首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygen consumption and metabolic strain in rowing ergometer exercise   总被引:2,自引:0,他引:2  
Oxygen consumption (VO2) when rowing was determined on a mechanically braked rowing ergometer (RE) with an electronic measuring device. VO2 was measured by an open spirometric system. The pneumotachograph valve was fixed to the sliding seat, thus reducing movement artefacts. A multi-stage test was performed, beginning with a work load of 150 W and increasing by 50 W every 2 minutes up to exhaustion. Serum lactate concentrations were determined in a 30 s break between the work stages. 61 examinations of oarsmen performing at maximum power of 5 W X kg-1 or more were analysed VO2 and heart rate (HR) for each working stage were measured and the regression line of VO2 on the work load (P) and an estimation error (Sxy) were calculated: VO2 = 12.5 X P + 415.2 (ml X min-1) (Sxy = +/- 337 ml, r = 0.98) Good reproducibility was found in repeated examinations. Similar spiroergometry was carried out on a bicycle ergometer (BE) with 10 well trained rowers and 6 trained cyclists. VO2 of rowing was about 600 ml X min-1 higher than for bicycling in the submaximal stages for both groups. The VO2max of RE exercise was 2.6% higher than for oarsmen on BE, and the cyclists reached a greater VO2 on BE than the oarsmen. No differences were found between RE and BE exercise heart rate. The net work efficiency when rowing was 19% for both groups, experienced and inexperienced: when cycling it was 25% for cyclists and 23% for oarsmen.  相似文献   

2.
We measured maximal O2 uptake (VO2max) during stationary cycling in 40 pregnant women [aged 29.2 +/- 3.9 (SD) yr, gestational age 25.9 +/- 3.3 wk]. Data from 30 of these women were used to develop an equation to predict the percent VO2max from submaximal heart rates. This equation and the submaximal VO2 were used to predict VO2max in the remaining 10 women. The accuracy of VO2max values estimated by this procedure was compared with values predicted by two popular methods: the Astrand nomogram and the VO2 vs. heart rate (VO2-HR) curve. VO2max values estimated by the derived equation method in the 10 validation subjects were only 3.7 +/- 12.2% higher than actual values (P greater than 0.05). The Astrand method overestimated VO2max by 9.0 +/- 19.4% (P greater than 0.05), whereas the VO2-HR curve method underestimated VO2max by only 1.6 +/- 10.3% in the same 10 subjects (P greater than 0.05). Both the Astrand and the VO2-HR curve methods correlated well with the actual values when all 40 subjects were considered (r = 0.77 and 0.85, respectively), but the VO2-HR curve method had a lower SE of prediction than the Astrand method (8.7 vs. 10.4%). In a comparison group of 10 nonpregnant sedentary women (29.9 +/- 4.5 yr), an equation relating %VO2max to HR nearly identical to that obtained in the pregnant women was found, suggesting that pregnancy does not alter this relationship. We conclude that extrapolating the VO2-HR curve to an estimated maximal HR is the most accurate method of predicting VO2max in pregnant women.  相似文献   

3.
The aims of this study were to document the effect terrain has on the physiological responses and work demands (power output) of riding a typical mountain bike cross-country course under race conditions. We were particularly interested in determining whether physiological measures relative to mass were better predictors of race performance than absolute measures. Eleven A-grade male cross-country mountain bike riders (VO2max 67.1 +/- 3.6 ml x kg(-1) x min(-1)) performed 2 tests: a laboratory-based maximum progressive exercise test, and a 15.5-km (six 2.58-km laps) mountain bike cross-country time trial. There were significant differences among the speed, cadence, and power output measured in each of 8 different terrain types found in the cross-country time trial course. The highest average speed was measured during the 10-15% downhill section (22.7 +/- 2.6 km x h(-1)), whereas the cadence was highest in the posttechnical flat sections (74.3 +/- 5.6 rpm) and lowest on the 15-20% downhill sections (6.4 +/- 12.1 rpm). The highest mean heart rate (HR) was obtained during the steepest (15-20% incline) section of the course (179 +/- 8 b x min(-1)), when the power output was greatest (419.8 +/- 39.7 W). However, HR remained elevated relative to power output in the downhill sections of the course. Physiological measures relative to total rider mass correlated more strongly to average course speed than did absolute measures (peak power relative to mass r = 0.93, p < 0.01, vs. peak power r = 0.64, p < 0.05; relative VO2max r = 0.80, p < 0.05, vs. VO2max r = 0.66, p < 0.05; power at anaerobic threshold relative to mass r = 0.78, p < 0.05, vs. power at anaerobic threshold r = 0.5, p < 0.05). This suggests that mountain bike cross-country training programs should focus upon improving relative physiological values rather than focusing upon maximizing absolute values to improve performance.  相似文献   

4.
The purpose of this study was to investigate the physical activity levels in eleven 9-10 year old boys with reference to aerobic power or lactate threshold (LT). Daily physical activity levels were evaluated from a HR monitoring system for 12 h on three different days. VO2max, VO2-HR relationship and LT were determined by the progressive treadmill test. LT was 36.7 +/- 3.1 ml X kg-1 X min-1 and 71.0 +/- 6.6% VO2max. Mean total time of activities with HR above the level corresponding to 60% VO2max (T-60%) and that above LT (T-LT) were 34 +/- 7 and 18 +/- 7 min, respectively. VO2max (ml X kg-1 X min-1) correlated significantly with T-60% (p less than 0.01), while no significant relationship was found with LT in ml X kg-1 X min-1. In conclusion, longer daily physical activities at moderate to higher intensity for preadolescent children seem to increase VO2max rather than LT.  相似文献   

5.
6.
Seven men and four women (age 63 +/- 2 yr, mean +/- SD, range 61-67 yr) participated in a 12-mo endurance training program to determine the effects of low-intensity (LI) and high-intensity (HI) training on the blood lactate response to submaximal exercise in older individuals. Maximal oxygen uptake (VO2max), blood lactate, O2 uptake (VO2), heart rate (HR), ventilation (VE), and respiratory exchange ratio (R) during three submaximal exercise bouts (65-90% VO2max) were determined before training, after 6 mo of LI training, and after an additional 6 mo of HI training. VO2max (ml X kg-1 X min-1) was increased 12% after LI training (P less than 0.05), while HI training induced a further increase of 18% (P less than 0.01). Lactate, HR, VE, and R were significantly lower (P less than 0.05) at the same absolute work rates after LI training, while HI training induced further but smaller reductions in these parameters (P greater than 0.05). In general, at the same relative work rates (ie., % of VO2max) after training, lactate was lower or unchanged, HR and R were unchanged, and VO2 and VE were higher. These findings indicate that LI training in older individuals results in adaptations in the response to submaximal exercise that are similar to those observed in younger populations and that additional higher intensity training results in further but less-marked changes.  相似文献   

7.
Powercranks use a specially designed clutch to promote independent pedal work by each leg during cycling. We examined the effects of 6 wk of training on cyclists using Powercranks (n=6) or normal cranks (n=6) on maximal oxygen consumption (VO2max) and anaerobic threshold (AT) during a graded exercise test (GXT), and heart rate (HR), oxygen consumption (VO2), respiratory exchange ration (RER), and gross efficiency (GE) during a 1-hour submaximal ride at a constant load. Subjects trained at 70% of VO2max for 1 h.d(-1), 3 d.wk(-1), for 6 weeks. The GXT and 1-hour submaximal ride were performed using normal cranks pretraining and posttraining. The 1-hour submaximal ride was performed at an intensity equal to approximately 69% of pretraining VO2max with VO2, RER, GE, and HR determined at 15-minute intervals during the ride. No differences were observed between or within groups for VO2max or AT during the GXT. The Powercranks group had significantly higher GE values than the normal cranks group (23.6 +/- 1.3% versus 21.3 +/- 1.7%, and 23.9 +/- 1.4% versus 21.0 +/- 1.9% at 45 and 60 min, respectively), and significantly lower HR at 30, 45, and 60 minutes and VO2 at 45 and 60 minutes during the 1-hour submaximal ride posttraining. It appears that 6 weeks of training with Powercranks induced physiological adaptations that reduced energy expenditure during a 1-hour submaximal ride.  相似文献   

8.
Junkyard training involves heavy, cumbersome implements and nontraditional movement patterns for unique training of athletes. This study assessed the metabolic demands of pushing and pulling a 1,960-kg motor vehicle (MV) 400 m in an all-out maximal effort. Six male, strength-trained athletes (29 +/- 5 years; 89 +/- 12 kg) completed 3 sessions. Sessions 1 and 2 were randomly assigned and entailed either pushing or pulling the MV. Oxygen consumption (VO(2)) and heart rate (HR) were measured continuously. Blood lactate was sampled immediately prior to and 5 minutes after sessions 1 and 2. Vertical jump was assessed immediately prior to and after sessions 1 and 2. During session 3 a treadmill VO(2)max test was conducted. No significant differences (p < 0.05) in VO(2), HR, or blood lactate occurred between pushing and pulling efforts. VO(2) and HR peaked in the first 100 m, and from 100 m on, VO(2) and HR averaged 65% and 96% of treadmill maximum values (VO(2)max = 50.3 ml x kg(-1) x min(-1); HRmax = 194 b x min(-1)). Blood lactate response from the push and pull averaged 15.6 mmol.L(-1), representing 131% of the maximal treadmill running value. Vertical jump decreased significantly pre to post in both conditions (mean = -10.1 cm, 17%). All subjects experienced dizziness and nausea. In conclusion, a 400-m MV push or pull is an exhausting training technique that requires a very high anaerobic energy output and should be considered an advanced form of training. Strength coaches must be aware of the ultra-high metabolic and neuromuscular stresses that can be imposed by this type of training and take these factors into consideration when plotting individualized training and recovery strategies.  相似文献   

9.
The objective of this study was to examine the relationship between the critical velocity (CV) test and maximal oxygen consumption (VO2max) and develop a regression equation to predict VO2max based on the CV test in female collegiate rowers. Thirty-five female (mean ± SD; age, 19.38 ± 1.3 years; height, 170.27 ± 6.07 cm; body mass, 69.58 ± 0.3 1 kg) collegiate rowers performed 2 incremental VO2max tests to volitional exhaustion on a Concept II Model D rowing ergometer to determine VO2max. After a 72-hour rest period, each rower completed 4 time trials at varying distances for the determination of CV and anaerobic rowing capacity (ARC). A positive correlation was observed between CV and absolute VO2max (r = 0.775, p < 0.001) and ARC and absolute VO2max (r = 0.414, p = 0.040). Based on the significant correlation analysis, a linear regression equation was developed to predict the absolute VO2max from CV and ARC (absolute VO2max = 1.579[CV] + 0.008[ARC] - 3.838; standard error of the estimate [SEE] = 0.192 L·min(-1)). Cross validation analyses were performed using an independent sample of 10 rowers. There was no significant difference between the mean predicted VO2max (3.02 L·min(-1)) and the observed VO2max (3.10 L·min(-1)). The constant error, SEE and validity coefficient (r) were 0.076 L·min(-1), 0.144 L·min(-1), and 0.72, respectively. The total error value was 0.155 L·min(-1). The positive relationship between CV, ARC, and VO2max suggests that the CV test may be a practical alternative to measuring the maximal oxygen uptake in the absence of a metabolic cart. Additional studies are needed to validate the regression equation using a larger sample size and different populations (junior- and senior-level female rowers) and to determine the accuracy of the equation in tracking changes after a training intervention.  相似文献   

10.
This study investigated the cardiovascular and metabolic responses to prolonged wheelchair exercise in a group of highly trained, traumatic paraplegic men. Six endurance-trained subjects with spinal cord lesions from T10 to T12/L3 underwent a maximal incremental exercise test in which they propelled their own track wheelchairs on a motor-driven treadmill to exhaustion to determine maximal O2 uptake (VO2max) and related variables. One week later each subject exercised in the same wheelchair on a motorized treadmill at 60-65% of VO2max for 80 min in a thermoneutral environment (dry bulb 22 degrees C, wet bulb 17 degrees C). Approximately 10 ml of venous blood were withdrawn both 20 min and immediately before exercise (0 min), after 40 and 80 min of exercise, and 20 min postexercise. Venous blood was analyzed for hematocrit (Hct), hemoglobin (Hb), and lactate, and the separated plasma was analyzed for glucose, K+, Na+, Cl-, free fatty acid (FFA), and osmolality. VO2, CO2 production (VCO2), minute ventilation (VE), respiratory exchange ratio (R), net efficiency, and wheelchair strike rate were determined at four intervals throughout the exercise period. Data were analyzed with an analysis of variance repeated-measures design and a Scheffé post hoc test. VO2max was 47.5 +/- 1.8 (SE) ml.min-1.kg-1 with maximal VE BTPS and maximal heart rate (HR) being 100.1 +/- 3.8 l/min and 190 +/- 1 beats/min, respectively. During prolonged exercise there were no significant changes in VO2, VCO2, VE, R, net efficiency, wheelchair strike rate, and lactate, glucose, and Na+ concentrations. Significant increases occurred in HR, FFA, K+, Cl-, osmolality, Hb, and Hct throughout exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The purpose of this investigation was to determine whether sweat lactate secretion during exercise [approximately 70% maximum O2 consumption (VO2max), 60 min] differed in active vs. sedentary female subjects. Sweat rate, total sweat lactate secretion, and sweat lactate concentration were monitored in a group of sedentary (VO2max = 41.0 +/- 1.62 ml X kg-1 X min-1) and active (VO2max = 51.2 +/- 3.20 ml X kg-1 X min-1) women. Sweat rate was significantly (P less than 0.05) greater in the active subjects. There was a significant difference between groups in total amount of sweat lactate secreted (P less than 0.05), with the active group secreting less lactate (29.8 +/- 5.03 mmol, mean +/- SE) than the sedentary group (50.2 +/- 6.61 mmol). Concomitant with the lower total sweat lactate secretion in the active subjects was a significantly (P less than 0.05) more dilute sweat lactate concentration (42.6 +/- 14.08 vs. 100.4 +/- 32.37 mM). In these female subjects, sweat lactate concentration was inversely correlated (r = -0.79, P less than 0.01, n = 10) to sweat rate. It is concluded that total sweat lactate loss is significantly less in active than in sedentary women and that the active subjects secrete a greater quantity of lactate dilute sweat.  相似文献   

12.
Eighteen trained volunteers (12 men and 6 women: age = 22.0 +/- 2.8 years, height = 170.79 +/- 7.67 cm, weight = 71.54 +/- 12.63 kg) participated in 2-minute, randomized fitness boxing trials, wearing 0.34-kg punching gloves, at various tempos (60, 72, 84, 96, 108, and 120 b.min(-1)). During each trial, oxygen uptake (VO(2)), heart rate (HR), and ventilation (VE) were measured continuously. A rating of perceived exertion (RPE) was attained at the conclusion of each trial. Subjects were able to attain VO(2) values ranging from 26.83 to 29.75 ml.kg(-1).min(-1), which correspond to 67.7-72.5% of VO(2)max. The HR responses yielded results ranging from 167.4 to 182.2 b.min(-1), or 85 to 93% of HRmax. No significant difference (p > 0.05) was seen with VO(2) between trials, although a significant difference (p < 0.05) was observed with HR, VE, and RPE. It appears that boxing speed is associated with increased VE, HR response, and perceived effort but not with VO(2). Energy expenditure values ranged from 9.8 to 11.2 kcal.min(-1) for the boxing trials. These results suggest that fitness boxing programs compare favorably with other exercise modalities in cardiovascular response and caloric expenditure.  相似文献   

13.
14.
The present investigation was undertaken to examine the relationship between plasma potassium (K+) and ventilation (VE) during incremental exercise. Blood lactate (La-) was also measured, and its relationship with VE was similarly examined. Eight endurance-trained triathletes (ET) and eight active but untrained men (UT) performed an incremental cycling test to volitional fatigue. Maximal oxygen uptake (VO2max) and oxygen uptake (VO2) at lactate threshold (LT) were higher (P < 0.05) in ET (VO2max 4.60 +/- 0.10 l/min, LT 2.77 +/- 0.85 l/min) than in UT (VO2max 3.79 +/- 0.11 l/min, LT 1.94 +/- 0.60 l/min). There were significant (P < 0.05) correlations between VE and K+ (UT 0.87, ET 0.77) and between VE and La- (UT 0.88, ET 0.85). In ET compared with UT, VE was lower (P < 0.05) at 330 W, K+ was lower at 300 and 330 W, and La- was lower at all work loads > 90 W. These results suggest that K+ may make an important contribution to the regulation of ventilation during incremental exercise and that endurance training attenuates the K+ response to that exercise.  相似文献   

15.
The factors that determine maximal O2 uptake (VO2max) and muscle performance during severe, acute hypoxemia were studied in isolated, in situ dog gastrocnemius muscle. Our hypothesis that VO2max is limited by O2 diffusion in muscle predicts that decreases in VO2max, caused by hypoxemia, will be accompanied by proportional decreases in muscle effluent venous PO2 (PvO2). By altering the fraction of inspired O2, four levels of arterial PO2 (PaO2) [21 +/- 2, 28 +/- 1, 44 +/- 1, and 80 +/- 2 (SE) Torr] were induced in each of eight dogs. Muscle arterial and venous circulation was isolated and arterial pressure held constant by pump perfusion. Each muscle worked maximally (3 min at 5-6 Hz, isometric twitches) at each PaO2. Arterial and venous samples were taken to measure lactate, [H+], PO2, PCO2, and muscle VO2. Muscle biopsies were taken to measure [H+] (homogenate method) and lactate. VO2max decreased with PaO2 and was linearly (R = 0.99) related to both PVO2 and O2 delivery. As PaO2 fell, fatigue increased while muscle lactate and [H+] increased. Lactate release from the muscle did not change with PaO2. This suggests a barrier to lactate efflux from muscle and a possible cause of the greater fatigue seen in hypoxemia. The gas exchange data are consistent with the hypothesis that VO2max is limited by peripheral tissue diffusion of O2.  相似文献   

16.
In order to test for possible sex differences in endurance capacity, groups of young, physically active women (n = 6) and men (n = 7) performed bicycle ergometer exercise at 80% and 90% of their maximal oxygen uptakes (VO2 max). The groups were matched for age and physical activity habits. At 80% VO2 max the women performed significantly longer (P less than 0.05), 53.8 +/- 12.7 min vs 36.8 +/- 12.2 min, respectively (means +/- SD). Mid-exercise and terminal respiratory exchange ratio (R) values were significantly lower in women, suggesting a later occurrence of muscle glycogen depletion as a factor in their enhanced endurance. At 90% VO2 max the endurance times were similar for men and women, 21.2 +/- 10.3 min and 22.0 +/- 5.0 min, respectively. The blood lactate levels reached in these experiments were only marginally lower (mean differences 1.5 to 2 mmol X l-1) than those obtained at VO2 max, suggesting high lactate levels as a factor in exhaustion. The changes in body weight during the 80% experiments and the degree of hemoconcentration were not significantly different between men and women.  相似文献   

17.
Many well-trained elite older runners have performances comparable to those of much younger nonelite runners. We sought to determine whether the physiological determinants of endurance performance in two groups of such athletes were the same. Eight master athletes (age 56 +/- 5 yr) were matched on the basis of 10-km performance and training to younger runners (age 25 +/- 3 yr). The master athletes had a 9% lower maximum O2 uptake (VO2max) (P less than 0.05) than the matched young runners, despite the similarity in their performance. Running economy was not different between these groups. However, the master athletes attained a 2.5-mM blood lactate level during steady-state exercise at a higher percentage of their VO2max (P less than 0.05), although both groups attained this lactate level at the same running speed and VO2. Thus, despite having significantly lower VO2max values, the older athletes were able to perform as well as the younger runners because they were able to work closer to their VO2max for the duration of the race.  相似文献   

18.
This investigation examined the relationship among plasma catecholamines, the blood lactate threshold (TLa), and the ventilatory threshold (TVE) in highly trained endurance athletes. Six competitive cyclists and six varsity cross-country runners performed a graded exercise test via two different modalities: treadmill running and bicycle ergometry. Although maximal oxygen consumption (VO2 max) did not differ significantly for the cyclists for treadmill running and cycling (64.6 +/- 1.0 and 63.5 +/- 0.4 ml O2.kg-1-min-1, respectively), both TLa and TVE occurred at a relatively earlier work load during the treadmill run. The opposite was true for the runners as TLa and TVE appeared at an earlier percent of VO2max during cycling compared with treadmill running (60.0 +/- 1.7 vs. 75.0 +/- 4.0%, respectively, TLa). The inflection in plasma epinephrine shifted in an identical manner and occurred simultaneously with that of TLa (r = 0.97) regardless of the testing protocol or training status. Although a high correlation (r = 0.86) existed for the shift in TVE and TLa, this relationship was not as strong as was seen with plasma epinephrine. The results suggest that a causal relationship existed between the inflection in plasma epinephrine and TLa during a graded exercise test. This association was not as strong for TVE and TLa.  相似文献   

19.
The goal of this study was to determine whether traditional ergoespirometric incremental exercise testing carried out to the point of exhaustion could be useful in distinguishing the physiological profiles of elite runners that compete in races that lasted about 8 minutes versus those that lasted about 2 hours. Ten male marathon runners (performance time: 2:12:04, coefficient of variation (CV) = 2.33%) and 8 male 3000 m steeplechase runners (performance time: 8:37.83, CV = 2.12%) performed an incremental test on the treadmill (starting speed 10 km·h-1; increments, 2 km·h-1; increment duration, 3 min to exhaustion). Heart rate (HR), VO2, and lactate concentrations were measured at the end of each exercise level. At maximal effort, there were no differences between the groups regarding VO2max and maximal HR; however, the workload time, vVO2max and peak treadmill velocity were significantly higher in the 3000 m steeplechase group (p<0.05). At submaximal effort, there were no significant differences between groups for VO2 (ml·kg-1·min-1), HR, or lactate. Our results show that this type of testing was not sufficient for discriminating the physiological profiles of elite runners who competed in middle-distance versus long-distance events (e.g. in the marathon and the 3000 m steeplechase).  相似文献   

20.
Disposal of blood [1-13C]lactate in humans during rest and exercise   总被引:1,自引:0,他引:1  
Lactate irreversible disposal (RiLa) and oxidation (RoxLa) rates were studied in six male subjects during rest (Re), easy exercise [EE, 140 min of cycling at 50% of maximum O2 consumption (VO2max)] and hard exercise (HE, 65 min at 75% VO2max). Twenty minutes into each condition, subjects received a Na+-L(+)-[1-13C]lactate intravenous bolus injection. Blood was sampled intermittently from the contralateral arm for metabolite levels, acid-base status, and enrichment of 13C in lactate. Expired air was monitored continuously for determination of respiratory parameters, and aliquots were collected for determination of 13C enrichment in CO2. Steady-rate values for O2 consumption (VO2) were 0.33 +/- 0.01, 2.11 +/- 0.03, and 3.10 +/- 0.03 l/min for Re, EE, and HE, respectively. Corresponding values of blood lactate levels were 0.84 +/- 0.01, 1.33 +/- 0.05, and 4.75 +/- 0.28 mM in the three conditions. Blood lactate disposal rates were significantly correlated to VO2 (r = 0.78), averaging 123.4 +/- 20.7, 245.5 +/- 40.3, and 316.2 +/- 53.7 mg X kg-1 X h-1 during Re, EE, and HE, respectively. Lactate oxidation rate was also linearly related to VO2 (r = 0.81), and the percentage of RiLa oxidized increased from 49.3% at rest to 87.0% during exercise. A curvilinear relationship was found between RiLa and blood lactate concentration. It was concluded that, in humans, 1) lactate disposal (turnover) rate is directly related to the metabolic rate, 2) oxidation is the major fate of lactate removal during exercise, and 3) blood lactate concentration is not an accurate indicator of lactate disposal and oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号