首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Phage 16-3 is a temperate phage of Rhizobium meliloti 41 which integrates its genome with high efficiency into the host chromosome by site-specific recombination through DNA sequences of attB and attP. Here we report the identification of two phage-encoded genes required for recombinations at these sites: int (phage integration) and xis (prophage excision). We concluded that Int protein of phage 16-3 belongs to the integrase family of tyrosine recombinases. Despite similarities to the cognate systems of the lambdoid phages, the 16-3 int xis att system is not active in Escherichia coli, probably due to requirements for host factors that differ in Rhizobium meliloti and E. coli. The application of the 16-3 site-specific recombination system in biotechnology is discussed.  相似文献   

2.
The lytic enzyme, endolysin, is encoded by bacteriophages (phages) to destroy the peptidoglycan layer of host bacterial cells. The release of phage progenies to start the new infection cycle is dependent on the cell lysis event. Endolysin encoded by DLP12 cryptic prophage is a SAR endolysin which is retained by the bacterium presumably due to the benefit it confers. The structure of DLP12 endolysin (Id: 4ZPU) determined at 2.4 Å resolution is presented here. The DLP12 endolysin structure shows a modular nature and is organized into distinct structural regions. One of the monomers has the loops at the active site in a different conformation. This has led to a suggestion of depicting possibly active and inactive state of DLP12 endolysin. Comparison of DLP12 endolysin structure and sequence with those of related endolysins shows the core three‐dimensional fold is similar and the catalytic triad geometry is highly conserved despite the sequence differences. Features essential for T4 lysozyme structure and function such as the distance between catalytic groups, salt bridge and presence of nucleophilic water are conserved in DLP12 endolysin and other endolysins analyzed.  相似文献   

3.
The region of temperate bacteriophage T12 responsible for integration into the chromosome of Streptococcus pyogenes has been identified. The integrase gene ( int ) and the phage attachment site ( attP ) are found immediately upstream of the gene for speA , the latter of which is known to be responsible for the production of erythrogenic toxin A (also known as pyrogenic exotoxin A). The integrase gene has a coding capacity for a protein of 41 457 Da, and the C-terminus of the deduced protein is similar to other conserved C-terminal regions typical of phage integrases. Upstream of int is a second open reading frame, which is capable of encoding an acidic protein of 72 amino acids (8744 Da); the position of this region in relation to int suggests it to be the phage excisionase gene ( xis ). The arms flanking the integrated prophage ( attL and attR ) were identified, allowing determination of the sequences of the phage ( attP ) and bacterial ( attB ) attachment sites. A fragment containing the integrase gene and attP was cloned into a streptococcal suicide vector; when introduced into S. pyogenes by electrotransformation, this plasmid stably integrated into the bacterial chromosome at attB . The insertion site for the phage into the S. pyogenes chromosome was found to be in the anticodon loop of a putative type II gene for a serine tRNA. attP and attB share a region of identity that is 96 bp in length; this region of identity corresponds to the 3' end of the tRNA gene such that the coding sequence remains intact after integration of the prophage. The symmetry of the core region of att may set this region apart from previously described phage attachment sites (Campbell, 1992), and may play a role in the biology of this medically important bacteriophage.  相似文献   

4.
Recombinants between phage lambda and the defective qsr' prophage of Escherichia coli K-12 were made in an nmpC (p+) mutant strain and in the nmpC+ parent. The outer membrane of strains lysogenic for recombinant qsr' phage derived from the nmpC (p+) strain contained a new protein identical in electrophoretic mobility to the NmpC porin and to the Lc porin encoded by phage PA-2. Lysogens of qsr' recombinants from the nmpC+ strain and lysogens of lambda p4, which carries the qsr' region, did not produce this protein. When observed by electron microscopy, the DNA acquired from the qsr' prophage showed homology with the region of the DNA molecule of phage PA-2 which contains the lc gene. Relative to that of the recombinant from the nmpC (p+) mutant, the DNA molecule of the recombinant from the nmpC+ parent contained an insertion near the lc gene. These results were supported by blot hybridization analysis of the E. coli chromosome with probes derived from the lc gene of phage PA-2. A sequence homologous to the lc gene was found at the nmpC locus, and the parental strains contained an insertion, tentatively identified as IS5B, located near the 3' end of the porin coding sequence. We conclude that the structural gene for the NmpC porin protein is located within the defective qsr' prophage at 12.5 min on the E. coli K-12 map and that this gene can be activated by loss of an insertion element.  相似文献   

5.
6.
7.
Summary In addition to the cryptic lambdoid prophage genes that are known to reside at the rac locus in Escherichia coli K12 strains, a second cryptic lambdoid prophage has been located near the gal operon. This prophage was shown to contain DNA that is homologous to the QSR genes of phage.  相似文献   

8.
9.
Y Komeda  K Shimada    T Iino 《Journal of virology》1977,22(3):654-661
Specialized transducing lambda phages carrying the region III flagellar genes (fla) of Escherichia coli K-12 were isolated by a new method. A strain carrying both a cryptic lambda prophage near the his genes and a deletion of the attlambda gene was used as a starting strain. The lysogen of lambdacI857pga18-bio69 was isolated in which the prophage was integrated within the lambda cryptic genes by means of recombination with the residual lambda DNA. The strains with deletions starting within the prophage and ending in these fla genes were selected from among the heat-resistant survivors of the lysogen. They were then infected with heat-inducible and lysis-defective lambda phages and, thus, specialized transducing phage lines for hag and fla were obtained. High-frequency transfer lines of rare phages carrying the fla genes were isolated by inducing a strain carrying a heat-inducible lambda prophage near the his genes and selecting by transduction of a fla deletion strain. Preliminary characterization of these transducing phages is also reported.  相似文献   

10.
Genomes of newly isolated Salmonella phages were analysed by comparison of their EcoRI restriction patterns and by hybridization. Characteristic hybridization probes from reference phages P22, ES18 and E. coli phage lambda were chosen. Four probes selected from the lysis region examined the dispersal of the lambdoid lysis genes. Other probes characterized were the replication genes and part of the structural genes. The complex immunity region was investigated by means of hybridization as well as biological tests. The results showed the relationship of the isolated phages to the P22 branch of the lambdoid phages and revealed their modular genome organization consisting of different proportions of P22-related sequences. DNA restriction patterns of phages released from Salmonella strains sampled in limited geographical areas were significantly less heterogeneous than those of phages released from the worldwide sampled SARA collection. The use of prophage restriction patterns as a tool for the typing of Salmonellae to support the epidemiologic classification of pathogenic strains is discussed.  相似文献   

11.
12.
We determined the DNA sequences of regions essential for bacteriophage P4 integration. A 20 base-pair core sequence in both phage (P4attP) and host (P4attB) attachment regions contains the recombination site. In P4attP this sequence is flanked by five repeated sequences. A 1.3 x 10(3) base open reading frame codes for P4 integrase. Two possible promoters are upstream from P4int. One would be recognized by Escherichia coli RNA polymerase and may be repressed by integrase protein. The second would be recognized by RNA polymerase modified after infection by a P4 helper phage, P2. The P4attB core sequence is the 3' end of a leucine tRNA gene. Downstream from this tRNA in E. coli K-12 is a region homologous to P4int that may be part of a cryptic prophage.  相似文献   

13.
In enterohemorrhagic Escherichia coli, Shiga toxin is produced by lysogenic prophages. We have isolated the prophage VT2-Sa that is responsible for production of Shiga toxin type 2 protein, and determined the complete nucleotide sequence of this phage DNA. The entire DNA sequence consisted of 60,942 bp, exhibiting marked similarity to the 933W phage genome. However, several differences were observed in the immunity and replication regions, where cI, cII, cIII, N, cro, O, and P genes were present: Predicted amino acid sequences of N, cI, cro, O and P in the VT2-Sa genome did not show significant similarity to the counterparts of the 933W genome; however its cI showed higher similarity to lambda. Furthermore, O and P closely resembled those of phage HK022. These observations suggest that the various degrees of homology observed in the immunity and replication regions of VT2-Sa could have resulted from frequent recombination events among the lambdoid phages, and that these regions play a key role as a functional unit for phage propagation in competition with other lambdoid phages.  相似文献   

14.
Structure of cryptic lambda prophages   总被引:9,自引:0,他引:9  
When Escherichia coli cells lysogenic for bacteriophage lambda are induced with ultraviolet light, cells carrying cryptic lambda prophages are occasionally found among the apparently cured survivors. The lambda variant crypticogen (lambda crg) carries an insertion of the transposable element IS2, which increases the frequency of cryptic lysogens to about 50% of cured cells: 43 of these cryptic prophages have been characterized. They all contain substitutions that replace the early segment of the prophage genome (from the IS2 to near the cos site) with a duplicate copy of a large segment of the host chromosome. The right end of the substitution always results from recombination between the nin-QSR-cos region of the prophage and the homologous incomplete lambdoid prophage Qsr' at 12.5 minutes in the E. coli chromosome. The left end of the substitution is usually a crossover that recombines the IS2 element in the prophage with an E. coli IS2 at 8.5 minutes, near the lac gene, or with a second IS2 located counterclockwise from leu at 2 minutes, generating duplications of at least 200,000 bases. Five cryptic lysogens derived from cells lysogenic for a reference strain of lambda (which lacks the IS2 present in lambda crg) have been characterized. They contain substitutions whose right termini are generated by a crossover with the Qsr' prophage. The left termini of these substitutions are formed either by a crossover between the lambda exo gene and a short exo-homologous segment of Qsr' (2/5), or by a crossover between sequences to the left of attL and an unmapped distant region of the host chromosome (3/5). The large duplications carried by these cryptic lysogens are stable, unlike tandem duplications, and so may significantly influence the cell's evolutionary potential.  相似文献   

15.

Background  

Many sequenced bacterial genomes harbor phage-like elements or cryptic prophages. These elements have been implicated in pathogenesis, serotype conversion and phage immunity. The e14 element is a defective lambdoid prophage element present at 25 min in the E. coli K-12 genome. This prophage encodes important functional genes such as lit (T4 exclusion), mcrA (modified cytosine restriction activity) and pin (recombinase).  相似文献   

16.
17.
18.
19.
Shiga toxins 1 and 2 (Stx1 and Stx2) are encoded by prophages lysogenized in enterohemorrhagic Escherichia coli (EHEC) O157:H7 strains. Lytic growth of the phage particles carrying the stx1 genes (stx1A and stx1B) of the EHEC O157:H7 strain RIMD 0509952, which was derived from the Sakai outbreak in 1996 in Japan, was induced after treatment with mitomycin C, but the plaque formation of the phage was not detected. We have determined the complete nucleotide sequence of the prophage VT1-Sakai. The integration site of the prophage was identified within the yehV gene at 47.7 min on the chromosome. The stx1 genes were downstream of the Q gene in the prophage genome, suggesting that their expression was regulated by the Q protein, the regulator of the late gene expression of the phage, which is similar to that of the stx1 or stx2 genes carried by the lambdoid phages reported previously. The sequences of the N gene and its recognition sites, nutL and nutR, were not homologous to those of the phages carrying the stx genes thus far reported, but they were very similar to those of bacteriophage phi21. The sequences of the repressor proteins, CI and Cro, that regulate expression of the early genes had low similarities with those of the known repressors of other phages, and their operator sequences were different from any sequence reported. These data suggest that multiple genetic recombination among bacteriophages with different immunities took place to generate the prophage VT1-Sakai. Comparison between the sequences of VT1-Sakai and lambda suggests that the ancestor of VT1-Sakai was produced by illegitimate excision, like lambda gal and bio phages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号