首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The voltage-dependent gating of single, batrachotoxin-activated Na channels from rat brain was studied in planar lipid bilayers composed of negatively charged or neutral phospholipids. The relationship between the probability of finding the Na channel in the open state and the membrane potential (Po vs. Vm) was determined in symmetrical NaCl, both in the absence of free Ca2+ and after the addition of Ca2+ to the extracellular side of the channel, the intracellular side, or both. In the absence of Ca2+, neither the midpoint (V0.5) of the Po vs. Vm relation, nor the steepness of the gating curve, was affected by the charge on the bilayer lipid. The addition of 7.5 mM Ca2+ to the external side caused a depolarizing shift in V0.5. This depolarizing shift was approximately 17 mV in neutral bilayers and approximately 25 mV in negatively charged bilayers. The addition of the same concentration of Ca2+ to only the intracellular side caused hyperpolarizing shifts in V0.5 of approximately 7 mV (neutral bilayers) and approximately 14 mV (negatively charged bilayers). The symmetrical addition of Ca2+ caused a small depolarizing shift in Po vs. Vm. We conclude that: (a) the Na channel protein possesses negatively charged groups on both its inner and outer surfaces. Charges on both surfaces affect channel gating but those on the outer surface exert a stronger influence. (b) Negative surface charges on the membrane phospholipid are close enough to the channel's gating machinery to substantially affect its operation. Charges on the inner and outer surfaces of the membrane lipid affect gating symmetrically. (c) Effects on steady-state Na channel activation are consistent with a simple superposition of contributions to the local electrostatic potential from charges on the channel protein and the membrane lipid.  相似文献   

2.
Large (111 +/- 3.0 pS) K+ channels were recorded in membrane patches from adult rat ventricular myocytes using patch-clamp techniques. The channels were not blocked by 4-AP (5 mM), intracellular TEA (5 mM) or glybenclamide (100 mM). Applying stretch to the membrane (as pipette suction) increased channel open probability (Po) in both cell-attached and isolated patches (typically, Po approximately equals 0.005 with no pressure; approximately equals 0.328 with 90 cm H2O: Vm = 40 mV, pHi = 7.2). The channels were activated by a decrease in intracellular pH; decreasing pHi to 5.5 from 7.2 increased Po to 0.16 from approx. 0.005 (no suction, Vm held at 40 mV). These properties are consistent with those demonstrated for TREK-1, a member of the recently cloned tandem pore family. We confirmed, using RT-PCR, that TREK-1 is expressed in rat ventricle, suggesting that the channel being recorded is indeed TREK-1. However, we show also that the channels are activated by millimolar concentrations of intracellular ATP. At a pH of 6 with no ATP at the intracellular membrane face, Po was 0.048 +/-0.023, whereas Po increased to 0.22 +/- 0.1 with 1 mM ATP, and to 0.348 +/- 0.13 with 3 mM (n = 5; no membrane stretch applied). The rapid time course of the response and the fact that we see the effect in isolated patches appear to preclude phosphorylation. We conclude that intracellular ATP directly activates TREK-like channels, a property not previously described.  相似文献   

3.
Single channel currents were recorded from cell-attached patches of endocrine cells of the adult male cricket corpora allata. Three distinct types of K+ channels were identified; a weak inward rectifier (Type 1), a strong inward rectifier (Type 2) and a weak outward rectifier (Type 3). The type 1 channel had a slope conductance of 191 +/- 9 pS (n = 4) at negative membrane potentials (Vm) and 101 +/- 6 pS (n = 6) at positive Vm. In addition, the channel showed fast open-closed kinetics at negative Vm and slow open-closed kinetics at positive Vm. The open probability (Po) of this channel was strongly voltage-dependent at positive Vm, but less voltage-dependent at negative Vm. The reversal potential was not modified significantly by the substitution of gluconate for external Cl- but was modified after N-methyl-D-glucamine (NMDG+) was substituted for external K+, according to the Nernst equation for a K+-selective channel. The type 2 channel had a slope conductance of 44 +/- 2 pS (n = 5) at negative Vm, but no detectable outward current was observed at positive Vm. This channel showed very slow open-closed kinetics at negative Vm and its Po was not voltage-dependent. The type 3 channel had a limit conductance of 55 +/- 12 pS (n = 3) at negative Vm and 88 +/- 10 pS (n = 3) at positive Vm. This channel showed slow open-closed kinetics at negative Vm and fast open-closed kinetics at positive Vm. The Po for the channel was voltage-dependent at positive Vm but was voltage-independent at negative Vm. These three types of K+ channels may be important for the control of the resting membrane potential, and may thus participate in the regulation of Ca2+ influx and juvenile hormone secretion in corpora allata cells.  相似文献   

4.
Purified bovine renal epithelial Na+ channels when reconstituted into planar lipid bilayers displayed a specific orientation when the membrane was clamped to -40 mV (cis-side) during incorporation. The trans-facing portion of the channel was extracellular (i.e., amiloride- sensitive), whereas the cis-facing side was intracellular (i.e., protein kinase A-sensitive). Single channels had a main state unitary conductance of 40 pS and displayed two subconductive states each of 12- 13 pS, or one of 12-13 pS and the second of 24-26 pS. Elevation of the [Na+] gradient from the trans-side increased single-channel open probability (Po) only when the cis-side was bathed with a solution containing low [Na+] (< 30 mM) and 10-100 microM [Ca2+]. Under these conditions, Po saturated with increasing [Na+]trans. Buffering of the cis compartment [Ca2+] to nearly zero (< 1 nM) with 10 mM EGTA increased the initial level of channel activity (Po = 0.12 +/- 0.02 vs 0.02 +/- 0.01 in control), but markedly reduced the influence of both cis- and trans-[Na+] on Po. Elevating [Ca2+]cis at constant [Na+] resulted in inhibition of channel activity with an apparent [KiCa2+] of 10-100 microM. Protein kinase C-induced phosphorylation shifted the dependence of channel Po on [Ca2+]cis to 1-3 microM at stationary [Na+]. The direct modulation of single-channel Po by Na+ and Ca2+ demonstrates that the gating of amiloride-sensitive Na2+ channels is indeed dependent upon the specific ionic environment surrounding the channels.  相似文献   

5.
Resting potentials (Vm) were measured in mouse Leydig cells, using the whole-cell patch-clamp technique. In contrast to conventional microelectrode measurements, where a biphasic potential was observed, we recorded a stable Vm around -32.2 +/- 1.2 mV (mean +/- SEM, n = 159), at 25 degrees C, and an input resistance larger than 2.7 x 109 W. Although Vm is sensitive to changes in the extracellular concentrations of potassium and chloride, the relationship between Vm and these ions' concentrations cannot be described by either the Goldman-Hodgkin-Katz or the Nernst equation. Perifusing cells with potassium-free solution or 10?3 M ouabain induced a marked depolarization averaging 20.1 +/- 3.2 mV (n = 9) and 23.1 +/- 2.8 mV, (n = 7), respectively. Removal of potassium or addition of ouabain with the cell voltage-clamped at its Vm, resulted in an inwardly directed current, due to inhibition of the Na+K+ATPase. The pump current increased with temperature with a Q10 coefficient of 2.3 and had an average value of -6.5 +/- 0.4 pA (n = 21) at 25 degrees C. Vm also varied strongly with temperature, reaching values as low as -9.2 +/- 1.2 mV (n = 22) at 15 degrees C. Taking the pump current at 25 degrees C and a minimum estimate for the membrane input resistance, we can see that the Na+K+ATPase could directly contribute with 17.7 mV to the Vm of Leydig cells, which is a major fraction of the ?32.2 +/- 1.2 mV (n = 159) observed.  相似文献   

6.
Voltage-gated n-type K(V) and Ca(2+)-activated K+ [K(Ca)] channels were studied in cell-attached patches of activated human T lymphocytes. The single-channel conductance of the K(V) channel near the resting membrane potential (Vm) was 10 pS with low K+ solution in the pipette, and 33 pS with high K+ solution in the pipette. With high K+ pipette solution, the channel showed inward rectification at positive potentials. K(V) channels in cell-attached patches of T lymphocytes inactivated more slowly than K(V) channels in the whole-cell configuration. In intact cells, steady state inactivation at the resting membrane potential was incomplete, and the threshold for activation was close to Vm. This indicates that the K(V) channel is active in the physiological Vm range. An accurate, quantitative measure for Vm was obtained from the reversal potential of the K(V) current evoked by ramp stimulation in cell-attached patches, with high K+ solution in the pipette. This method yielded an average resting Vm for activated human T lymphocytes of -59 mV. Fluctuations in Vm were detected from changes in the reversal potential. Ionomycin activates K(Ca) channels and hyperpolarizes Vm to the Nernst potential for K+. Elevating intracellular Ca2+ concentration ([Ca2+]i) by ionomycin opened a 33-50-pS channel, identified kinetically as the CTX-sensitive IK-type K(Ca) channel. The Ca2+ sensitivity of the K(Ca) channel in intact cells was determined by measuring [Ca2+]i and the activity of single K(Ca) channels simultaneously. The threshold for activation was between 100 and 200 nM; half-maximal activation occurred at 450 nM. At concentrations > 1 microM, channel activity decreased. Stimulation of the T-cell receptor/CD3 complex using the mitogenic lectin, PHA, increased [Ca2+]i, and increased channel activity and current amplitude resulting from membrane hyperpolarization.  相似文献   

7.
Since secretion of electrolytes may be regulated by membrane potential difference, ion channels were studied using patchclamp technique. We have identified, in cell-attached configuration, inward-rectifying channels: the zero-current potential corresponded to the K+ equilibrium potential calculated from intracellular K+ activity. Using inside-out configuration and symmetric 145 mM KCl salines, i/V curve was linear, channel conductance was about 170 pS and the reversal potential 0 mV. The channels were selective for K+ over Na+, N-methylglucamine and anions and were activated by membrane depolarization.  相似文献   

8.
Calcium- and voltage-dependent ion channels in Saccharomyces cerevisiae.   总被引:4,自引:0,他引:4  
Ion channels in both the tonoplast and the plasma membrane of Saccharomyces cerevisiae have been characterized at the single channel level by patch-clamp techniques. The predominant tonoplast channel is cation selective, has an open-channel conductance of 120 pS in 100 mM KCl, and conducts Na+ or K+ equally well, and Ca2+ to a lesser extent. Its open probability (Po) is voltage-dependent, peaking at about -80 mV (cytoplasm negative), and falling to near zero at +80 mV. Elevated cytoplasmic Ca2+, alkaline cytoplasmic pH, and reducing agents activate the channel. The predominant plasma membrane channel is highly selective for K+ over anions and other cations, and shows strong outward rectification of the time-averaged current-voltage curves in cell-attached experiments. In isolated inside-out patches with micromolar cytoplasmic Ca2+, this channel is activated by positive going membrane voltages: mean Po is zero at negative membrane voltages and near unity at 100 mV. At moderate positive membrane voltages (20-40 mV), elevating cytoplasmic Ca2+ activates the channel to open in bursts of several hundred milliseconds duration. At higher positive membrane voltages, however, elevating cytoplasmic Ca2+ blocks the channel in a voltage-dependent fashion for periods of 2-3 ms. The frequency of these blocking events depends on cytoplasmic Ca2+ and membrane voltage according to second-order kinetics. Alternative cations, such as Mg2+ or Na+, block the yeast plasma-membrane K+ channel in a similar but less pronounced manner.  相似文献   

9.
The passive ionic membrane conductances (gj) and permeabilities (Pj) of K, Na, and Cl of crayfish (Procambarus clarkii) medial giant axons were determined in the potassium-depolarized axon and compared with that of the resting axon. Passive ionic conductances and permeabilities were found to be potassium dependent with a major conductance transition occurring around an external K concentration of 12-15 mM (Vm = -60 to -65 mV). The results showed that K, Na, and Cl conductances increased by 6.2, 6.9, and 27-fold, respectively, when external K was elevated from 5.4 to 40 mM. Permeability measurements indicated that K changed minimally with K depolarization while Na and Cl underwent an order increase in permeability. In the resting axon (K0 = 5.4 mM, pH = 7.0) PK = 1.33 X 10(-5), PCl = 1.99 X 10(-6), PNa = 1.92 X 10(-8) while in elevated potassium (K0 = 40 mM, pH 7.0), PK = 1.9 X 10(-5), PCl = 1.2 X 10(-5), and PNa = 2.7 X 10(-7) cm/s. When membrane potential is reduced to 40 mV by changes in internal ions, the conductance changes are initially small. This suggests that resting channel conductances depend also on ion environments seen by each membrane surface in addition to membrane potential. In elevated potassium, K, Na, and Cl conductances and permeabilities were measured from pH 3.8 to 11 in 0.2 pH increments. Here a cooperative transition in membrane conductance or permeability occurs when pH is altered through the imidazole pK (approximately pH 6.3) region. This cooperative conductance transition involves changes in Na and Cl but not K permeabilities. A Hill coefficient n of near 4 was found for the cooperative conductance transition of both the Na and Cl ionic channel which could be interpreted as resulting from 4 protein molecules forming each of the Na and Cl ionic channels. Tetrodotoxin reduces the Hill coefficient n to near 2 for the Na channel but does not affect the Cl channel. In the resting or depolarized axon, crosslinking membrane amino groups with DIDS reduces Cl and Na permeability. Following potassium depolarization, buried amino groups appear to be uncovered. The data here suggest that potassium depolarization produces a membrane conformation change in these ionic permeability regulatory components. A model is proposed where membrane protein, which forms the membrane ionic channels, is oriented with an accessible amino terminal group on the axon exterior. In this model the ionizable groups on protein and phospholipid have varied associations with the different ionic channel access sites for K, Na, and Cl, and these groups exert considerable control over ion permeation through their surface potentials.  相似文献   

10.
The effects of large magnitude transmembrane potential pulses on voltage-gated Na and K channel behavior in frog skeletal muscle membrane were studied using a modified double vaseline-gap voltage clamp. The effects of electroconformational damage to ionic channels were separated from damage to lipid bilayer (electroporation). A 4 ms transmembrane potential pulse of -600 mV resulted in a reduction of both Na and K channel conductivities. The supraphysiologic pulses also reduced ionic selectivity of the K channels against Na+ ions, resulting in a depolarization of the membrane resting potential. However, TTX and TEA binding effects were unaltered. The kinetics of spontaneous reversal of the electroconformational damage of channel proteins was found to be dependent on the magnitude of imposed membrane potential pulse. These results suggest that muscle and nerve dysfunction after electrical shock may be in part caused by electroconformational damage to voltage-gated ion channels.  相似文献   

11.
These studies examine the properties of an apical potassium (K+) channel in macula densa cells, a specialized group of cells involved in tubuloglomerular feedback signal transmission. To this end, individual glomeruli with thick ascending limbs (TAL) and macula densa cells were dissected from rabbit kidney and the TAL covering macula densa cells was removed. Using patch clamp techniques, we found a high density (up to 54 channels per patch) of K+ channels in the apical membrane of macula densa cells. An inward conductance of 41.1 +/- 4.8 pS was obtained in cell-attached patches (patch pipette, 140 mM K+). In inside- out patches (patch pipette, 140 mM; bath, 5 mM K+), inward currents of 1.1 +/- 0.1 pA (n = 11) were observed at 0 mV and single channel current reversed at a pipette potential of -84 mV giving a permeability ratio (PK/PNa) of over 100. In cell-attached patches, mean channel open probability (N,Po, where N is number of channels in the patch and Po is single channel open probability) was unaffected by bumetanide, but was reduced from 11.3 +/- 2.7 to 1.6 +/- 1.3 (n = 5, p < 0.02) by removal of bath sodium (Na+). Simultaneous removal of bath Na+ and calcium (Ca2+) prevented the Na(+)-induced decrease in N.Po indicating that the effect of Na+ removal on N.Po was probably mediated by stimulation of Ca2+ entry. This interpretation was supported by studies where ionomycin, which directly increases intracellular Ca2+, produced a fall in N.Po from 17.8 +/- 4.0 to 5.9 +/- 4.1 (n = 7, p < 0.02). In inside- out patches, the apical K+ channel was not sensitive to ATP but was directly blocked by 2 mM Ca2+ and by lowering bath pH from 7.4 to 6.8. These studies constitute the first single channel observations on macula densa cells and establish some of the characteristics and regulators of this apical K+ channel. This channel is likely to be involved in macula densa transepithelial Cl- transport and perhaps in the tubuloglomerular feedback signaling process.  相似文献   

12.
(1) Na+ currents and Na+-current fluctuations were measured in myelinated frog nerve fibres at 15 degrees C during 7.7 ms depolarizations to V = 40, 60 and 80 mV. (2) The conductance gamma of a single Na+ channel and the number No of channels per node were calculated from ensemble average values of the mean Na+ current and the variance of Na+-current fluctuations. (3) For a hyperpolarizing holding potential of VH = -28 mV the mean values of the channel conductance and number were gamma = 9.8 pS and No = 74000. (4) After changing the holding potential to the resting potential (VH = 0) the conductance gamma increased by a factor of 1.37 whereas the number No decreased by a factor of 0.60. (5) Addition of 8 nM tetrodotoxin at a holding potential of VH = -28 mV increased gamma by a factor of 1.55 and reduced No by a factor of 0.25. (6) The increase of the channel conductance at reduced channel numbers suggests negative cooperativity between Na+ channels in the nodal membrane.  相似文献   

13.
Transfer of twelve charges is needed to open skeletal muscle Na+ channels   总被引:7,自引:1,他引:6  
Voltage-dependent Na+ channels are thought to sense membrane potential with fixed charges located within the membrane's electrical field. Measurement of open probability (Po) as a function of membrane potential gives a quantitative indication of the number of such charges that move through the field in opening the channel. We have used single- channel recording to measure skeletal muscle Na+ channel open probability at its most negative extreme, where channels may open as seldom as once per minute. To prevent fast inactivation from masking the voltage dependence of Po, we have generated a clone of the rat skeletal muscle Na+ channel that is lacking in fast inactivation (IFM1303QQQ). Using this mutant channel expressed in Xenopus oocytes, and the extra resolution afforded by single-channel analysis, we have extended the resolution of the hyperpolarized tail of the Po curve by four orders of magnitude. We show that previous measurements, which indicated a minimum of six effective gating charges, may have been made in a range of Po values that had not yet arrived at its limiting slope. In our preparation, a minimum of 12 charges must function in the activation gating of the channel. Our results will require reevaluation of kinetic models based on six charges, and they have major implications for the interpretation of S4 mutagenesis studies and structure/function models of the Na+ channel.  相似文献   

14.
Two types of the late Na channels, burst and background, were studied in Purkinje and ventricular cells. In the whole-cell configuration, steady-state Na currents were recorded at potentials (-70 to -80 mV) close to the normal cell resting potential. The question of the contribution of late Na channels to this background Na conductance was investigated. During depolarization, burst Na channels were active for periods (up to approximately 5 s), which exceeded the action potential duration. However, they eventually closed without reopening, indicating the presence of slow and complete inactivation. When, at the moment of burst channel opening, the potential was switched to -80 mV, the channel closed quickly without reopening. We conclude that the burst Na channels cannot contribute significantly to the background Na conductance. Background Na channels undergo incomplete inactivation. After a step depolarization, their activity decreased in time, approaching a steady-state level. Background Na channel openings could be recorded at constant potentials in the range from -120 to 0 mV. After step depolarizations to potentials near -70 mV and more negative, a significant fraction of Na current was carried by the background Na channels. Analysis of the background channel behavior revealed that their gating properties are qualitatively different from those of the early Na channels. We suggest that background Na channels represent a special type of Na channel that can play an important role in the initiation of cardiac action potential and in the TTX-sensitive background Na conductance.  相似文献   

15.
The gating kinetics of apical membrane Na channels in the rat cortical collecting tubule were assessed in cell-attached and inside-out excised patches from split-open tubules using the patch-clamp technique. In patches containing a single channel the open probability (Po) was variable, ranging from 0.05 to 0.9. The average Po was 0.5. However, the individual values were not distributed normally, but were mainly < or = 0.25 or > or = 0.75. Mean open times and mean closed times were correlated directly and inversely, respectively, with Po. In patches where a sufficient number of events could be recorded, two time constants were required to describe the open-time and closed-time distributions. In most patches in which basal Po was < 0.3 the channels could be activated by hyperpolarization of the apical membrane. In five such patches containing a single channel hyperpolarization by 40 mV increased Po by 10-fold, from 0.055 +/- 0.023 to 0.58 +/- 0.07. This change reflected an increase in the mean open time of the channels from 52 +/- 17 to 494 +/- 175 ms and a decrease in the mean closed time from 1,940 +/- 350 to 336 +/- 100 ms. These responses, however, could not be described by a simple voltage dependence of the opening and closing rates. In many cases significant delays in both the activation by hyperpolarization and deactivation by depolarization were observed. These delays ranged from several seconds to several tens of seconds. Similar effects of voltage were seen in cell-attached and excised patches, arguing against a voltage-dependent chemical modification of the channel, such as a phosphorylation. Rather, the channels appeared to switch between gating modes. These switches could be spontaneous but were strongly influenced by changes in membrane voltage. Voltage dependence of channel gating was also observed under whole-cell clamp conditions. To see if mechanical perturbations could also influence channel kinetics or gating mode, negative pressures of 10-60 mm Hg were applied to the patch pipette. In most cases (15 out of 22), this maneuver had no significant effect on channel behavior. In 6 out of 22 patches, however, there was a rapid and reversible increase in Po when the pressure was applied. In one patch, there was a reversible decrease. While no consistent effects of pressure could be documented, membrane deformation could contribute to the variation in Po under some conditions.  相似文献   

16.
BK large conductance voltage- and calcium-activated potassium channels respond to elevations in intracellular calcium and membrane potential depolarization, braking excitability of smooth muscle. BK channels are thought to have a particularly prominent role in urinary bladder smooth muscle function and therefore are candidate targets for overactive bladder therapy. To address the role of the BK channel in urinary bladder function, the gene mSlo1 for the pore-forming subunit of the BK channel was deleted. Slo(-/-) mice were viable but exhibited moderate ataxia. Urinary bladder smooth muscle cells of Slo(-/-) mice lacked calcium- and voltage-activated BK currents, whereas local calcium transients ("calcium sparks") and voltage-dependent potassium currents were unaffected. In the absence of BK channels, urinary bladder spontaneous and nerve-evoked contractions were greatly enhanced. Consistent with increased urinary bladder contractility caused by the absence of BK currents, Slo(-/-) mice demonstrate a marked elevation in urination frequency. These results reveal a central role for BK channels in urinary bladder function and indicate that BK channel dysfunction leads to overactive bladder and urinary incontinence.  相似文献   

17.
Short (<1 sec) duration depolarization of Xenopus laevis oocytes to voltages greater than +40 mV activates a sodium-selective channel (Na(x)) with sodium permeability five to six times greater than the permeability of other monovalent cations examined, including K+, Rb+, Cs+, TMA+, and Choline+. The permeability to Li+ is about equal to that of Na+. This channel was present in all oocytes examined. The kinetics, voltage dependence and pharmacology of Na(x)distinguish it from TTX-sensitive or epithelial sodium channels. It is also different from the sodium channel of Xenopus oocytes activated by prolonged depolarization, which is more highly selective for Na+, requires prolonged depolarization to be activated, and is blocked by Li+. Intracellular Mg2+ reversibly inhibits Na(x), whereas extracellular Mg2+ does not have an inhibitory effect. Intracellular Mg2+ inhibition of Na(x), is voltage dependent, suggesting that Mg2+ binding occurs within the membrane field. Eosin is also a reversible voltage-dependent intracellular inhibitor of Na(x), suggesting that a P-type ATPase may mediate the current. An additional cytoplasmic factor is involved in maintaining Na(x) since the current runs down in internally perfused oocytes and excised membrane patches. The rundown is reversible by reintroduction of the membrane patch into oocyte cytoplasm. The cytoplasmic factor is not ATP, because ATP has no effect on Na(x) current magnitude in either cut-open or inside-out patch preparations. Extracellular Gd3+ is also an inhibitor of Na(x). Na(x) activation follows a sigmoid time course. Its half-maximal activation potential is +100 mV and the effective valence estimated from the steepness of conductance activation is 1.0. Na(x) deactivates monoexponentially upon return to the holding potential (-40 mV). The deactivation rate is voltage dependent, increasing at more negative membrane potentials.  相似文献   

18.
Single voltage-dependent K+ and Cl- channels in cultured rat astrocytes   总被引:2,自引:0,他引:2  
The kinetic reactions of a voltage-dependent K+ channel, which constituted about 14% of all the recorded K+ channels in the membrane of cultured rat astrocytes were studied in detail. A scheme of one open and three closed states is necessary to describe the kinetic reactions of this channel. The channel contributes little to the resting membrane potential. Its steady state open probability (Po) is 0.06 at -70 mV. When the cell is depolarized to O mV, Po approaches 1. This represents a 17-fold increase. Such channels could contribute to the potassium clearance by enhancing the effect of "spatial buffering." Additionally, single anion-selective channels with very high conductances were found in inside-out patches in approximately 15% of all recorded channels in the membrane of rat astrocytes. Channel openings are characterized by more than one conductance level; the main level showed a mean conductance of 400 pS. These channels are divided into two groups. Approximately 90% of the recorded chloride channels showed a strong voltage dependency of their current fluctuations. Within a relatively small potential range (+/- 15 mV) the channels have a high probability of being in the active state. After a voltage jump to varying testing potentials in the range of +/- 20 to +/- 50 mV the channels continued to be in the active state for some time and then closed to a shut state. If the testing potential persisted, the channels were not able to leave this shut state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Batrachotoxin (BTX)-modified Na+ currents were characterized in GH3 cells with a reversed Na+ gradient under whole-cell voltage clamp conditions. BTX shifts the threshold of Na+ channel activation by approximately 40 mV in the hyperpolarizing direction and nearly eliminates the declining phase of Na+ currents at all voltages, suggesting that Na+ channel inactivation is removed. Paradoxically, the steady-state inactivation (h infinity) of BTX-modified Na+ channels as determined by a two-pulse protocol shows that inactivation is still present and occurs maximally near -70 mV. About 45% of BTX-modified Na+ channels are inactivated at this voltage. The development of inactivation follows a sum of two exponential functions with tau d(fast) = 10 ms and tau d(slow) = 125 ms at -70 mV. Recovery from inactivation can be achieved after hyperpolarizing the membrane to voltages more negative than -120 mV. The time course of recovery is best described by a sum of two exponentials with tau r(fast) = 6.0 ms and tau r(slow) = 240 ms at -170 mV. After reaching a minimum at -70 mV, the h infinity curve of BTX-modified Na+ channels turns upward to reach a constant plateau value of approximately 0.9 at voltages above 0 mV. Evidently, the inactivated, BTX-modified Na+ channels can be forced open at more positive potentials. The reopening kinetics of the inactivated channels follows a single exponential with a time constant of 160 ms at +50 mV. Both chloramine-T (at 0.5 mM) and alpha-scorpion toxin (at 200 nM) diminish the inactivation of BTX-modified Na+ channels. In contrast, benzocaine at 1 mM drastically enhances the inactivation of BTX-modified Na+ channels. The h infinity curve reaches minimum of less than 0.1 at -70 mV, indicating that benzocaine binds preferentially with inactivated, BTX-modified Na+ channels. Together, these results imply that BTX-modified Na+ channels are governed by an inactivation process.  相似文献   

20.
Urinary bladder smooth muscle (UBSM) elicits depolarizing action potentials, which underlie contractile events of the urinary bladder. The resting membrane potential of UBSM is approximately -40 mV and is critical for action potential generation, with hyperpolarization reducing action potential frequency. We hypothesized that a tonic, depolarizing conductance was present in UBSM, functioning to maintain the membrane potential significantly positive to the equilibrium potential for K(+) (E(K); -85 mV) and thereby facilitate action potentials. Under conditions eliminating the contribution of K(+) and voltage-dependent Ca(2+) channels, and with a clear separation of cation- and Cl(-)-selective conductances, we identified a novel background conductance (I(cat)) in mouse UBSM cells. I(cat) was mediated predominantly by the influx of Na(+), although a small inward Ca(2+) current was detectable with Ca(2+) as the sole cation in the bathing solution. Extracellular Ca(2+), Mg(2+), and Gd(3+) blocked I(cat) in a voltage-dependent manner, with K(i) values at -40 mV of 115, 133, and 1.3 microM, respectively. Although UBSM I(cat) is extensively blocked by physiological extracellular Ca(2+) and Mg(2+), a tonic, depolarizing I(cat) was detected at -40 mV. In addition, inhibition of I(cat) demonstrated a hyperpolarization of the UBSM membrane potential and decreased the amplitude of phasic contractions of isolated UBSM strips. We suggest that I(cat) contributes tonically to the depolarization of the UBSM resting membrane potential, facilitating action potential generation and thereby a maintenance of urinary bladder tone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号