首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P2X7 receptors are nonselective cation channels gated by high extracellular ATP, but with sustained activation, receptor sensitization occurs, whereby the intrinsic pore dilates, making the cell permeable to large organic cations, which eventually leads to cell death. P2X7 receptors associate with cholesterol-rich lipid rafts, but it is unclear how this affects the properties of the receptor channel. Here we show that pore-forming properties of human and rodent P2X7 receptors are sensitive to perturbations of cholesterol levels. Acute depletion of cholesterol with 5 mm methyl-β-cyclodextrin (MCD) caused a substantial increase in the rate of agonist-evoked pore formation, as measured by the uptake of ethidium dye, whereas cholesterol loading inhibited this process. Patch clamp analysis of P2X7 receptor currents carried by Na+ and N-methyl-d-glucamine (NMDG+) showed enhanced activation and current facilitation following cholesterol depletion. This contrasts with the inhibitory effect of methyl-β-cyclodextrin reported for other P2X subtypes. Mutational analysis suggests the involvement of an N-terminal region and a proximal C-terminal region that comprises multiple cholesterol recognition amino acid consensus (CRAC) motifs, in the cholesterol sensitivity of channel gating. These results reveal cholesterol as a negative regulator of P2X7 receptor pore formation, protecting cells from P2X7-mediated cell death.  相似文献   

2.
P2X7 receptor (P2X7) activity may link inflammation to depressive disorders. Genetic variants of human P2X7 have been linked with major depression and bipolar disorders, and the P2X7 knockout mouse has been shown to exhibit anti-depressive-like behaviour. P2X7 is an ATP-gated ion channel and is a major regulator of the pro-inflammatory cytokine interleukin 1β (IL-1β) secretion from monocytes and microglia. We hypothesised that antidepressants may elicit their mood enhancing effects in part via modulating P2X7 activity and reducing inflammatory responses. In this study, we determined whether common psychoactive drugs could affect recombinant and native human P2X7 responses in vitro. Common antidepressants demonstrated opposing effects on human P2X7-mediated responses; paroxetine inhibited while fluoxetine and clomipramine mildly potentiated ATP-induced dye uptake in HEK-293 cells stably expressing recombinant human P2X7. Paroxetine inhibited dye uptake mediated by human P2X7 in a concentration-dependent manner with an IC50 of 24 μM and significantly reduces ATP-induced inward currents. We confirmed that trifluoperazine hydrochloride suppressed human P2X7 responses (IC50 of 6.4 μM). Both paroxetine and trifluoperazine did not inhibit rodent P2X7 responses, and mutation of a known residue (F 95L) did not alter the effect of either drug, suggesting neither drug binds at this site. Finally, we demonstrate that P2X7-induced IL-1β secretion from lipopolysaccharide (LPS)-primed human CD14+ monocytes was suppressed with trifluoperazine and paroxetine.  相似文献   

3.
Cholesterol-rich lipid rafts act as signaling microdomains and can regulate receptor function. We have shown in HEK293 cells recombinant P2X1-4 receptors (ATP-gated ion channels) are expressed in lipid rafts. Localization to flotillin-rich lipid rafts was reduced by the detergent Triton X-100. This sensitivity to Triton X-100 was concentration- and subunit-dependent, demonstrating differential association of P2X1-4 receptors with lipid rafts. The importance of raft association to ATP-evoked P2X receptor responses was determined in patch clamp studies. The cholesterol-depleting agents methyl-β-cyclodextrin or filipin disrupt lipid rafts and reduced P2X1 receptor currents by >90%. In contrast, ATP-evoked P2X2-4 receptor currents were unaffected by lipid raft disruption. To determine the molecular basis of cholesterol sensitivity, we generated chimeric receptors replacing portions of the cholesterol-sensitive P2X1 receptor with the corresponding region from the insensitive P2X2 receptor. These chimeras identified the importance of the intracellular amino-terminal region between the conserved protein kinase C site and the first transmembrane segment for the sensitivity to cholesterol depletion. Mutation of any of the variant residues between P2X1 and P2X2 receptors in this region in the P2X1 receptor (residues 20–23 and 27–29) to cysteine removed cholesterol sensitivity. Cholesterol depletion did not change the ATP sensitivity or cell surface expression of P2X1 receptors. This suggests that cholesterol is normally needed to facilitate the opening/gating of ATP-bound P2X1 receptor channels, and mutations in the pre-first transmembrane segment region remove this requirement.  相似文献   

4.
Inflammasomes are multi-protein complexes that control the production of pro-inflammatory cytokines such as IL-1β. Inflammasomes play an important role in the control of immunity to tumors and infections, and also in autoimmune diseases, but the mechanisms controlling the activation of human inflammasomes are largely unknown. We found that human activated CD4+CD45RO+ memory T-cells specifically suppress P2X7R-mediated NLRP3 inflammasome activation, without affecting P2X7R-independent NLRP3 or NLRP1 inflammasome activation. The concomitant increase in pro-IL-1β production induced by activated memory T-cells concealed this effect. Priming with IFNβ decreased pro-IL-1β production in addition to NLRP3 inflammasome inhibition and thus unmasked the inhibitory effect on NLRP3 inflammasome activation. IFNβ suppresses NLRP3 inflammasome activation through an indirect mechanism involving decreased P2X7R signaling. The inhibition of pro-IL-1β production and suppression of NLRP3 inflammasome activation by IFNβ-primed human CD4+CD45RO+ memory T-cells is partly mediated by soluble FasL and is associated with down-regulated P2X7R mRNA expression and reduced response to ATP in monocytes. CD4+CD45RO+ memory T-cells from multiple sclerosis (MS) patients showed a reduced ability to suppress NLRP3 inflammasome activation, however their suppressive ability was recovered following in vivo treatment with IFNβ. Thus, our data demonstrate that human P2X7R-mediated NLRP3 inflammasome activation is regulated by activated CD4+CD45RO+ memory T cells, and provide new information on the mechanisms mediating the therapeutic effects of IFNβ in MS.  相似文献   

5.
不同诱导因子对人外周血单个核细胞P2X7受体表达的作用   总被引:4,自引:0,他引:4  
Zhang XJ  Zheng GG  Ma XT  Lin YM  Song YH  Wu KF 《生理学报》2005,57(2):193-198
ATP激活P2X7受体可产生一系列的白细胞功能反应,因此P2X7受体的表达调控引起我们的兴趣。然而P2X7受体在正常人外周血单个核细胞(peripheral blood mononuclear cells,PBMC)、单核细胞中的表达调控机制尚未阐明。本文用半定量RT-PCR方法检测多种细胞因子、细菌抗原、丝裂原对P2X7受体表达的诱导作用,探索P2X7受体的诱导表达模式。结果表明,单个核细胞和单核细胞可检出P2X7受体的表达;白细胞介素2、4、6(interleukin-2、-4、-6,IL-2、IL-4、IL-6)、肿瘤坏死因子仪(tumour necrosis factor-α,TNF-α)等细胞因子和金黄色葡萄球菌CowanⅠ株(Staphylococcus aureus Cowan strainⅠ,SAC)、脂多糖(lipopolysaccharide,LPS)能上调PBMC的P2X7受体表达,而γ干扰素(interferon-γ,IFN-γ)、粒-巨噬细胞集落刺激因子(granulocyte-macrophage colony-stimulating factor,GM-CSF)、巨噬细胞集落刺激因子(macmphage colony-stimulating factor,M-CSF)和植物血凝素(phytohemagglutinin-M,PHA-M)等则没有作用;LPS和M-CSF可以提高单核细胞的P2X7受体表达,IFN-γ、TNF-α、GM-CSF作用较弱,但是这些因子的预处理并不能增强LPS对P2X7受体表达的诱导。炎症因子促进P2X7受体的表达,提示P2X7受体可能在对抗细菌感染的免疫反应中起一定作用,这有待于进一步研究。  相似文献   

6.
P2X1 receptors are ATP-gated ion channels expressed by smooth muscle and blood cells. Carboxyl-terminally His-FLAG-tagged human P2X1 receptors were stably expressed in HEK293 cells and co-purified with cytoskeletal proteins including actin. Disruption of the actin cytoskeleton with cytochalasin D inhibited P2X1 receptor currents with no effect on the time course of the response or surface expression of the receptor. Stabilization of the cytoskeleton with jasplakinolide had no effect on P2X1 receptor currents but decreased receptor mobility. P2X2 receptor currents were unaffected by cytochalasin, and P2X1/2 receptor chimeras were used to identify the molecular basis of actin sensitivity. These studies showed that the intracellular amino terminus accounts for the inhibitory effects of cytoskeletal disruption similar to that shown for lipid raft/cholesterol sensitivity. Stabilization of the cytoskeleton with jasplakinolide abolished the inhibitory effects of cholesterol depletion on P2X1 receptor currents, suggesting that lipid rafts may regulate the receptor through stabilization of the cytoskeleton. These studies show that the cytoskeleton plays an important role in P2X1 receptor regulation.  相似文献   

7.
P2X receptors function as ATP-gated cation channels. The P2X(7) receptor subtype is distinguished from other P2X family members by a very low affinity for extracellular ATP (millimolar EC50) and its ability to trigger induction of nonselective pores on repeated or prolonged stimulation. Previous studies have indicated that certain P2X(7) receptor-positive cell types, such as human blood monocytes and murine thymocytes, lack this pore-forming response. In the present study we compared pore formation in response to P2X(7) receptor activation in human blood monocytes with that in macrophages derived from these monocytes by in vitro tissue culture. ATP induced nonselective pores in macrophages but not in freshly isolated monocytes when both cell types were identically stimulated in standard NaCl-based salines. However, ion substitution studies revealed that replacement of extracellular Na+ and Cl- with K+ and nonhalide anions strongly facilitated ATP-dependent pore formation in monocytes. These ionic conditions also resulted in increased agonist affinity, such that 30-100 microM ATP was sufficient for activation of nonselective pores by P2X(7) receptors. Comparison of P2X(7) receptor expression in blood monocytes with that in macrophages indicated no differences in steady-state receptor mRNA levels but significant increases (up to 10-fold) in the amount of immunoreactive P2X(7) receptor protein at the cell surface of macrophages. Thus ability of ATP to activate nonselective pores in cells that natively express P2X(7) receptors can be modulated by receptor subunit density at the cell surface and ambient levels of extracellular Na+ and Cl-. These mechanisms may prevent adventitious P2X(7) receptor activation in monocytes until these proinflammatory leukocytes migrate to extravascular sites of tissue damage.  相似文献   

8.
Priming of monocytes with LPS produces large quantities of intracellular, biologically inactive IL-1beta that can be processed and released by subsequent activation of the P2X7 receptor by extracellular ATP. We examined whether a loss-of-function polymorphism of the human P2X7 receptor (Glu496Ala) impairs this process. Both ATP-induced ethidium+ uptake and ATP-induced shedding of L-selectin (CD62L) were nearly absent in monocytes from four subjects homozygous for Glu496Ala confirming that this polymorphism impairs P2X7 function. The level of ATP-induced IL-1beta released in 2 h from LPS-activated whole blood from homozygous subjects was 50% of that from wild-type samples. A more marked defect in IL-1beta release was observed from LPS-activated monocytes of homozygous subjects which was only 22% of that released from wild-type monocytes after a 30-min incubation with ATP. However, after a 60-min incubation with ATP, the amount of IL-1beta released from homozygous monocytes was 70% of that released from wild-type monocytes. Incubation of monocytes of either genotype with nigericin resulted in a similar release of IL-1beta. Western blotting demonstrated that ATP induced the release of mature 17-kDa IL-1beta from monocytes, and confirmed that this process was impaired in homozygous monocytes. Finally, ATP-induced 86Rb+ efflux was 9-fold lower from homozygous monocytes than from wild-type monocytes. The results indicate that ATP-induced release of IL-1beta is slower in monocytes from subjects homozygous for the Glu496Ala polymorphism in the P2X7 receptor and that this reduced rate of IL-1beta release is associated with a lower ATP-induced K+ efflux.  相似文献   

9.
The TMEM16A-mediated Ca2+-activated Cl? current drives several important physiological functions. Membrane lipids regulate ion channels and transporters but their influence on members of the TMEM16 family is poorly understood. Here we have studied the regulation of TMEM16A by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), cholesterol, and fatty acids using patch clamp, biochemistry and fluorescence microscopy. We found that depletion of membrane PI(4,5)P2 causes a decline in TMEM16A current that is independent of cytoskeleton, but is partially prevented by removing intracellular Ca2+. On the other hand, supplying PI(4,5)P2 to inside-out patches attenuated channel rundown and/or partially rescued activity after channel rundown. Also, depletion (with methyl-β-cyclodextrin M-βCD) or restoration (with M-βCD + cholesterol) of membrane cholesterol slows down the current decay observed after reduction of PI(4,5)P2. Neither depletion nor restoration of cholesterol change PI(4,5)P2 content. However, M-βCD alone transiently increases TMEM16A activity and dampens rundown whereas M-βCD + cholesterol increases channel rundown. Thus, PI(4,5)P2 is required for TMEM16A function while cholesterol directly and indirectly via a PI(4,5)P2-independent mechanism regulate channel function. Stearic, arachidonic, oleic, docosahexaenoic, and eicosapentaenoic fatty acids as well as methyl stearate inhibit TMEM16A in a dose- and voltage-dependent manner. Phosphatidylserine, a phospholipid whose hydrocarbon tails contain stearic and oleic acids also inhibits TMEM16A. Finally, we show that TMEM16A remains in the plasma membrane after treatment with M-βCD, M-βCD + cholesterol, oleic, or docosahexaenoic acids. Thus, we propose that lipids and fatty acids regulate TMEM16A channels through a membrane-delimited protein-lipid interaction.  相似文献   

10.
The role of leptin in the pathomechanism of atherosclerosis, through its free radical generating ability is established. Its effect however, on the regulation of intracellular cholesterol synthesis has not been studied. The aim of the present study was to elucidate whether leptin influences endogenous cholesterol synthesis in monocytes. Furthermore, leptin signaling to HMG CoA reductase in control and hypercholesterolemic monocytes were compared. The in vitro effect of leptin was studied on freshly isolated human monocytes obtained from healthy control volunteers and patients with hypercholesterolemia. Our results can be summarized as follows: (1) Leptin is able to increase endogenous cholesterol synthesis in human monocytes in vitro. (2) The cholesterol synthesis increasing effect of the hormone is more pronounced in hypercholesterolemic monocytes with high basal cholesterol biosynthesis. (3) The leptin-induced Ca(2+) signal was involved in the enhancement of HMG CoA reductase activation in monocytes from both controls and hypercholesterolemic patients. (4) In control monocytes the Ca(2+) signal originated from intracellular pools, whereas in patients, Ca(2+)-influx and protein kinase C activation were found to be responsible for the leptin-effect. Mevalonate cycle inhibiting fluvastatin and 25-hydroxycholesterol decreased cholesterol production in leptin-stimulated monocytes. Our present study provides the first proof of the cholesterol synthesis enhancing effect of leptin through a statin-sensitive pathway in circulating monocytes. Furthermore our results suggest that leptin can be involved in the pathomechanism of atherosclerotic plaque formation also through its effect on cholesterol biosynthesis in monocytes.  相似文献   

11.
In a previous study, we had found that the extent of T-cell dysfunctions induced by a T-tropic strain of human immunodeficiency virus type 1 (HIV-1) in SCID mice reconstituted with human peripheral blood lymphocytes (hu-PBLs) (hu-PBL-SCID mice) was related to the in vivo state of activation of the human lymphocytes. In this article, we compared the effect of infection of hu-PBL-SCID mice with either T-tropic (X4) or M-tropic (R5) strains of HIV-1 by performing virus inoculation at either 2 h or 2 weeks after the hu-PBL transfer, when the human T cells exhibited a marked activation state or a predominant memory phenotype, respectively. A comparable level of infection was found when hu-PBL-SCID mice were challenged with either the SF162 R5 or the IIIB X4 strain of HIV at 2 h postreconstitution, while at 2 weeks, the R5 virus infection resulted in a higher level of HIV replication than the X4 virus. The R5 strain induced a marked human CD4(+) T-cell depletion along with a drop in levels of human immunoglobulin M in serum and release of soluble factors at both infection times, while the X4 virus induced severe immune dysfunctions only at 2 h. Of interest, injection of hu-PBLs into SCID mice resulted in a marked up-regulation of CCR5 on human CD4(+) T cells. The percentage of CXCR4(+) cells did not change after transplantation, even though a significant decrease in antigen expression was observed. Comparative experiments with two molecular clones of HIV-1 (X4 SF2 and R5 SF162) and two envelope recombinant viruses generated from these viruses showed that R5 viruses (SF162 and the chimeric env-SF162-SF2) caused an extensive depletion of human CD4(+) T cells in SCID mice at both 2 h and 2 weeks after reconstitution, while the X4 viruses (SF2 and the chimeric env-SF2-SF162) induced CD4 T-cell depletion only when infection was performed at the 2-h reconstitution time. These results emphasize the importance of the state of activation/differentiation of human CD4(+) T cells and gp120-coreceptor interactions at the time of primary infection in determining HIV-1 pathogenicity in the hu-PBL-SCID mouse model.  相似文献   

12.
The P2X7 receptor is an extracellular ATP-gated cation channel critical in inflammation and immunity, and can be up-regulated by IFN-γ and LPS. This study aimed to examine the effect of TGF-β1 on the up-regulation of P2X7 function and expression in leukemic THP-1 monocytes differentiated with IFN-γ and LPS. Cell-surface molecules including P2X7 were examined by immunofluorescence staining. Total P2X7 protein and mRNA was assessed by immunoblotting and RT-PCR respectively. P2X7 function was evaluated by ATP-induced cation dye uptake measurements. Cell-surface P2X7 was present on THP-1 cells differentiated for 3 days with IFN-γ and LPS but not on undifferentiated THP-1 cells. ATP induced ethidium+ uptake into differentiated but not undifferentiated THP-1 cells, and the P2X7 antagonist, KN-62, impaired ATP-induced ethidium+ uptake. Co-incubation of cells with TGF-β1 plus IFN-γ and LPS prevented the up-regulation of P2X7 expression and ATP-induced ethidium+ uptake in a concentration-dependent fashion with a maximum effect at 5 ng/ml and with an IC50 of ~ 0.4 ng/ml. Moreover, ATP-induced YO-PRO-12+ uptake and IL-1β release were abrogated in cells co-incubated with TGF-β1. TGF-β1 also abrogated the amount of total P2X7 protein and mRNA induced by IFN-γ and LPS. Finally, TGF-β1 prevented the up-regulation of cell-surface CD86, but not CD14 and MHC class II, by IFN-γ and LPS. These results indicate that TGF-β1 prevents the up-regulation of P2X7 function and expression by IFN-γ and LPS in THP-1 monocytes. This suggests that TGF-β1 may limit P2X7-mediated processes in inflammation and immunity.  相似文献   

13.
Activation of the P2X7 receptor of macrophages plays an important role in inflammation. We recently reported that co-expression of P2X4 receptor with P2X7 receptor facilitates P2X7 receptor-mediated cell death via Ca(2+) influx. However, it remained unclear whether P2X4 receptor is involved in P2X7 receptor-mediated inflammatory responses, such as cytokine production. Here, we present evidence that P2X4 receptor modulates P2X7 receptor-dependent inflammatory functions. Treatment of mouse macrophage RAW264.7 cells with 1mM ATP induced high mobility group box 1 (HMGB1) release and IL-1β production via activation of P2X7 receptor. Knockdown of P2X4 receptor or removal of extracellular Ca(2+) suppressed ATP-induced release of both HMGB1 and IL-1β. On the other hand, knockdown of P2X4 receptor or removal of extracellular Ca(2+) enhanced P2X7-dependent LC3-II expression (an index of autophagy), suggesting that P2X4 receptor suppresses P2X7-mediated autophagy. Since LC3-II expression was inhibited by pretreatment with antioxidant and NADPH oxidase inhibitor, we examined P2X7-mediated production of reactive oxygen species (ROS). We found that activation of P2X7 receptor-mediated production of ROS was significantly facilitated in P2X4-knockdown cells, suggesting that co-expression of P2X4 receptor with P2X7 receptor may suppress anti-inflammatory function-related autophagy via suppression of ROS production. We conclude that co-expression of P2X4 receptor with P2X7 receptor enhances P2X7-mediated inflammation through both facilitation of release of cytokines and suppression of autophagy.  相似文献   

14.
Activated T lymphocytes release vesicles, termed exosomes, enriched in cholesterol and exposing phosphatidylserine (PS) at their outer membrane leaflet. Although CD4(+) activated T lymphocytes infiltrate an atherosclerotic plaque, the effects of T cell exosomes on the atheroma-associated cells are not known. We report here that exosomes isolated from the supernatants of activated human CD4(+) T cells enhance cholesterol accumulation in cultured human monocytes and THP-1 cells. Lipid droplets found in the cytosol of exosome-treated monocytes contained both cholesterol ester and free cholesterol. Anti-phosphatidylserine receptor antibodies recognized surface protein on the monocyte plasma membrane and prevented exosome-induced cholesterol accumulation, indicating that exosome internalization is mediated via endogenous phosphatidylserine receptor. The production of proinflammatory cytokine TNF-alpha enhanced in parallel with monocyte cholesterol accumulation. Our data strongly indicate that exosomes released by activated T cells may represent a powerful, previously unknown, atherogenic factor.  相似文献   

15.
The chemokine receptors CCR5 and CXCR4 function as the principal coreceptors for human immunodeficiency virus type 1 (HIV-1). Coreceptor function has also been demonstrated for a variety of related receptors in vitro. The relative contributions of CCR5, CXCR4, and other putative coreceptors to HIV-1 disease in vivo have yet to be defined. In this study, we used sequential primary isolates and recombinant strains of HIV-1 to demonstrate that CXCR4-using (X4) viruses emerging in association with disease progression are highly pathogenic in ex vivo lymphoid tissues compared to CXCR4-independent viruses. Furthermore, synthetic receptor antagonists that specifically block CXCR4-mediated entry dramatically suppressed the depletion of CD4(+) T cells by recombinant and clinically derived X4 HIV-1 isolates. Moreover, in vitro specificity for the additional coreceptors CCR3, CCR8, BOB, and Bonzo did not augment cytopathicity or diminish sensitivity toward CXCR4 antagonists in lymphoid tissues. These data provide strong evidence to support the concept that adaptation to CXCR4 specificity in vivo accelerates HIV-1 disease progression. Thus, therapeutic intervention targeting the interaction of HIV-1 gp120 with CXCR4 may be highly valuable for suppressing the pathogenic effects of late-stage viruses.  相似文献   

16.
The effects of (2-hydroxypropyl)-β-cyclodextrin (HPβCD), a cyclic oligomer, on membrane electroporation-induced inward current (I(MEP)) in pituitary tumor (GH(3)) cells were experimentally and analytically characterized. Depletion of membrane cholesterol by exposing cells to HPβCD (2 mM) increased the activation time constant of delayed rectifier K(+) current. Such maneuver resulted in a significant reduction of I(MEP) density. 2,2'-Azo-bis(2-amidinopropane) dihydrochloride (AAPH), an initiator of free radicals, increased the magnitude of I(MEP). AAPH-stimulated I(MEP) was not reversed by the blockers of Ca(2+)-activated K(+) channels, but by LaCl(3) or MnCl(2). However, in HPβCD-treated cells, the ability of AAPH to enhance I(MEP) was abolished. Under such maneuver, the gating charge of I(MEP) activation was increased by 2 fold, along with a hyperpolarized shift of the activation curve by 30 mV. No change in single-channel conductance of MEP-induced channels during cell exposure to HPβCD was demonstrated. The energy change of I(MEP) in untreated and HPβCD-treated cells was estimated to be -17.7 and -44.8 kJ/mol, respectively, and the perturbation of free energy following HPβCD treatment was -27.1 kJ/mol. Based on an MEP model, cell exposure to HPβCD increased the edge energy of the electropore size. By use of a two barrier-one site barrier model, HPβCD treatment can increase both the peak height and well depth of the barrier profile. Taken together, depletion of membrane cholesterol by HPβCD can elevate the edge energy of pore formation, thereby decreasing the I(MEP) magnitude. The channel-suppressing properties during membrane cholesterol depletion with HPβCD might thus contribute to the underlying mechanisms by which such maneuver alters neuronal or neuroendocrine function.  相似文献   

17.
The heparin-binding EGF-like growth factor (HB-EGF) is an autocrine/paracrine keratinocyte growth factor, which binds to the epidermal growth factor (EGF) receptor family and plays a critical role during the re-epithelialization of cutaneous wound by stimulating the keratinocytes proliferation and migration. In this study, cellular stressing condition in autocrine cultures of human keratinocytes was induced by cholesterol depletion using methyl-beta-cyclodextrin (MβCD). MβCD treatment induces the expression and the release of HB-EGF. By analysis of the culture media, large amounts of cellular ATP were measured particularly after 1 h of MβCD treatment. To investigate whether ATP contributes to the expression of HB-EGF, the nonhydrolyzable ATP analogue, ATP-γ-S, was used to mimic the extracellular ATP released. We report that keratinocytes stimulated with ATP-γ-S induce HB-EGF expression and activate EGFR and ERK1/2. Using an antagonist of P2 purinergic receptors, we demonstrate that HB-EGF synthesis induced by lipid rafts disruption is dependent on ATP interaction with P2 purinergic receptors. Moreover, our data suggest that both MAPKs p38 and ERK1/2 are involved together or independently in the regulation of HB-EGF gene expression. These findings provide new insight into the signaling pathway by which HB-EGF is expressed after lipid rafts disruption. In summary, after lipid raft disruption, keratinocytes release large amount of extracellular ATP. ATP induces HB-EGF synthesis and release by interacting with the P2 purinergic receptor and through p38 and ERK1/2 signaling in response to a challenging environment. A release of ATP acts as an early stress response in keratinocytes.  相似文献   

18.
Ritonavir, a protease inhibitor used in combination antiretroviral therapy for HIV-1 infection, is associated with an increased risk of premature atherosclerosis. The aim of the present study was to assess the effects of ritonavir, in the absence of added lipoproteins, on the expression of genes that control cholesterol trafficking in human monocytes/macrophages. Design: THP-1 cells were used to study the effects of ritonavir on the expression of CD36, ATP binding cassette transporters A1 (ABCA1) and G1 (ABCG1), scavenger receptor B class I (SR-BI), caveolin-1 and sterol 27-hydroxylase (CYP27). Exposure to ritonavir (2.5 mug/ml) increased CD36 protein (28%, P < 0.05) and mRNA (38%, P < 0.05) in differentiated THP-1 macrophages, but not in undifferentiated monocytes. This effect was not related to the increase in PPARgamma expression (51%, P < 0.05) caused by ritonavir. Ritonavir also reduced SR-BI protein levels (46%, P < 0.05) and increased CYP27 (43%, P < 0.05) and ABCA1 (49%, P < 0.05) mRNA expression. Liver X receptor alpha (LXRalpha) mRNA, protein and binding activity were also increased by ritonavir treatment. Conclusions: We propose that ritonavir induces ABCA1 expression in THP-1 macrophages through LXRalpha. The increase in ABCA1 and other cholesterol efflux mediators, such as CYP27, may compensate CD36 induction. Therefore, we suggest that the net effect of ritonavir on macrophages in the absence of lipoproteins is not clearly proatherogenic.  相似文献   

19.
Cholesterol has been shown to modulate the activity of multiple G Protein-coupled receptors (GPCRs), yet whether cholesterol acts through specific interactions, indirectly via modifications to the membrane, or via both mechanisms is not well understood. High-resolution crystal structures of GPCRs have identified bound cholesterols; based on a β2-adrenergic receptor (β2AR) structure bound to cholesterol and the presence of conserved amino acids in class A receptors, the cholesterol consensus motif (CCM) was identified. Here in mammalian cells expressing the adenosine A2A receptor (A2AR), ligand dependent production of cAMP is reduced following membrane cholesterol depletion with methyl-beta-cyclodextrin (MβCD), indicating that A2AR signaling is dependent on cholesterol. In contrast, ligand binding is not dependent on cholesterol depletion. All-atom molecular simulations suggest that cholesterol interacts specifically with the CCM when the receptor is in an active state, but not when in an inactive state. Taken together, the data support a model of receptor state-dependent binding between cholesterol and the CCM, which could facilitate both G-protein coupling and downstream signaling of A2AR.  相似文献   

20.
In human blood two monocyte populations can be distinguished, i.e., the CD14(++)CD16(-)DR(+) classical monocytes and the CD14(+)CD16(+)DR(++) proinflammatory monocytes that account for only 10% of all monocytes. We have studied TNF production in these two types of cells using three-color immunofluorescence and flow cytometry on whole peripheral blood samples stimulated with either LPS or with the bacterial lipopeptide S-(2,3-bis(palmitoyloxy)-(2-RS)-propyl)-N-palmitoyl-(R)-Cys-(S)-Ser-(S)-Lys(4)-OH,trihydrochloride (Pam3Cys). After stimulation with LPS the median fluorescence intensity for TNF protein was 3-fold higher in the proinflammatory monocytes when compared with the classical monocytes. After stimulation with Pam3Cys they almost exclusively responded showing 10-fold-higher levels of median fluorescence intensity for TNF protein. The median fluorescence intensity for Toll-like receptor 2 cell surface protein was found 2-fold higher on CD14(+)CD16(+)DR(++) monocytes, which may explain, in part, the higher Pam3Cys-induced TNF production by these cells. When analyzing secretion of TNF protein into the supernatant in PBMCs after depletion of CD16(+) monocytes we found a reduction of LPS-induced TNF by 28% but Pam3Cys-induced TNF was reduced by 64%. This indicates that the minor population of CD14(+)CD16(+) monocytes are major producers of TNF in human blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号