首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.

Background  

The ornamental plant Gerbera hybrida bears complex inflorescences with morphologically distinct floral morphs that are specific to the sunflower family Asteraceae. We have previously characterized several MADS box genes that regulate floral development in Gerbera. To study further their behavior in higher order complex formation according to the quartet model, we performed yeast two- and three-hybrid analysis with fourteen Gerbera MADS domain proteins to analyze their protein-protein interaction potential.  相似文献   

2.
3.
4.
5.
6.

Background  

The evolution of type II MADS box genes has been extensively studied in angiosperms. One of the best-understood subfamilies is that of the Arabidopsis gene APETALA3 (AP3). Previous work has demonstrated that the ancestral paleo AP3 lineage was duplicated at some point within the basal eudicots to give rise to the paralogous TM6 and eu AP3 lineages. This event was followed in eu AP3 orthologs by the replacement of the C-terminal paleoAP3 motif with the derived euAP3 motif. It has been suggested that the new motif was created by an eight-nucleotide insertion that produced a translational frameshift.  相似文献   

7.
The floral quartet model proposes that plant MADS box proteins function as higher order tetrameric complexes. However, in planta evidence for MADS box tetramers remains scarce. Here, we applied a strategy using in vivo fluorescence resonance energy transfer (FRET) based on the distance change and distance symmetry of stable tetrameric complexes in tobacco (Nicotiana benthamiana) leaf cells to improve the accuracy of the estimation of heterotetrameric complex formation. This measuring system precisely verified the stable state of Arabidopsis petal (AP3/PI/SEP3/AP1) and stamen (AP3/PI/SEP3/AG) complexes and showed that the lily (Lilium longiflorum) PI co-orthologs LMADS8 and LMADS9 likely formed heterotetrameric petal complexes with Arabidopsis AP3/SEP3/AP1, which rescued petal defects of pi mutants. However, L8/L9 did not form heterotetrameric stamen complexes with Arabidopsis AP3/SEP3/AG to rescue the stamen defects of the pi mutants. Importantly, this system was applied successfully to find complicated tepal and stamen heterotetrameric complexes in lily. We found that heterodimers of B function AP3/PI orthologs (L1/L8) likely coexist with the homodimers of PI orthologs (L8/L8, L9/L9) to form five (two most stable and three stable) tepal- and four (one most stable and three stable) stamen-related heterotetrameric complexes with A/E and C/E function proteins in lily. Among these combinations, L1 preferentially interacted with L8 to form the most stable heterotetrameric complexes, and the importance of the L8/L8 and L9/L9 homodimers in tepal/stamen formation in lily likely decreased to a minor part during evolution. The system provides substantial improvements for successfully estimating the existence of unknown tetrameric complexes in plants.  相似文献   

8.
9.
In vitro propagation of oil palm (Elaeis guineensis Jacq.) frequently induces a somaclonal variant called ‘mantled’ abnormality, in which the stamens of both male and female flowers are transformed into carpels. This leads to a reduced yield or complete loss of the harvest of palm oil. The high frequency of the abnormality in independent lines and the high reversal rate suggest that it is due to an epigenetic change. The type of morphological changes suggest that it involves homeotic MADS box genes that regulate the identity of the flower whorls. We have isolated a number of MADS box genes from oil palm inflorescences by a MADS box-directed mRNA display approach. The isolated partial cDNAs included genes that were likely to function at the initial stages of flowering as well as genes that may function in determination of the inflorescence and the identity of the flower whorls. For four genes that were homologous to genes known to affect the reproductive parts of the flower, full length cDNAs were isolated. These were a B-type MADS box gene which may function in the determination of stamen formation, a C-type gene expected to be involved in stamen and carpel formation, and two putative SEP genes which act in concert with the A-, B- and C-type MADS box gene in determining flower whorl formation. The B-type gene EgMADS16 was functionally characterized as a PISTILLATA orthologue; it was able to complement an Arabidopsis thaliana pi mutant. Whether EgMADS16, or any of the other EgMADS genes, are functionally involved in the mantled condition remains to be established.  相似文献   

10.
11.
12.

Background  

Enteropathogenic Escherichia coli (EPEC) is an attaching and effacing (A/E) pathogen that possesses a type III secretion system (T3SS) encoded within the locus of enterocyte effacement (LEE). The LEE is essential for A/E lesion formation and directs the secretion and translocation of multiple LEE-encoded and non-LEE encoded effector proteins into the cytosol of infected cells. In this study we used proteomics to compare proteins exported to the culture supernatant by wild type EPEC E2348/69, a ΔespADB mutant and a ΔescF T3SS mutant.  相似文献   

13.
14.
15.
16.

Background  

Streptococcus suis serotype 2 (SS2) is a zoonotic agent that causes death and disease in both humans and swine. A better understanding of SS2-host molecular interactions is crucial for understanding SS2 pathogenesis and immunology. Conventional genetic and biochemical approaches used to study SS2 virulence factors are unable to take into account the complex and dynamic environmental stimuli associated with the infection process. In this study, in vivo-induced antigen technology (IVIAT), an immunoscreening technique, was used to identify the immunogenic bacterial proteins that are induced or upregulated in vivo during SS2 infection.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号