacts of plant invasions on a trait level. Differentiation and homogenization of ploidy levels might mirror the distribution of related ecological traits and therefore might have an impact on ecosystem functioning.  相似文献   

14.
Polyploidy and hybridization are thought to have significant impacts on both the evolution and diversification of the genus Actinidia, but the structure and patterns of morphology and molecular diversity relating to ploidy variation of wild Actinidia plants remain much less understood. Here, we examine the distribution of morphological variation and ploidy levels along geographic and environmental variables of a large mixed-ploidy population of the A. chinensis species complex. We then characterize the extent of both genetic and epigenetic diversity and differentiation exhibited between individuals of different ploidy levels. Our results showed that while there are three ploidy levels in this population, hexaploids were constituted the majority (70.3%). Individuals with different ploidy levels were microgeographically structured in relation to elevation and extent of niche disturbance. The morphological characters examined revealed clear difference between diploids and hexaploids, however tetraploids exhibited intermediate forms. Both genetic and epigenetic diversity were high but the differentiation among cytotypes was weak, suggesting extensive gene flow and/or shared ancestral variation occurred in this population even across ploidy levels. Epigenetic variation was clearly correlated with changes in altitudes, a trend of continuous genetic variation and gradual increase of epigenomic heterogeneities of individuals was also observed. Our results show that complex interactions between the locally microgeographical environment, ploidy and gene flow impact A. chinensis genetic and epigenetic variation. We posit that an increase in ploidy does not broaden the species habitat range, but rather permits A. chinensis adaptation to specific niches.  相似文献   

15.
In the northeastern part of Belgium, the Centaurea jacea complex shows extensive morphological variation and is represented by a diploid (2 n = 22) and a tetraploid (2 n = 44) cytotype. Polysomic inheritance of allozyme markers in the tetraploids, suggesting autopolyploidy, is here demonstrated for the first time. In order to test whether the two cytotypes occupy distinct habitats and possess different gene pools, patterns of allozymic and morphological variation were investigated in relation to ploidy level and site characteristics in 26 populations from the Belgian Ardennes. The two cytotypes showed a parapatric distribution, the diploids occurring at higher elevations (mostly above 500 m) than the tetraploids (mostly below 500 m). Three mixed populations were found near the contact zone of the two cytotypes. Within the mixed populations no triploid plant and no evidence for gene flow between cytotypes were found, despite widely overlapping flowering periods. The two cytotypes can be distinguished on the basis of morphological traits and enzymatic gene pools. The congruence of morphological and allozymic variation with chromosome numbers suggests a secondary contact between the two cytotypes with limited gene flow between them. The origin and persistence of the parapatric distribution are discussed.  相似文献   

16.
Polyploidy is an important factor shaping the geographic range of a species. Clintonia udensis (Clintonia) is a primary perennial herb widely distributed in China with two karyotypic characteristics—diploid and tetraploid and thereby used to understand the ploidy and distribution. This study unraveled the patterns of genetic variation and spatiotemporal history among the cytotypes of C. udensis using simple sequence repeat or microsatellites. The results showed that the diploids and tetraploids showed the medium level of genetic differentiation; tetraploid was slightly lower than diploid in genetic diversity; recurrent polyploidization seems to have opened new possibilities for the local genotype; the spatiotemporal history of C. udensis allows tracing the interplay of polyploidy evolution; isolated and different ecological surroundings could act as evolutionary capacitors, preserve distinct karyological, and genetic diversity. The approaches of integrating genetic differentiation and spatiotemporal history of diploidy and tetraploidy of Clintonia udens would possibly provide a powerful way to understand the ploidy and plant distribution and undertaken in similar studies in other plant species simultaneously contained the diploid and tetraploid.  相似文献   

17.
Aim  This study aimed to document precisely the patterns of DNA ploidy variation in the native and secondary ranges of Lythrum salicaria distribution. The hypothesis that species invasiveness had been induced by a switch in ploidy level was addressed.
Location  Europe, Middle East, North America.
Methods  DNA ploidy levels of 1884 progenies of 578+ plants collected at 124 localities were determined by DAPI flow cytometry.
Results  Large cytotype variation (2 x , 3 x , 4 x and 6 x ) was found across the native area of distribution (64 populations covering 12 European and two Middle Eastern countries). DNA hexaploids were detected for the first time, and rare DNA triploids were reliably confirmed. DNA tetraploids largely prevailed across the native range studied, while DNA diploids and DNA hexaploids were recorded only in Israel and Turkey, respectively. DNA triploid progenies occurred in one population from Hungary (together with DNA tetraploids). Sympatric growth of DNA tetraploids and DNA hexaploids was repeatedly encountered in Turkey. In contrast, cytotype uniformity was a typical feature of the invasive North American plants. Sixty populations, covering 13 states of the USA and provinces of Canada, were characterized by the presence of only DNA tetraploids.
Main conclusions  Several L. salicaria cytotypes (2 x , 3 x , 4 x , 6 x ) occur in the native range of distribution, with much variation concentrated in the Middle Eastern countries, whereas only DNA tetraploids appeared to occur in North America. Our data show that the invasive spread of North American populations was not triggered by differences in ploidy level. Alternative explanations should be sought.  相似文献   

18.
Areas of immediate contact of different cytotypes offer a unique opportunity to study evolutionary dynamics within heteroploid species and to assess isolation mechanisms governing coexistence of cytotypes of different ploidy. The degree of reproductive isolation of cytotypes, that is, the frequency of heteroploid crosses and subsequent formation of viable and (partly) fertile hybrids, plays a crucial role for the long‐term integrity of lineages in contact zones. Here, we assessed fine‐scale distribution, spatial clustering, and ecological niches as well as patterns of gene flow in parental and hybrid cytotypes in zones of immediate contact of di‐, tetra‐, and hexaploid Senecio carniolicus (Asteraceae) in the Eastern Alps. Cytotypes were spatially separated also at the investigated microscale; the strongest spatial separation was observed for the fully interfertile tetra‐ and hexaploids. The three main cytotypes showed highly significant niche differences, which were, however, weaker than across their entire distribution ranges in the Eastern Alps. Individuals with intermediate ploidy levels were found neither in the diploid/tetraploid nor in the diploid/hexaploid contact zones indicating strong reproductive barriers. In contrast, pentaploid individuals were frequent in the tetraploid/hexaploid contact zone, albeit limited to a narrow strip in the immediate contact zone of their parental cytotypes. AFLP fingerprinting data revealed introgressive gene flow mediated by pentaploid hybrids from tetra‐ to hexaploid individuals, but not vice versa. The ecological niche of pentaploids differed significantly from that of tetraploids but not from hexaploids.  相似文献   

19.
Detailed ecological, morphological and molecular analyses were performed in mixed populations of diploid and autotetraploid Dactylorhiza maculata s.l. in Scandinavia. Comparisons were made with pure populations of either diploid ssp. fuchsii or tetraploid ssp. maculata. It was shown that mixed populations are the result of secondary contact between ssp. fuchsii and ssp. maculata. No patterns of recent and local autopolyploidization were found. Morphology and nuclear DNA markers (internal transcribed spacers of nuclear ribosomal DNA) showed that diploids and tetraploids from mixed populations have similar levels of differentiation to diploids and tetraploids from pure populations. Vegetation analyses, as well as analyses of environmental variables, revealed that diploid and tetraploid individuals in mixed populations are ecologically well differentiated on a microhabitat level. Diploids and tetraploids in pure populations have wider ecological amplitudes than they do in mixed populations. Triploid hybrids grew in intermediate microhabitats between diploids and tetraploids in the mixed populations. Plastid DNA markers indicated that both diploids and tetraploids may act as the maternal parent. Based on morphology and nuclear markers triploids are more similar to tetraploids than to diploids. There were indications of introgressive gene flow between ploidy levels. Plastid markers indicated that gene flow from diploid to tetraploid level is most common, but nuclear markers suggested that gene flow in opposite direction also may occur. Similar patterns of differentiation and gene flow appeared in localities that represented contrasting biogeographic regions. Disturbance and topography may explain why hybridization was slightly more common and the differentiation patterns somewhat less clear in the Scandinavian mountains than in the coastal lowland. An erratum to this article can be found at  相似文献   

20.
Abstract.— The extent and spatial patterns of genetic variation at allozyme markers were investigated within and between diploid and autotetraploid knapweeds (Centaurea jacea L. sensu lato, Asteraceae) at contrasted geographic scales: (1) among populations sampled from a diploid‐tetraploid contact zone in the northeastern part of the Belgian Ardennes, and (2) within mixed populations from that zone where diploids and tetraploids coexist. Our data were also compared with a published dataset by Sommer (1990) describing allozyme variation in separate diploid and tetraploid knapweeds populations collected throughout Europe. Genetic diversity was higher in tetraploids. In the Belgian Ardennes and within the mixed populations, both cytotypes had similar levels of spatial genetic structure, they were genetically differentiated, and their distributions of allele frequencies were not spatially correlated. In contrast, at the European scale, diploids and tetraploids did not show differentiated gene pools and presented a strong correlation between their patterns of spatial genetic variation. Numerical simulations showed that the striking difference in patterns observed at small and large geographic scales could be accounted for by a combination of (1) isolation by distance within cytotypes; and (2) partial reproductive barriers between cytotypes and/or recurrent formation of tetraploids. We suggest that this may explain the difficulty of the taxonomic treatment of knapweeds and of polyploid complexes in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号