首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pericyte involvement in capillary sprouting during angiogenesis in situ   总被引:21,自引:0,他引:21  
Summary To investigate the participation of microvascular pericytes in the process of capillary sprouting, we examined whole-mount preparations of the rat mesentery by use of a double immunofluorescence approach. Angiogenesis was induced by intraperitoneal injections of either the mast cell-degranulating substance compound 48/80 or tumor cell-conditioned medium. Capillary sprouts were visualized by staining with rhodaminconjugated phalloidin and pericytes were simultaneosly stained by an antibody to the intermediate filament protein desmin. Developing pericytes were negative for the smooth-muscle isoform of -actin, bbut were clearly reactive for desmin. Pericytes appear to be involved in the carliest stages of capillary sprouting. Pericytes were regularly found lying at and in front of the advancing tips of endothelial sprouts. At many sites pericytes were seen to bridge the gap between the leading edges of opposing endothelial sprouts, which were apparently preparing to merge, suggesting that pericytic processes may serve as guiding structures aiding outgrowth of endothelial cells.  相似文献   

2.
Endothelial cells exhibit a number of unique phenotypes, some of which are angiogenesis dependent. To identify a capillary sprout-specific endothelial phenotype, we labeled angiogenic rat mesentery tissue using a microvessel and capillary sprout marker (laminin), selected endothelial cell markers (CD31, tie-2, and BS-I lectin), and the OX-43 monoclonal antibody, which recognizes a 90-kDa membrane glycoprotein of unknown function. In tissues that were stimulated through wound healing and compound 48/80 application, double-immunolabeling experiments with an anti-laminin antibody revealed that the OX-43 antigen was expressed strongly in all microvessels. However, the OX-43 antigen was completely absent from a large percentage (>85%) of the capillary sprouts that were invading the avascular tissue space. In contrast, sprouts that were introverting back into the previously vascularized tissue retained high levels of OX-43 antigen expression. Double-labeling experiments with endothelial markers indicated that the OX-43 antigen was expressed by microvessel endothelium but was absent from virtually all invasive capillary sprout endothelial cells. We conclude that the absence of OX-43 antigen expression marks a novel, capillary sprout-specific, endothelial cell phenotype. Endothelial cells of this phenotype are particularly abundant in capillary sprouts that invade avascular tissue during angiogenesis.  相似文献   

3.
Endothelial cells express two classical cadherins, VE-cadherin and N-cadherin. VE-cadherin is absolutely required for vascular morphogenesis, but N-cadherin is thought to participate in vessel stabilization by interacting with periendothelial cells during vessel formation. However, recent data suggest a more critical role for N-cadherin in endothelium that would regulate angiogenesis, in part by controlling VE-cadherin expression. In this study, we have assessed N-cadherin function in vascular development using an in vitro model derived from embryonic stem (ES) cell differentiation. We show that pluripotent ES cells genetically null for N-cadherin can differentiate normally into endothelial cells. In addition, sprouting angiogenesis was unaltered, suggesting that N-cadherin is not essential for the early events of angiogenesis. However, the lack of N-cadherin led to an impairment in pericyte covering of endothelial outgrowths. We conclude that N-cadherin is necessary neither for vasculogenesis nor proliferation and migration of endothelial cells but is required for the subsequent maturation of endothelial sprouts by interacting with pericytes.  相似文献   

4.
 To investigate mechanisms of capillary network remodeling, we developed a serum-free angiogenesis in vitro system in three-dimensional fibrin matrices which allows the study of directional growth of endothelial sprouts, anastomosis, and remodeling (’pruning’) of the primitive plexus toward more elaborated capillary trees. To follow the movements of living endothelial cells by inverse-fluorescence microscopy, we cocultured unlabeled endothelial cells with endothelial cells labeled with the carbocyanine dye 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI). We show that elongation and retraction of neighboring capillary sprouts occurs simultaneously, resembling a tug-of-war by which endothelial cells are withdrawn from shortening sprouts to become incorporated in other sprouts nearby. For the first time, we directly demonstrate the long-suspected parallel sliding movement of endothelial cells. We show that cell migration persists within immature capillaries even after sprouts have merged to continuous capillary loops, leading to overlapping growth of opposing sprout tips. As a novel concept of capillary remodeling, we distinguish two types of endothelial cell migration: sprouting and guided migration. Sprouting is the de novo invasion of a matrix by endothelial cells, and guided migration is the locomotion of cells along preexistent capillary-like structures. We show that guided migration leads to remodeling of immature capillary networks and to the retraction of sprouts. We describe a method for quantification of sprouting versus guided migration in DiI-mosaic-labeled capillary networks, and we present evidence that endothelial cell-derived basic fibroblast growth factor serves as a chemotactic signal for other cells to migrate along a preestablished capillary-like structure. Accepted: 3 November 1997  相似文献   

5.
VEGF-A is a major angiogenesis and permeability factor. Its cellular effects, which can be used as targets in anti-angiogenesis therapy, have mainly been studied in vitro using endothelial cell cultures. The purpose of the present study was to further characterize these effects in vivo in vascular endothelial cells and pericytes, in an experimental monkey model of VEGF-A-induced iris neovascularization. Two cynomolgus monkeys (Macaca fascicularis) received four injections of 0.5 microg VEGF-A in the vitreous of one eye and PBS in the other eye. After sacrifice at day 9, eyes were enucleated and iris samples were snap-frozen for immunohistochemistry (IHC) and stained with a panel of antibodies recognizing endothelial and pericyte determinants related to angiogenesis and permeability. After VEGF-A treatment, the pre-existing iris vasculature showed increased permeability, hypertrophy, and activation, as demonstrated by increased staining of CD31, PAL-E, tPA, uPA, uPAR, Glut-1, and alphavbeta3 and alphavbeta5 integrins, VEGF receptors VEGFR-1, -2 and -3, and Tie-2 in endothelial cells, and of NG2 proteoglycan, uPA, uPAR, integrins and VEGFR-1 in pericytes. Vascular sprouts at the anterior surface of the iris were positive for the same antigens except for tPA, Glut-1, and Tie-2, which were notably absent. Moreover, in these sprouts VEGFR-2 and VEGFR-3 expression was very high in endothelial cells, whereas many pericytes were present that were positive for PDGFR-beta, VEGFR-1, and NG2 proteoglycan and negative for alpha-SMA. In conclusion, proteins that play a role in angiogenesis are upregulated in both pre-existing and newly formed iris vasculature after treatment with VEGF-A. VEGF-A induces hypertrophy and loss of barrier function in pre-existing vessels, and induces angiogenic sprouting, characterized by marked expression of VEGFR-3 and lack of expression of tPA and Tie-2 in endothelial cells, and lack of alpha-SMA in pericytes. Our in vivo study indicates a role for alpha-SMA-negative pericytes in early stages of angiogenesis. Therefore, our findings shed new light on the temporal and spatial role of several proteins in the angiogenic cascade in vivo.  相似文献   

6.
Adipose tissue expansion involves the enlargement of existing adipocytes, the formation of new cells from committed preadipocytes, and the coordinated development of the tissue vascular network. Here we find that murine endothelial cells (ECs) of classic white and brown fat depots share ultrastructural characteristics with pericytes, which are pluripotent and can potentially give rise to preadipocytes. Lineage tracing experiments using the VE-cadherin promoter reveal localization of reporter genes in ECs and also in preadipocytes and adipocytes of white and brown fat depots. Furthermore, capillary sprouts from human adipose tissue, which have predominantly EC characteristics, are found to express Zfp423, a recently identified marker of preadipocyte determination. In response to PPARγ activation, endothelial characteristics of sprouting cells are progressively lost, and cells form structurally and biochemically defined adipocytes. Together these data support an endothelial origin of murine and human adipocytes, suggesting a model for how adipogenesis and angiogenesis are coordinated during adipose tissue expansion.  相似文献   

7.
Angiogenesis and coronary artery collateral formation can improve blood flow and thereby prevent myocardial ischemia. The role of perivascular fibroblasts in neovascularization remains incompletely understood. Here we investigated the effects of epicardial and myocardial fibroblasts on angiogenesis in vitro by using a serum-free microcarrier-based fibrin gel angiogenesis system. To clearly distinguish between different cell types, we either stained endothelial cells or fibroblasts in the living with 1,1′-dioctadecyl-3,3,3′,3′-tetramethyl-indocarbocyanine-perchlorate (DiI). In cocultures, low numbers of heart fibroblasts stimulated endothelial sprouting, and capillary growth was also induced by fibroblast-conditioned media, indicating a paracrine mechanism. Capillary formation was decreased by increasing the density of fibroblasts in the cocultures, indicating contact-dependent inhibition. Using time-lapse studies, it turned out that close contacts between fibroblasts and endothelial cells resulted in rapid retraction of endothelial cells or, rarely, in cell death. Depending on the local ratio of fibroblasts to endothelial cell numbers, fibroblasts determined the location of capillary growth and the size of developing capillaries and thereby contributed to capillary network remodeling. In contrast to primary heart fibroblasts, NIH 3T3 fibroblasts did not display contact-dependent inhibition of endothelial sprouts. NIH fibroblasts were frequently seen in close association with endothelial capillaries, resembling pericytes. Contact-dependent inhibition of angiogenesis by epicardial fibroblasts could not be reversed by addition of neutralizing anti-TGF-β1 antibodies, by addition of serum, of medium conditioned by hypoxic tumor cells or myocardium, by various cytokines or by growing cocultures under hypoxic conditions. Our results implicate a pivotal role of periendothelial mesenchymal cells for the regulation of microvascular network remodeling and collateral formation. Received: 15 September 1997 / Accepted: 6 April 1998  相似文献   

8.
CD248 (Endosialin) is a type 1 membrane protein involved in developmental and pathological angiogenesis through its expression on pericytes and regulation of PDGFRβ signalling. Here we explore the function of CD248 in skeletal muscle angiogenesis. Two distinct forms of capillary growth (splitting and sprouting) can be induced separately by increasing microcirculatory shear stress (chronic vasodilator treatment) or by inducing functional overload (extirpation of a synergistic muscle). We show that CD248 is present on pericytes in muscle and that CD248-/- mice have a specific defect in capillary sprouting. In contrast, splitting angiogenesis is independent of CD248 expression. Endothelial cells respond to pro-sprouting angiogenic stimulus by up-regulating gene expression for HIF1α, angiopoietin 2 and its receptor TEK, PDGF-B and its receptor PDGFRβ; this response did not occur following a pro-splitting angiogenic stimulus. In wildtype mice, defective sprouting angiogenesis could be mimicked by blocking PDGFRβ signalling using the tyrosine kinase inhibitor Imatinib mesylate. We conclude that CD248 is required for PDGFRβ-dependant capillary sprouting but not splitting angiogenesis, and identify a new role for CD248 expressed on pericytes in the early stages of physiological angiogenesis during muscle remodelling.  相似文献   

9.
The angiogenic process is precisely regulated by different molecular mechanisms, with a balance between stimulatory and inhibitory factors in embryonic development. Transmembrane proteins of the ADAM (a disintegrin and metalloprotease) family play a critical role in embryogenesis and are involved in protein ectodomain shedding, as well as cell-cell and cell-matrix interactions. In the present study, we found that ADAM17 is expressed spatiotemporally in the tectal layers during chicken embryonic development. To investigate the effect of ADAM17 overexpression on angiogenesis, chicken ADAM17 plasmids were transfected into the developing tectum in vivo by electroporation. Results showed that overexpression of ADAM17 induces morphological changes of brain microvessels, such as an increase in diameter, of capillary sprouting from radial microvessels and an increase in the number of pericytes, but not of endothelial cells. Our data suggest that overexpression of ADAM17 in the developing tectum promotes angiogenesis by increasing the number of pericytes and capillary sprouting in the radial vessels.  相似文献   

10.
New models of angiogenesis that mimic the complexity of real microvascular networks are needed. Recently, our laboratory demonstrated that cultured rat mesentery tissues contain viable microvascular networks and could be used to probe pericyte-endothelial cell interactions. The objective of this study was to demonstrate the efficacy of the rat mesentery culture model for anti-angiogenic drug testing by time-lapse quantification of network growth. Mesenteric windows were harvested from adult rats, secured in place with an insert, and cultured for 3 days according to 3 experimental groups: 1) 10% serum (angiogenesis control), 2) 10% serum + sunitinib (SU11248), and 3) 10% serum + bevacizumab. Labeling with FITC conjugated BSI-lectin on Day 0 and 3 identified endothelial cells along blood and lymphatic microvascular networks. Comparison between day 0 (before) and 3 (after) in networks stimulated by 10% serum demonstrated a dramatic increase in vascular density and capillary sprouting. Growing networks contained proliferating endothelial cells and NG2+ vascular pericytes. Media supplementation with sunitinib (SU11248) or bevacizumab both inhibited the network angiogenic responses. The comparison of the same networks before and after treatment enabled the identification of tissue specific responses. Our results establish, for the first time, the ability to evaluate an anti-angiogenic drug based on time-lapse imaging on an intact microvascular network in an ex vivo scenario.  相似文献   

11.
Brain pericytes are an important constituent of neurovascular unit. They encircle endothelial cells and contribute to the maturation and stabilization of the capillaries in the brain. Recent studies have revealed that brain pericytes play pivotal roles in a variety of brain functions, such as regulation of capillary flow, angiogenesis, blood brain barrier, immune responses, and hemostasis. In addition, brain pericytes are pluripotent and can differentiate into different lineages similar to mesenchymal stem cells. The brain pericytes are revisited as a key player to maintain brain function and repair brain damage.  相似文献   

12.
Summary The purpose of this study was to determine whether the plant lectin,Dolichos biflorus agglutinin (DBA), can be used to recognize capillary endothelial cells and their processes during angiogenesis. By means of a peroxidase conjugate of DBA, blood vessels were visualized in whole mounts and ultrathin sections of mouse omentum. A part of this mesentery normally comprises an avascular membrane that is approximately 30 µm in thickness. Changes in the vascular plexus bordering this membrane were induced by intraperitoneal injection of irradiated Landschutz cells. Vascular endothelial cells were precisely and intensely stained, and vasculogenic processes were reliably distinguished from those of other cells. This technique permitted observation of the structure and distribution of capillary sprouts, and their relationship to each other and to pre-existing blood vessels. It was discovered that filiform projections extend from sprout apices. These projections may fuse allowing adjacent sprouts to form a new capillary loop.  相似文献   

13.
This paper describes the expression of VEGF and of VEGFR-2 in the vasculature of the chorioallantoic membrane (CAM) as revealed by in situ hybridization and immunoelectron microscopy. Results showed that VEGFR-2 is expressed in both the endothelial cells and the pericytes, while VEGF in the chorionic epithelial cells. VEGF may therefore be released to promote both angiogenesis, by initiating an angiogenic response by endothelial cells expressing VEGFR-2, and the recruitment of pericytes along the capillary wall, playing also a crucial role in maturation and stabilization of the CAM blood vessels.  相似文献   

14.
ABSTRACT: BACKGROUND: Observations in our laboratory provide evidence of vascular islands, defined as disconnected endothelial cell segments, in the adult microcirculation. The objective of this study was to determine if vascular islands are involved in angiogenesis during microvascular network growth. RESULTS: Mesenteric tissues, which allow visualization of entire microvascular networks at a single cell level, were harvested from unstimulated adult male Wistar rats and Wistar rats 3 and 10 days post angiogenesis stimulation by mast cell degranulation with compound 48/80. Tissues were immunolabeled for PECAM and BRDU. Identification of vessel lumens via injection of FITC-dextran confirmed that endothelial cell segments were disconnected from nearby patent networks. Stimulated networks displayed increases in vascular area, length density, and capillary sprouting. On day 3, the percentage of islands with at least one BRDU-positive cell increased compared to the unstimulated level and was equal to the percentage of capillary sprouts with at least one BRDU-positive cell. At day 10, the number of vascular islands per vascular area dramatically decreased compared to unstimulated and day 3 levels. CONCLUSIONS: These results show that vascular islands have the ability to proliferate and suggest that they are able to incorporate into the microcirculation during the initial stages of microvascular network growth.  相似文献   

15.
To verify the possible role played by pig granulosa cells in the ovarian angiogenic process, we have developed a reliable in vitro system which allows the evaluation of endothelial sprouting and capillary growth in three-dimensional matrices. Granulosa cells collected from porcine follicles of different size were co-cultured with porcine aortic endothelial cells (PAEC) in a microcarrier-based fibrin gel system; after 2 and 5 days of co-culture, we determined the number and length of all endothelial sprouts; moreover, these parameters were quantified only in capillary-like structures, which were defined as continuous multicellular sprouts at least 200 microm long. In granulosa cells- PAEC co-cultures we observed an increase of angiogenic activity as compared to controls (PAEC alone). Granulosa cells from follicles of different size regulate angiogenesis differently: cells from the small follicle group significantly enhanced endothelial sprouting, while those from the large follicle group favoured mainly capillary elongation. Our observations seem therefore to suggest that the development and growth of thecal vascular bed is controlled by paracrine factors of granulosa cell origin that may induce the formation of a primitive capillary plexus during the early phases of antral follicle growth, which will be remodelled in more advanced phases of follicular development.  相似文献   

16.
Angiogenesis, the growth of new blood vessels, involves specification of endothelial cells to tip cells and stalk cells, which is controlled by Notch signalling, whereas vascular endothelial growth factor receptor (VEGFR)-2 and VEGFR-3 have been implicated in angiogenic sprouting. Surprisingly, we found that endothelial deletion of Vegfr3, but not VEGFR-3-blocking antibodies, postnatally led to excessive angiogenic sprouting and branching, and decreased the level of Notch signalling, indicating that VEGFR-3 possesses passive and active signalling modalities. Furthermore, macrophages expressing the VEGFR-3 and VEGFR-2 ligand VEGF-C localized to vessel branch points, and Vegfc heterozygous mice exhibited inefficient angiogenesis characterized by decreased vascular branching. FoxC2 is a known regulator of Notch ligand and target gene expression, and Foxc2(+/-);Vegfr3(+/-) compound heterozygosity recapitulated homozygous loss of Vegfr3. These results indicate that macrophage-derived VEGF-C activates VEGFR-3 in tip cells to reinforce Notch signalling, which contributes to the phenotypic conversion of endothelial cells at fusion points of vessel sprouts.  相似文献   

17.
Experimental studies regarding coronary embryogenesis suggest that the endocardium is a source of endothelial cells for the myocardial networks. As this was not previously documented in human embryos, we aimed to study whether or not endothelial tip cells could be correlated with endocardial-dependent mechanisms of sprouting angiogenesis. Six human embryos (43–56 days) were obtained and processed in accordance with ethical regulations; immunohistochemistry was performed for CD105 (endoglin), CD31, CD34, α-smooth muscle actin, desmin and vimentin antibodies. Primitive main vessels were found deriving from both the sinus venosus and aorta, and were sought to be the primordia of the venous and arterial ends of cardiac microcirculation. Subepicardial vessels were found branching into the outer ventricular myocardium, with a pattern of recruiting α-SMA+/desmin+ vascular smooth muscle cells and pericytes. Endothelial sprouts were guided by CD31+/CD34+/CD105+/vimentin+ endothelial tip cells. Within the inner myocardium, we found endothelial networks rooted from endocardium, guided by filopodia-projecting CD31+/CD34+/CD105+/ vimentin+ endocardial tip cells. The myocardial microcirculatory bed in the atria was mostly originated from endocardium, as well. Nevertheless, endocardial tip cells were also found in cardiac cushions, but they were not related to cushion endothelial networks. A general anatomical pattern of cardiac microvascular embryogenesis was thus hypothesized; the arterial and venous ends being linked, respectively, to the aorta and sinus venosus. Further elongation of the vessels may be related to the epicardium and subepicardial stroma and the intramyocardial network, depending on either endothelial and endocardial filopodia-guided tip cells in ventricles, or mostly on endocardium, in atria.  相似文献   

18.
Cooperation between endothelial cells and pericytes is essential to the stabilization and maturation of blood microvessels. We developed a unique in vitro tissue‐engineered model to study angiogenesis. The human endothelialized reconstructed connective tissue model promotes the formation of a three‐dimensional branching network of capillary‐like tubes (CLT) with closed lumens. The purpose of this work was to investigate whether pericytes were spontaneously recruited around CLT in the model. We demonstrated that smooth muscle α‐actin (SMA)‐positive cells were found closely associated with PECAM‐1‐positive capillaries in the model. Twelve percent (±2.6) of SMA‐positive cells were detected along with 15% (±1.64) von Willebrand factor‐positive endothelial cells in the culture system after 31 days of in vitro maturation. Conversely, no SMA‐positive cells were detected in reconstructed connective tissues made solely of fibroblasts. Knowing that PDGF is a major factor in the recruitment of pericytes, we showed that blockade of the PDGFB receptor using the inhibitor AG1296 induced an overall 5, 2.6, and 2.4‐fold decrease in the SMA‐positive cells, von Willebrand factor‐positive cells, and number of capillaries, respectively. Using combinations of human GFP‐positive fibroblasts and endothelial cells, we demonstrated that pericytes were recruited from the fibroblast population in the model. In conclusion, our tissue‐engineered culture system promotes the spontaneous formation of a network of capillaries and the recruitment of pericytes derived from fibroblasts. Since pericytes are essential components of the blood microvasculature, this culture system is a powerful model to study angiogenesis and endothelial cell/pericyte interactions in vitro. J. Cell. Physiol. 227: 2130–2137, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
Using quail-chick parabiosis and QH1 monoclonal antibody analysis, we have identified circulating endothelial cells and/or progenitors in the embryo. These cells were already present early in ontogeny, before the third embryonic day. Under normal conditions, they integrated into most tissues but remained scarce. When experimental angiogenic responses were induced by wounding or grafts onto the chorioallantoic membrane, circulating endothelial cells were rapidly mobilized and selectively integrated sites of neoangiogenesis. Their mobilization was not dependent on the presence of the bone marrow as it was effective before its differentiation. Surprisingly, mobilization was not effective during sprouting angiogenesis following VEGF treatment of chorioallantoic membrane. Thus, embryonic circulating endothelial cells were efficiently mobilized during the establishment of an initial vascular supply to ischemic tissues following wounding or grafting, but were not involved during classical sprouting angiogenesis.  相似文献   

20.
To assess the evolution of the elastic fiber network of the human uterine cervix before, during and after pregnancy, biopsy samples were obtained from 49 women. The high affinity of the polyphenolic compound (+)-catechin for elastin was used to stain the elastic fibers selectively, and enabled automated image analysis. In the human uterine cervix, the elastic fiber network is made up of: (1) fibers running parallel to the basement lamina of the epithelium, and (2) thinner, perpendicular fibers. Quantification using automated image analysis shows a decline in the cervical elastin content from a prepregnancy level of 1.33 +/- 0.08 (SEM) to 0.73 +/- 0.09% (Vv) at the end of pregnancy. In parallel with a constant decline, dissociation and disorganization of the fibers become more clearly evident as pregnancy progresses. However, by 5-7 weeks postpartum the elastic fiber network appears almost completely restructured. These changes support a role of elastin in the processes of cervical maturation and reconstruction during pregnancy and after delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号