首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Triticum aestivum — Aegilops biuncialis (2n=4x=28; UbUbMbMb) disomic addition lines 2Mb, 3Mb, 7Mb and 3Ub were crossed with the wheat cv. Chinese Spring ph1b mutant genotype in order to induce homoeologous pairing, with the final goal of introgressing Ae. biuncialis chromatin into cultivated wheat. Wheat-Aegilops homoeologous chromosome pairing was studied in metaphase I of meiosis in the F1 hybrid lines. Using U and M genomic probes, genomic in situ hybridization (GISH) demonstrated the occurrence of wheat-Aegilops homoeologous pairing in the case of chromosomes 2Mb, 3Mb and 3Ub, but not in the case of 7Mb. The wheat-Aegilops pairing frequency decreased in the following order: 2Mb > 3Mb > 3Ub > 7Mb, which may reflect differences in the wheat-Aegilops homoeologous relationships between the examined Aegilops chromosomes. The selection of wheat-Aegilops homoeologous recombinations could be successful in later generations.  相似文献   

2.
Aegilops geniculata Roth is an important germplasm resource for the transfer of beneficial genes into common wheat (Triticum aestivum L.). A new disomic addition line NA0973-5-4-1-2-9-1 was developed from the BC1F6 progeny of the cross wheat cv. Chinese Spring (CS)/Ae. geniculata SY159//CS. We characterized this new line by morphological and cytogenetic identification, analysis of functional molecular markers, genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and disease resistance evaluation. Cytological observations suggested that NA0973-5-4-1-2-9-1 contained 44 chromosomes and formed 22 bivalents at meiotic metaphase I. The GISH investigations showed that the line contained 42 wheat chromosomes and a pair of Ae. geniculata chromosomes. EST-STS multiple loci markers and PLUG (PCR-based landmark unique gene) markers confirmed that the introduced Ae. geniculata chromosomes belonged to homoeologous group 7. FISH identification suggested that NA0973-5-4-1-2-9-1 possessed an additional pair of 7Mg chromosomes, and at the same time, there were structural differences in a pair of 6D chromosomes between NA0973-5-4-1-2-9-1 and TA7661 (CS-AEGEN DA 7Mg). After inoculation with powdery mildew (Blumeria graminis f. sp. tritici, Bgt) isolates E09, NA0973-5-4-1-2-9-1 exhibited a powdery mildew resistance infection type different from that of TA7661, and we conclude that the powdery mildew resistance of NA0973-5-4-1-2-9-1 originated from its parent Ae. geniculata SY159. Therefore, NA0973-5-4-1-2-9-1 can be used as a donor source for introducing novel disease resistance genes into wheat during breeding programs with the assistance of molecular and cytogenetic markers.  相似文献   

3.
The diversity of alleles at the gliadin loci Gli-U1 and Gli-M b 1 was studied in the tetraploid species Aegilops biuncialis (UUMbMb). The collection of 41 Ae. biuncialis accessions and F2 seeds obtained from five crosses served as the material used in this study. Gliadins were separated by acid polyacrylamide gel electrophoresis. To determine genomic affiliation (U or Mb) of components of Ae. biuncialis gliadin pattern, accessions of Ae. umbellulata and Ae. comosa were analyzed. In Ae. biuncialis accessions, 14 alleles were identified at the locus Gli-U1 and 12 alleles, at the locus Gli-M b 1. The results testify to a high degree of allele diversity at major gliadin-coding loci of homeologous group 1 chromosomes of Ae. biuncialis.  相似文献   

4.
Alleles at the high-molecular-weight glutenin subunit loci Glu-U1 and Glu-M b 1 were analyzed in the tetraploid species Aegilops biuncialis (UUMbMb). The material for the investigation included the collection of 39 accessions of Ae. biuncialis from Ukraine (the Crimea), one Hellenic accession, one accession of unknown origin, F2 seeds from different crosses, as well as samples from natural populations from the Crimea. Ae. umbellulata and Ae. comosa accessions were used to allocate components of the HMW glutenin subunit patterns of Ae. biuncialis to U or M b genomes. Eight alleles were identified at the Glu-U1 locus and ten alleles were revealed at the Glu-M b 1 locus. Among alleles at the Glu-M b 1 locus of Ae. biuncialis there were two alleles controlling the y-type subunit only and one allele encoding the x-subunit only.  相似文献   

5.
Leaf rust and stripe rust are important foliar diseases of wheat worldwide. Leaf rust and stripe rust resistant introgression lines were developed by induced homoeologous chromosome pairing between wheat chromosome 5D and 5Mg of Aegilops geniculata (UgMg). Characterization of rust resistant BC2F5 and BC3F6 homozygous progenies using genomic in situ hybridization with Aegilops comosa (M) DNA as probe identified three different types of introgressions; two cytologically visible and one invisible (termed cryptic alien introgression). All three types of introgression lines showed similar and complete resistance to the most prevalent pathotypes of leaf rust and stripe rust in Kansas (USA) and Punjab (India). Diagnostic polymorphisms between the alien segment and recipient parent were identified using physically mapped RFLP probes. Molecular mapping revealed that cryptic alien introgression conferring resistance to leaf rust and stripe rust comprised less than 5% of the 5DS arm and was designated T5DL·5DS-5MgS(0.95). Genetic mapping with an F2 population of Wichita × T5DL·5DS-5MgS(0.95) demonstrated the monogenic and dominant inheritance of resistance to both diseases. Two diagnostic RFLP markers, previously mapped on chromosome arm 5DS, co-segregated with the rust resistance in the F2 population. The unique map location of the resistant introgression on chromosome T5DL·5DS-5MgS(0.95) suggested that the leaf rust and stripe rust resistance genes were new and were designated Lr57 and Yr40. This is the first documentation of a successful transfer and characterization of cryptic alien introgression from Ae. geniculata conferring resistance to both leaf rust and stripe rust in wheat.  相似文献   

6.
After two selfing generations of two different Triticum turgidum Aegilops ovata amphiploids carrying the Ph1 gene, or lacking it (ph1c mutant), karyotypes of their offspring were scored by GISH (genomic in situ hybridization). On average, the chromosome number was lower than expected (56 chromosomes) on the basis of the parental constitutions (T. turgidum, AABB, 2n=4x=28; Ae. ovata, MoMoUoUo, 2n=4x=28). The lost chromosomes belonged to the wild Aegilops species. The two families differed greatly by their number of intergenomic translocations, also detected by GISH. The ph1c family showed nine translocations over 12 plants while only one translocation was observed in the Ph1 family. All exchanges involved either the Mo and Uo chromosomes or the Mo and wheat chromosomes, the size of the exchanged segment ranging from 3% to 36% of the total chromosome length. The results suggest an epistatic effect of the ph1c deletion over the genetic diploidizing system that operates in Ae. ovata since translocated chromosomes are most-likely derived from homoeologous recombination. The potential of these results for wheat breeding programmes is also considered. Received: 28 November 2000 / Accepted: 20 March 2001  相似文献   

7.
Phylogenetic relationships of polyploid Aegilops species sharing the U-genome were investigated by analyzing heterochromatin banding patterns of their somatic metaphase chromosomes as revealed by C-banding and fluorescence in situ hybridization (FISH) with the heterochromatin-limited repetitive DNA probes pSc119, pAs1, as well as the distribution of NOR and 5S DNA loci revealed by pTa71 (18S-26S rDNA), and pTa794 (5S rDNA) probes. Seven tetraploid (Ae. triuncialis, Ae. peregrina, Ae. kotschyi, Ae. geniculata, Ae. biuncialis, Ae. columnaris, and 4x Ae. neglecta) and one hexaploid (6x Ae. neglecta) Aegilops species of the U-genome cluster were studied. The Ut and Ct chromosomes of 4x Ae. triuncialis (UtCt) were similar to the diploid donors Ae. umbellulata (U) and Ae. caudata (C). However, the size of the NOR locus on chromosome 5Ut was reduced. Karyotypic analyses confirmed that 4x Ae. peregrina (SpUp) was derived from a hybridization of the diploid species Ae. umbellulata with Ae. longissima, whereas Ae. umbellulata and Ae. sharonensis (or an immediate precursor) were the diploid progenitor species of Ae. kotschyi (SkUk). In both 4x species, the NORs on S-genome chromosomes were inactivated and were accompanied with a decrease or loss of rDNA sequences. Karyotypes of the tetraploid species, Ae. geniculata (UgMg) and Ae. biuncialis (UbMb) differed from each other and from the putative diploid progenitors Ae. umbellulata and Ae. comosa indicating that various types of chromosomal alterations occurred during speciation. Inactivation of major NORs on the M-genome chromosomes, redistribution of 5S rDNA sites, and loss of some minor 18S-26S rDNA loci were observed in Ae. geniculata and Ae. biuncialis. Significant differences in the total amount and distribution of heterochromatin, the number and location of 5S and 18S-26S rDNA loci observed between Ae. columnaris (UcXc)/4x Ae. neglecta (UnXn) and Ae. geniculata/Ae. biuncialis indicate that these species have different origins. Similarities in C-banding and FISH patterns of most Ae. columnaris and 4x Ae. neglecta chromosomes suggest that they were probably derived from a common ancestor, whereas distinct differences of three chromosome pairs may indicate that the divergence of these species was probably associated with chromosomal rearrangements and/or introgressive hybridization. Ae. umbellulata contributed the U genome, however, the source of their second genomes remains unknown. The formation of 6x Ae. neglecta (UnXnNn) was not associated with large modifications of the parental genomes.  相似文献   

8.
Homoeologous metaphase I (MI) pairing of Triticum aestivum × Aegilops geniculata hybrids (2n = 5× = 35, ABDUgMg) has been examined by an in situ hybridization procedure permitting simultaneous discrimination of A, B, D and wild genomes. The seven D genome chromosomes (and their arms, except for 6D and 7D) plus some additional wheat chromosomes were also identified. Wheat-wild MI associations represented more than 60% of total, with an average ratio of 5:1:12 for those involving the A, B and D genomes, respectively. A remarkable between-chromosome variation for the level of wheat-wild genetic exchange is expected within each wheat genome. However, it can be concluded that 3DL and 5DL are the crop genome locations with the highest probability of being transferred to Ae. geniculata. Hybrids derived from the ph2b wheat mutant line showed increased MI pairing but identical pattern of homoeologous associations than those with active Ph2.  相似文献   

9.
Diploid Aegilops umbellulata and Ae. comosa and their natural allotetraploid hybrids Ae. biuncialis and Ae. geniculata are important wild gene sources for wheat. With the aim of assisting in alien gene transfer, this study provides gene-based conserved orthologous set (COS) markers for the U and M genome chromosomes. Out of the 140 markers tested on a series of wheat-Aegilops chromosome introgression lines and flow-sorted subgenomic chromosome fractions, 100 were assigned to Aegilops chromosomes and six and seven duplications were identified in the U and M genomes, respectively. The marker-specific EST sequences were BLAST-ed to Brachypodium and rice genomic sequences to investigate macrosyntenic relationships between the U and M genomes of Aegilops, wheat and the model species. Five syntenic regions of Brachypodium identified genome rearrangements differentiating the U genome from the M genome and from the D genome of wheat. All of them seem to have evolved at the diploid level and to have been modified differentially in the polyploid species Ae. biuncialis and Ae. geniculata. A certain level of wheat–Aegilops homology was detected for group 1, 2, 3 and 5 chromosomes, while a clearly rearranged structure was showed for the group 4, 6 and 7 Aegilops chromosomes relative to wheat. The conserved orthologous set markers assigned to Aegilops chromosomes promise to accelerate gene introgression by facilitating the identification of alien chromatin. The syntenic relationships between the Aegilops species, wheat and model species will facilitate the targeted development of new markers specific for U and M genomic regions and will contribute to the understanding of molecular processes related to allopolyploidization.  相似文献   

10.

Background

The genus Spartina exhibits extensive hybridization and includes classic examples of recent speciation by allopolyploidy. In the UK there are two hexaploid species, S. maritima and S. alterniflora, as well as the homoploid hybrid S. × townsendii (2n = 60) and a derived allododecaploid S. anglica (2n = 120, 122, 124); the latter two are considered to have originated in Hythe, southern England at the end of the 19th century.

Methods

Genomic in situ hybridization (GISH) and flow cytometry were used to characterize the genomic composition and distribution of these species and their ploidy levels at Eling Marchwood and Hythe, both near Southampton, southern England.

Key Results

GISH identified approx. 60 chromosomes each of S. maritima and S. alterniflora origin in S. anglica and 62 chromosomes from S. alterniflora and 30 chromosomes from S. maritima in a nonaploid individual from Eling Marchwood, UK. GISH and flow cytometry also revealed that most (94 %) individuals examined at Hythe were hexaploid (the remaining two individuals (6 %) were dodedcaploid; n = 34), whereas hexaploid (approx. 36 % of plants), nonaploid (approx. 27 %) and dodecaploid (approx. 36 %) individuals were found at Eling Marchwood (n = 22).

Conclusions

Nonaploid individuals indicate the potential for introgression between hexaploid and dodecaploid species, complicating the picture of polyploid-induced speciation within the genus. Despite the aggressive ecological habit of S. anglica, it has not out-competed S. × townsendii at Hythe (homoploid hybrids at a frequency of 94 %, n = 34), despite >100 years of coexistence. The success of GISH opens up the potential for future studies of polyploid-induced genome restructuring in this genus.  相似文献   

11.
Four tetraploid (Aegilops ovata, Ae. biuncialis, Ae. columnaris, and Ae. triaristata) and one hexaploid (Ae. recta) species of the U-genome cluster were studied using C-banding technique. All species displayed broad C-banding polymorphism and high frequency of chromosomal rearrangements. Chromosomal rearrangements were represented by paracentric inversions and intragenomic and intergenomic translocations. We found that the processes of intraspecific divergence of Ae. ovata, Ae. biuncialis,and Ae. columnaris were probably associated with introgression of genetic material from other species. The results obtained confirmed that tetraploid species Ae. ovata and Ae. biuncialis occurred as a result of hybridization of a diploidAe. umbellulata with Ae. comosa and Ae. heldreichii, respectively. The dissimilarity of the C-banding patterns of several chromosomes of these tetraploid species and their ancestral diploid forms indicated that chromosomal aberrations might have taken place during their speciation. Significant differences of karyotype structure, total amount and distribution of C-heterochromatin found between Ae. columnarisand Ae. triaristata, on the one hand, and Ae. ovata and Ae. biuncialis, on the other, evidenced in favor of different origin of these groups of species. In turn, similarity of the C-banding patterns of Ae. columnaris and Ae. triaristata chromosomes suggested that they were derived from a common ancestor. A diploid species Ae. umbellulata was the U-genome donor of Ae. columnaris and Ae. triaristata;however, the donor of the second genome of these species was not determined. We assumed that these tetraploid species occurred as a result of introgressive hybridization. Similarity of the C-banding patterns of chromosomes of Ae. recta and its parental species Ae. triaristata and Ae. uniaristata indicated that the formation of the hexaploid form was not associated with large modifications of the parental genomes.  相似文献   

12.

Background

Genome restructuring is an ongoing process in natural plant populations. The influence of environmental changes on the genome is crucial, especially during periods of extreme climatic fluctuations. Interactions between the environment and the organism manifest to the greatest extent at the limits of the species'' ecological niche. Thus, marginal populations are expected to exhibit lower genetic diversity and higher genetic differentiation than central populations, and some models assume that marginal populations play an important role in the maintenance and generation of biological diversity.

Scope

In this review, long-term data on the cytogenetic characteristics of diploid Aegilops speltoides Tauch populations are summarized and discussed. This species is distributed in and around the Fertile Crescent and is proposed to be the wild progenitor of a number of diploid and polyploid wheat species. In marginal populations of Ae. speltoides, numerical chromosomal aberrations, spontaneous aneuploidy, B-chromosomes, rDNA cluster repatterning and reduction in the species-specific and tribe-specific tandem repeats have been detected. Significant changes were observed and occurred in parallel with changes in plant morphology and physiology.

Conclusions

Considerable genomic variation at the chromosomal level was found in the marginal populations of Ae. speltoides. It is likely that a specific combination of gene mutations and chromosomal repatterning has produced the evolutionary trend in each specific case, i.e. for a particular species or group of related species in a given period of time and in a certain habitat. The appearance of a new chromosomal pattern is considered an important factor in promoting the emergence of interbreeding barriers.  相似文献   

13.
Kumagai E  Araki T  Hamaoka N  Ueno O 《Annals of botany》2011,108(7):1381-1386

Background and Aims

Rice (Oryza sativa) plants lose significant amounts of volatile NH3 from their leaves, but it has not been shown that this is a consequence of photorespiration. Involvement of photorespiration in NH3 emission and the role of glutamine synthetase (GS) on NH3 recycling were investigated using two rice cultivars with different GS activities.

Methods

NH3 emission (AER), and gross photosynthesis (PG), transpiration (Tr) and stomatal conductance (gS) were measured on leaves of ‘Akenohoshi’, a cultivar with high GS activity, and ‘Kasalath’, a cultivar with low GS activity, under different light intensities (200, 500 and 1000 µmol m−2 s−1), leaf temperatures (27·5, 32·5 and 37·5 °C) and atmospheric O2 concentrations ([O2]: 2, 21 and 40 %, corresponding to 20, 210 and 400 mmol mol−1).

Key Results

An increase in [O2] increased AER in the two cultivars, accompanied by a decrease in PG due to enhanced photorespiration, but did not greatly influence Tr and gS. There were significant positive correlations between AER and photorespiration in both cultivars. Increasing light intensity increased AER, PG, Tr and gS in both cultivars, whereas increasing leaf temperature increased AER and Tr but slightly decreased PG and gS. ‘Kasalath’ (low GS activity) showed higher AER than ‘Akenohoshi’ (high GS activity) at high light intensity, leaf temperature and [O2].

Conclusions

Our results demonstrate that photorespiration is strongly involved in NH3 emission by rice leaves and suggest that differences in AER between cultivars result from their different GS activities, which would result in different capacities for reassimilation of photorespiratory NH3. The results also suggest that NH3 emission in rice leaves is not directly controlled by transpiration and stomatal conductance.  相似文献   

14.

Background and Aims

Brachypodium is a small genus of temperate grasses that comprises 12–15 species. Brachypodium distachyon is now well established as a model species for temperate cereals and forage grasses. In contrast to B. distachyon, other members of the genus have been poorly investigated at the chromosome level or not at all.

Methods

Twenty accessions comprising six species and two subspecies of Brachypodium were analysed cytogenetically. Measurements of nuclear genome size were made by flow cytometry. Chromosomal localization of 18–5·8–25S rDNA and 5S rDNA loci was performed by dual-colour fluorescence in situ hybridization (FISH) on enzymatically digested root-tip meristematic cells. For comparative phylogenetic analyses genomic in situ hybridization (GISH) applied to somatic chromosome preparations was used.

Key Results

All Brachypodium species examined have rather small genomes and chromosomes. Their chromosome numbers and genome sizes vary from 2n = 10 and 0·631 pg/2C in B. distachyon to 2n = 38 and 2·57 pg/2C in B. retusum, respectively. Genotypes with 18 and 28 chromosomes were found among B. pinnatum accessions. GISH analysis revealed that B. pinnatum with 28 chromosomes is most likely an interspecific hybrid between B. distachyon (2n = 10) and B. pinnatum (2n = 18). Two other species, B. phoenicoides and B. retusum, are also allopolyploids and B. distachyon or a close relative seems to be one of their putative ancestral species. In chromosomes of all species examined the 45S rDNA loci are distally distributed whereas loci for 5S rDNA are pericentromeric.

Conclusions

The increasing significance of B. distachyon as a model grass emphasizes the need to understand the evolutionary relationships in the genus Brachypodium and to ensure consistency in the biological nomenclature of its species. Modern molecular cytogenetic techniques such as FISH and GISH are suitable for comparative phylogenetic analyses and may provide informative chromosome- and/or genome-specific landmarks.  相似文献   

15.
Kato Y  Okami M 《Annals of botany》2011,108(3):575-583

Background and Aims

Increasing physical water scarcity is a major constraint for irrigated rice (Oryza sativa) production. ‘Aerobic rice culture’ aims to maximize yield per unit water input by growing plants in aerobic soil without flooding or puddling. The objective was to determine (a) the effect of water management on root morphology and hydraulic conductance, and (b) their roles in plant–water relationships and stomatal conductance in aerobic culture.

Methods

Root system development, stomatal conductance (gs) and leaf water potential (Ψleaf) were monitored in a high-yielding rice cultivar (‘Takanari’) under flooded and aerobic conditions at two soil moisture levels [nearly saturated (> –10 kPa) and mildly dry (> –30 kPa)] over 2 years. In an ancillary pot experiment, whole-plant hydraulic conductivity (soil-leaf hydraulic conductance; Kpa) was measured under flooded and aerobic conditions.

Key Results

Adventitious root emergence and lateral root proliferation were restricted even under nearly saturated conditions, resulting in a 72–85 % reduction in total root length under aerobic culture conditions. Because of their reduced rooting size, plants grown under aerobic conditions tended to have lower Kpa than plants grown under flooded conditions. Ψleaf was always significantly lower in aerobic culture than in flooded culture, while gs was unchanged when the soil moisture was at around field capacity. gs was inevitably reduced when the soil water potential at 20-cm depth reached –20 kPa.

Conclusions

Unstable performance of rice in water-saving cultivations is often associated with reduction in Ψleaf. Ψleaf may reduce even if Kpa is not significantly changed, but the lower Ψleaf would certainly occur in case Kpa reduces as a result of lower water-uptake capacity under aerobic conditions. Rice performance in aerobic culture might be improved through genetic manipulation that promotes lateral root branching and rhizogenesis as well as deep rooting.  相似文献   

16.
Next‐generation sequencing (NGS) provides a powerful tool for the discovery of important genes and alleles in crop plants and their wild relatives. Despite great advances in NGS technologies, whole‐genome shotgun sequencing is cost‐prohibitive for species with complex genomes. An attractive option is to reduce genome complexity to a single chromosome prior to sequencing. This work describes a strategy for studying the genomes of distant wild relatives of wheat by isolating single chromosomes from addition or substitution lines, followed by chromosome sorting using flow cytometry and sequencing of chromosomal DNA by NGS technology. We flow‐sorted chromosome 5Mg from a wheat/Aegilops geniculata disomic substitution line [DS5Mg (5D)] and sequenced it using an Illumina HiSeq 2000 system at approximately 50 × coverage. Paired‐end sequences were assembled and used for structural and functional annotation. A total of 4236 genes were annotated on 5Mg, in close agreement with the predicted number of genes on wheat chromosome 5D (4286). Single‐gene FISH indicated no major chromosomal rearrangements between chromosomes 5Mg and 5D. Comparing chromosome 5Mg with model grass genomes identified synteny blocks in Brachypodium distachyon, rice (Oryza sativa), sorghum (Sorghum bicolor) and barley (Hordeum vulgare). Chromosome 5Mg‐specific SNPs and cytogenetic probe‐based resources were developed and validated. Deletion bin‐mapped and ordered 5Mg SNP markers will be useful to track 5M‐specific introgressions and translocations. This study provides a detailed sequence‐based analysis of the composition of a chromosome from a distant wild relative of bread wheat, and opens up opportunities to develop genomic resources for wild germplasm to facilitate crop improvement.  相似文献   

17.
The genus Aegilops has an important potential utilization in wheat improvement because of its resistance to different biotic and abiotic stresses and close relation with the cultivated wheat. Therefore, a better knowledge of the eco-geographical distribution of Aegilops species and their collection and conservation are required. A total of 297 Aegilops accessions representing nine (five tetraploid and four diploid) species were collected in different regions of Bulgaria, and the ecological characteristics of the 154 explored sites were recorded. The distribution of the diploid species (Ae. caudata L., Ae. speltoides Tausch, Ae. umbellulata Zhuk. and Ae. comosa Sibth. and Sm.) was limited to specific environments in south-central Bulgaria. Tetraploid species were present in harsher environments than diploid species and showed wider adaptation and distribution. Species–environment relationships were analysed by considering the worldwide distribution of the species and their physiological resistance to abiotic stress. Aegilops cylindrica Host was more frequently found in northern Bulgaria and at high altitudes. Its distribution was closely related to its tolerance to low temperatures. Aegilops geniculata Roth and Ae. neglecta Req. ex Bertol. were absent in the north of Bulgaria, but widely distributed in low rainfall areas. Aegilops neglecta, more frost resistant than Ae. geniculata, was present at higher altitude. Aegilops biuncialis Vis. and Ae. triuncialis L. showed adaptation to a wide range of climatic conditions. The study of Aegilops species ecology and distribution in Bulgaria provided useful information for the future collection and for the genetic resource management in this region.  相似文献   

18.
Osmotic stress responses of water content, photosynthetic parameters and biomass production were investigated in wheat-Aegilops biuncialis amphiploids and in wheat genotypes to clarify whether they can use to improve the drought tolerance of bread wheat. A decrease in the osmotic pressure of the medium resulted in considerable water loss, stomatal closure and a decreased CO2 assimilation rate for the wheat genotypes, while the changes in these parameters were moderate for the amphiploids. Maximal assimilation rate was maintained at high level even under severe osmotic stress in the amphiploids, while it decreased substantially in the wheat genotypes. Nevertheless, the effective quantum yield of PS II was higher and the quantum yield of non-photochemical quenching of PS II and PS I was lower for the amphiploids than for the wheat cultivars. Parallel with this, higher cyclic electron flow was detected in wheat than in the amphiploids. The elevated photosynthetic activity of amphiploids under osmotic stress conditions was manifested in higher biomass production by roots and shoots as compared to wheat genotypes. These results indicate that the drought-tolerant traits of Ae. biuncialis can be manifested in the wheat genetic background and these amphiploids are suitable genetic materials for improving drought tolerance of wheat.  相似文献   

19.
Evolution and taxonomic split of the model grass Brachypodium distachyon   总被引:1,自引:0,他引:1  

Background and Aims

Brachypodium distachyon is being widely investigated across the world as a model plant for temperate cereals. This annual plant has three cytotypes (2n =  10, 20, 30) that are still regarded as part of a single species. Here, a multidisciplinary study has been conducted on a representative sampling of the three cytotypes to investigate their evolutionary relationships and origins, and to elucidate if they represent separate species.

Methods

Statistical analyses of 15 selected phenotypic traits were conducted in individuals from 36 lines or populations. Cytogenetic analyses were performed through flow cytometry, fluorescence in situ hybridization (FISH) with genomic (GISH) and multiple DNA sequences as probes, and comparative chromosome painting (CCP). Phylogenetic analyses were based on two plastid (ndhF, trnLF) and five nuclear (ITS, ETS, CAL, DGAT, GI) genes from different Brachypodium lineages, whose divergence times and evolutionary rates were estimated.

Key Results

The phenotypic analyses detected significant differences between the three cytotypes and demonstrated stability of characters in natural populations. Genome size estimations, GISH, FISH and CCP confirmed that the 2n = 10 and 2n = 20 cytotypes represent two different diploid taxa, whereas the 2n = 30 cytotype represents the allotetraploid derived from them. Phylogenetic analysis demonstrated that the 2n = 20 and 2n = 10 cytotypes emerged from two independent lineages that were, respectively, the maternal and paternal genome donors of the 2n = 30 cytotype. The 2n = 20 lineage was older and mutated significantly faster than the 2n = 10 lineage and all the core perennial Brachypodium species.

Conclusions

The substantial phenotypic, cytogenetic and molecular differences detected among the three B. distachyon sensu lato cytotypes are indicative of major speciation processes within this complex that allow their taxonomic separation into three distinct species. We have kept the name B. distachyon for the 2n = 10 cytotype and have described two novel species as B. stacei and B. hybridum for, respectively, the 2n = 20 and 2n = 30 cytotypes.  相似文献   

20.

Background

The mosquito Aedes aegypti is the primary global vector for dengue and yellow fever viruses. Sequencing of the Ae. aegypti genome has stimulated research in vector biology and insect genomics. However, the current genome assembly is highly fragmented with only ∼31% of the genome being assigned to chromosomes. A lack of a reliable source of chromosomes for physical mapping has been a major impediment to improving the genome assembly of Ae. aegypti.

Methodology/Principal Findings

In this study we demonstrate the utility of mitotic chromosomes from imaginal discs of 4th instar larva for cytogenetic studies of Ae. aegypti. High numbers of mitotic divisions on each slide preparation, large sizes, and reproducible banding patterns of the individual chromosomes simplify cytogenetic procedures. Based on the banding structure of the chromosomes, we have developed idiograms for each of the three Ae. aegypti chromosomes and placed 10 BAC clones and a 18S rDNA probe to precise chromosomal positions.

Conclusion

The study identified imaginal discs of 4th instar larva as a superior source of mitotic chromosomes for Ae. aegypti. The proposed approach allows precise mapping of DNA probes to the chromosomal positions and can be utilized for obtaining a high-quality genome assembly of the yellow fever mosquito.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号