首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
We used optical imaging of intrinsic cortical signals, elicited by whisker stimulation, to define areas of activation in primary sensory cortex of normal hamsters and hamsters subjected to neonatal follicle ablation at postnatal day seven (P7). Follicle ablations were unilateral, and spared either C-row whiskers or the second whisker arc. This study was done to determine if the intrinsic cortical connectivity pattern of the barrel cortex, established during the critical period, affects the process of representational plasticity that follows whisker follicle ablation. Additionally, we tested the ability to monitor such changes in individual cortical whisker representations using intrinsic signal imaging. Stimulation of a single whisker yielded peak activation of a barrel-sized patch in the somatotopically appropriate location in normal cortex. In both row and arc-spared animals, functional representations corresponding to spared follicles were significantly stronger and more oblong than normal. The pattern of activation differed in the row-sparing and arc-sparing groups, in that the expansion was preferentially into deprived, not spared areas. Single whisker stimulation in row-spared cases preferentially activated the corresponding barrel arc, while stimulation of one whisker in arc-spared cases produced elongated activation down the barrel row. Since whisker deflection normally has a net inhibitory effect on neighboring barrels, our data suggest that intracortical inhibition fails to develop normally in deprived cortical columns. Because thalamocortical projections are not affected by follicle ablation after P7, we suggest that the effects we observed are largely cortical, not thalamocortical.  相似文献   

2.
We used optical imaging of intrinsic cortical signals, elicited by whisker stimulation, to define areas of activation in primary sensory cortex of normal hamsters and hamsters subjected to neonatal follicle ablation at postnatal day seven (P7). Follicle ablations were unilateral, and spared either C-row whiskers or the second whisker arc. This study was done to determine if the intrinsic cortical connectivity pattern of the barrel cortex, established during the critical period, affects the process of representational plasticity that follows whisker follicle ablation. Additionally, we tested the ability to monitor such changes in individual cortical whisker representations using intrinsic signal imaging. Stimulation of a single whisker yielded peak activation of a barrel-sized patch in the somatotopically appropriate location in normal cortex. In both row and arc-spared animals, functional representations corresponding to spared follicles were significantly stronger and more oblong than normal. The pattern of activation differed in the row-sparing and arc-sparing groups, in that the expansion was preferentially into deprived, not spared areas. Single whisker stimulation in row-spared cases preferentially activated the corresponding barrel arc, while stimulation of one whisker in arc-spared cases produced elongated activation down the barrel row. Since whisker deflection normally has a net inhibitory effect on neighboring barrels, our data suggest that intracortical inhibition fails to develop normally in deprived cortical columns. Because thalamocortical projections are not affected by follicle ablation after P7, we suggest that the effects we observed are largely cortical, not thalamocortical.  相似文献   

3.
Primary sensory cortical areas receive information through multiple thalamic channels. In the rodent whisker system, lemniscal and paralemniscal thalamocortical projections, from the ventral posteromedial nucleus (VPM) and posterior medial nucleus (POm) respectively, carry distinct types of sensory information to cortex. Little is known about how these separate streams of activity are parsed and integrated within the neocortical microcircuit. We used quantitative laser scanning photostimulation to probe the organization of functional thalamocortical and ascending intracortical projections in the mouse barrel cortex. To map the thalamocortical projections, we recorded from neocortical excitatory neurons while stimulating VPM or POm. Neurons in layers (L)4, L5, and L6A received dense input from thalamus (L4, L5B, and L6A from VPM; and L5A from POm), whereas L2/3 neurons rarely received thalamic input. We further mapped the lemniscal and paralemniscal circuits from L4 and L5A to L2/3. Lemniscal L4 neurons targeted L3 within a column. Paralemniscal L5A neurons targeted a superficial band (thickness, 60 μm) of neurons immediately below L1, defining a functionally distinct L2 in the mouse barrel cortex. L2 neurons received input from lemniscal L3 cells and paralemniscal L5A cells spread over multiple columns. Our data indicate that lemniscal and paralemniscal information is segregated into interdigitated cortical layers.  相似文献   

4.
Previous work has established that during exploration and discrimination, rats move their whiskers at frequencies between 6 and 12 Hz and that whisking frequency changes during contact. One critical component of any tactile system is contact. In the rat whisker system, such contacts may involve one or more vibrissa in the whisker array and contact duration of each whisker may vary over a considerable range, depending upon the behavioral context. However, little is known about the variables controlling contact duration or about the temporal relationships among contacts by adjacent whiskers. To address these issues head fixed rats were trained to touch a piezo-contact-sensor with the shaft of their whiskers (Bermejo and Zeigler, Somatosens Mot Res 17: 373-377, 2000 ). During the task, whisker movements and contacts were monitored with a high-speed camera at 500 frames/s and stored on videotape. To facilitate analysis, animals had their whiskers selectively trimmed. Data are reported from animals with C1 & C2, D1 & D2, or Arc2 (E2, D2, C2, B2) whiskers intact. For both row and arc animals, when just a single whisker touched the sensor the duration of contact was significantly shorter than when multiple whiskers made contact. When multiple whiskers made contact, onset was rarely simultaneous. Furthermore, in row-intact animals, contact progressed in an orderly fashion such that the rostral whisker in a row made contact first followed 24 ms (SE = 1.9 ms) later by the caudal whisker. When contact reversed the caudal whisker lifted off first, followed by the rostral whisker. Thus, the order in which whiskers touch an object regulates contact duration: the first whisker to touch the sensor stays in contact longer than any other whisker. The temporal discharge properties of neurons in the trigeminal system are expected to reflect position of whiskers on the nose.  相似文献   

5.
Previous work has established that during exploration and discrimination, rats move their whiskers at frequencies between 6 and 12 Hz and that whisking frequency changes during contact. One critical component of any tactile system is contact. In the rat whisker system, such contacts may involve one or more vibrissa in the whisker array and contact duration of each whisker may vary over a considerable range, depending upon the behavioral context. However, little is known about the variables controlling contact duration or about the temporal relationships among contacts by adjacent whiskers. To address these issues head fixed rats were trained to touch a piezo-contact-sensor with the shaft of their whiskers (Bermejo and Zeigler, Somatosens Mot Res 17: 373-377, 2000). During the task, whisker movements and contacts were monitored with a high-speed camera at 500 frames/s and stored on videotape. To facilitate analysis, animals had their whiskers selectively trimmed. Data are reported from animals with C1 & C2, D1 & D2, or Arc2 (E2, D2, C2, B2) whiskers intact. For both row and arc animals, when just a single whisker touched the sensor the duration of contact was significantly shorter than when multiple whiskers made contact. When multiple whiskers made contact, onset was rarely simultaneous. Furthermore, in row-intact animals, contact progressed in an orderly fashion such that the rostral whisker in a row made contact first followed 24 ms (SE = 1.9 ms) later by the caudal whisker. When contact reversed the caudal whisker lifted off first, followed by the rostral whisker. Thus, the order in which whiskers touch an object regulates contact duration: the first whisker to touch the sensor stays in contact longer than any other whisker. The temporal discharge properties of neurons in the trigeminal system are expected to reflect position of whiskers on the nose.  相似文献   

6.
Chen XM  Qiao ZM  Gao SK  Hong B 《生理学报》2007,59(6):851-857
神经元网络可塑性是大脑学习和记忆功能的基础,可塑性的变化也是某些脑功能疾病的成因。研究大脑皮层可塑性不仅可以为认识可塑性机制提供基本方法,也可对自然衰老过程和神经退行性疾病的病理过程进行观测,进而可以为评价抗衰老药物和治疗神经退行性疾病提供新方法。本文基于经典的大鼠胡须配对模型建立了一套实验方案,通过在体细胞外记录实验的数据分析,比较修剪胡须后相同时间内神经元感受野不对称变化程度的差异,衡量不同生理条件下大鼠体感皮层神经元网络可塑性。本文以中年和青年大鼠体感皮层神经元网络可塑性比较为例,详细介绍了实验方法中的关键技术和操作,如皮层D2功能柱的定位和D2功能柱内不同层神经元的定位等,结果和我室以前相关研究证明了此实验方案的可行性。  相似文献   

7.
Abstract

Single whiskers are topographically represented in the trigeminal (V) nucleus principalis (PrV) by a set of cylindrical aggregates of primary afferent terminals and somata (barrelettes). This isomorphic pattern is transmitted to the thalamus and barrel cortex. However, it is not known if terminals in PrV from neighboring whiskers interdigitate so as to violate rules of spatial parcellation predicted by barrelette borders; nor is it known the extent to which higher order inputs are topographic. The existence of inter-whisker arbor overlap or diffuse higher order inputs would demand additional theoretical principles to account for single whisker dominance in PrV cell responses. In adult rats, first, primary afferent pairs responding to the same or neighboring whiskers and injected with Neurobiotin or horseradish peroxidase were rendered brown or black to color-code their terminal boutons. When collaterals from both fibers appeared in the same topographic plane through PrV, the percentage of the summed area of the two arbor envelopes that overlapped was computed. For same-whisker pairs, overlap was 5?±?6% (mean?±?SD). For within-row neighbors, overlap was 2?±?5%. For between-row neighbors, overlap was 1?±?4%. Second, the areas of whisker primary afferent arbors and their corresponding barrelettes in the PrV were compared. In the transverse plane, arbor envelopes significantly exceeded the areas of cytochrome oxidase-stained barrelettes; arbors often extended into neighboring barrelettes. Third, bulk tracing of the projections from the spinal V subnucleus interpolaris (SpVi) to the PrV revealed strict topography such that they connect same-whisker barrelettes in the SpVi and PrV. Thus, whisker primary afferents do not exclusively project to their corresponding PrV barrelette, whereas higher order SpVi inputs to the PrV are precisely topographic.  相似文献   

8.
9.
Within the rat whisker-to-barrel pathway, local circuits in cortical layer IV are more sensitive to the initial timing of deflection-evoked thalamic responses than to the total number of spikes comprising them. Because thalamic response timing better reflects whisker deflection velocity than amplitude, cortical neurons are more responsive to the former than the latter. The aim of this study is to determine how deflection velocity and amplitude may be encoded by the primary afferent neurons innervating the vibrissae. Responses of 81 extracellularly recorded trigeminal ganglion neurons (60 slowly and 21 rapidly adapting) were studied using controlled whisker stimuli identical to those used previously to investigate the velocity and amplitude sensitivities of thalamic and cortical neurons. For either slowly (SA) or rapidly adapting (RA) neurons, velocity is reflected by both response magnitude, measured as the total number of evoked spikes/stimulus, and initial firing rate, measured as the number of spikes discharged during the first 2 ms of the response. Deflection amplitude, on the other hand, is represented only by the SA population in their response magnitudes. Thus, in both populations initial firing rates unambiguously reflect deflection velocity. Together with previous findings, results demonstrate that information about deflection velocity is preserved throughout the whisker-to-barrel pathway by central circuits sensitive to initial response timing.  相似文献   

10.
Functional asymmetries in the rodent barrel cortex   总被引:3,自引:0,他引:3  
Neurophysiological and 2-deoxyglucose (2DG) studies of the rodent whisker barrel cortex have demonstrated asymmetries in its functional organization. To examine the possibility that the activity gradients observed in metabolic studies can be attributed to subtle rostral-caudal and dorsal-ventral asymmetries in electrophysiologically measured surround or cross-whisker inhibition, we compared 2DG results with predictions generated from quantitative single-cell receptive field data. Despite differences in the two experimental approaches, there is remarkable agreement between the findings. (1) The distribution of 2DG activity declines across the barrel cortex of the behaving animal from anteromedial barrels to posterolateral barrels, and is qualitatively and quantitatively similar to the values predicted from neurophysiology. (2) The strength of surround inhibition in barrel neurons predicts the twofold increase in activation of the C3 barrel following acute clipping of adjacent whiskers. And (3) within a cortical column, the decrease in metabolic activity associated with adjacent whisker stimulation is greatest in layer IV and least in the infragranular layers; this corresponds to the laminar distribution of inhibitory interactions observed electrophysiologically.  相似文献   

11.
Whisker plucking in developing and adult rats provides a convenient method of temporarily altering tactile input for the purposes of studying experience-dependent plasticity in the somatosensory cortex. Yet, a comprehensive examination of the effect of whisker plucking on the response properties of whisker follicle-innervating trigeminal ganglion (NVg) neurons is lacking. We used extracellular single unit recordings to examine responses of NVg neurons to controlled whisker stimuli in three groups of animals: (1) rats whose whiskers were plucked from birth for 21 days; (2) rats whose whiskers were plucked once at 21 days of age; and (3) control animals. After at least 3 weeks of whisker re-growth, NVg neurons in plucked rats displayed normal, single whisker receptive fields and could be characterized as slowly (SA) or rapidly adapting (RA). The proportion of SA and RA neurons was unaffected by whisker plucking. Both SA and RA NVg neurons in plucked rats displayed normal response latencies and angular tuning but abnormally large responses to whisker movement onsets and offsets. SA neurons were affected to a greater extent than RA neurons. The effect of whisker plucking was more pronounced in animals whose whiskers were plucked repeatedly during development than in rats whose whiskers were plucked once. Individual neurons in plucked animals displayed abnormal periods of prolonged rhythmic firing following deflection onsets and aberrant bursts of activity during the plateau phase of the stimulus. These results indicate that whisker plucking exerts a long-term effect on responses of trigeminal ganglion neurons to peripheral stimulation.  相似文献   

12.
Whisker plucking in developing and adult rats provides a convenient method of temporarily altering tactile input for the purposes of studying experience-dependent plasticity in the somatosensory cortex. Yet, a comprehensive examination of the effect of whisker plucking on the response properties of whisker follicle-innervating trigeminal ganglion (NVg) neurons is lacking. We used extracellular single unit recordings to examine responses of NVg neurons to controlled whisker stimuli in three groups of animals: (1) rats whose whiskers were plucked from birth for 21 days; (2) rats whose whiskers were plucked once at 21 days of age; and (3) control animals. After at least 3 weeks of whisker re-growth, NVg neurons in plucked rats displayed normal, single whisker receptive fields and could be characterized as slowly (SA) or rapidly adapting (RA). The proportion of SA and RA neurons was unaffected by whisker plucking. Both SA and RA NVg neurons in plucked rats displayed normal response latencies and angular tuning but abnormally large responses to whisker movement onsets and offsets. SA neurons were affected to a greater extent than RA neurons. The effect of whisker plucking was more pronounced in animals whose whiskers were plucked repeatedly during development than in rats whose whiskers were plucked once. Individual neurons in plucked animals displayed abnormal periods of prolonged rhythmic firing following deflection onsets and aberrant bursts of activity during the plateau phase of the stimulus. These results indicate that whisker plucking exerts a long-term effect on responses of trigeminal ganglion neurons to peripheral stimulation.  相似文献   

13.
In this paper we describe the effects of manipulating two kinds of sensory input in neonatal rats upon the development of the macrovibrissae--that movable subset of the rodent mystacial vibrissae. In an initial study of normal whisker development, data on whisker size were obtained from neonatal, perinatal, and adult rats. Data on whisker size were also obtained from rats sustaining either neonatal sensory or motor denervation of the whiskers and from both rats and mice bilaterally enucleated as neonates (BEN). In normally reared rats, most whiskers attain their final size over the first three postnatal weeks but development of rows 6 and 7 are not completed until after the first month. In normal animals we found a significant correlation both between body weight and whisker size and between the size of a whisker and the size of its corresponding cortical barrel. Rats sustaining neonatal denervation of the whiskers have shorter and thinner whiskers as adults than normally reared animals. In both rats and mice bilaterally enucleated as neonates a subset of the macrovibrissae are significantly larger than those of normal controls but no such effect is seen if the enucleation is carried out in adults. Moreover, BEN rats exposed to a novel stimulus environment whisk at a significantly higher frequency than normally reared animals. Mechanisms which might mediate these effects are discussed.  相似文献   

14.
In this paper we describe the effects of manipulating two kinds of sensory input in neonatal rats upon the development of the macrovibrissae—that movable subset of the rodent mystacial vibrissae. In an initial study of normal whisker development, data on whisker size were obtained from neonatal, perinatal, and adult rats. Data on whisker size were also obtained from rats sustaining either neonatal sensory or motor denervation of the whiskers and from both rats and mice bilaterally enucleated as neonates (BEN). In normally reared rats, most whiskers attain their final size over the first three postnatal weeks but development of rows 6 and 7 are not completed until after the first month. In normal animals we found a significant correlation both between body weight and whisker size and between the size of a whisker and the size of its corresponding cortical barrel. Rats sustaining neonatal denervation of the whiskers have shorter and thinner whiskers as adults than normally reared animals. In both rats and mice bilaterally enucleated as neonates a subset of the macrovibrissae are significantly larger than those of normal controls but no such effect is seen if the enucleation is carried out in adults. Moreover, BEN rats exposed to a novel stimulus environment whisk at a significantly higher frequency than normally reared animals. Mechanisms which might mediate these effects are discussed.  相似文献   

15.
Studies in pinniped whisker use have shown that their whiskers are extremely sensitive to tactile and hydrodynamic signals. While pinnipeds position their whiskers on to objects and have some control over their whisker protractions, it has always been thought that head movements are more responsible for whisker positioning than the movement of the whiskers themselves. This study uses ball balancing, a dynamic sensorimotor skill that is often used in human and robotic coordination studies, to promote sea lion whisker movements during the task. For the first time, using tracked video footage, we show that sea lion whisker movements respond quickly (26.70 ms) and mirror the movement of the ball, much more so than the head. We show that whisker asymmetry and spread are both altered to help sense and control the ball during balancing. We believe that by designing more dynamic sensorimotor tasks we can start to characterise the active nature of this specialised sensory system in pinnipeds.  相似文献   

16.
Neuronal activity in rat barrel cortex underlying texture discrimination   总被引:1,自引:1,他引:0  
Rats and mice palpate objects with their whiskers to generate tactile sensations. This form of active sensing endows the animals with the capacity for fast and accurate texture discrimination. The present work is aimed at understanding the nature of the underlying cortical signals. We recorded neuronal activity from barrel cortex while rats used their whiskers to discriminate between rough and smooth textures. On whisker contact with either texture, firing rate increased by a factor of two to ten. Average firing rate was significantly higher for rough than for smooth textures, and we therefore propose firing rate as the fundamental coding mechanism. The rat, however, cannot take an average across trials, but must make an immediate decision using the signals generated on each trial. To estimate single-trial signals, we calculated the mutual information between stimulus and firing rate in the time window leading to the rat's observed choice. Activity during the last 75 ms before choice transmitted the most informative signal; in this window, neuronal clusters carried, on average, 0.03 bits of information about the stimulus on trials in which the rat's behavioral response was correct. To understand how cortical activity guides behavior, we examined responses in incorrect trials and found that, in contrast to correct trials, neuronal firing rate was higher for smooth than for rough textures. Analysis of high-speed films suggested that the inappropriate signal on incorrect trials was due, at least in part, to nonoptimal whisker contact. In conclusion, these data suggest that barrel cortex firing rate on each trial leads directly to the animal's judgment of texture.  相似文献   

17.
The functional logic of cortico-pulvinar connections   总被引:5,自引:0,他引:5  
The pulvinar is an 'associative' thalamic nucleus, meaning that most of its input and output relationships are formed with the cerebral cortex. The function of this circuitry is little understood and its anatomy, though much investigated, is notably recondite. This is because pulvinar connection patterns disrespect the architectural subunits (anterior, medial, lateral and inferior pulvinar nuclei) that have been the traditional reference system. This article presents a simplified, global model of the organization of cortico-pulvinar connections so as to pursue their structure-function relationships. Connections between the cortex and pulvinar are topographically organized, and as a result the pulvinar contains a 'map' of the cortical sheet. However, the topography is very blurred. Hence the pulvinar connection zones of nearby cortical areas overlap, allowing indirect transcortical communication via the pulvinar. A general observation is that indirect cortico-pulvino-cortical circuits tend to mimic direct cortico-cortical pathways: this is termed 'the replication principle'. It is equally apt for certain pairs (or groups) of nearby cortical areas that happen not to connect with each other. The 'replication' of this non-connection is achieved by discontinuities and dislocations of the cortical topography within the pulvinar, such that the associated pair of connection zones do not overlap. Certain of these deformations can be used to divide the global cortical topography into specific sub-domains, which form the natural units of a connectional subdivision of the pulvinar. A substantial part of the pulvinar also expresses visual topography, reflecting visual maps in occipital cortex. There are just two well-ordered visual maps in the pulvinar, that both receive projections from area V1, and several other occipital areas; the resulting duplication of cortical topography means that each visual map also acts as a separate connection domain. In summary, the model identifies four topographically ordered connection domains, and reconciles the coexistence of visual and cortical maps in two of them. The replication principle operates at and below the level of domain structure. It is argued that cortico-pulvinar circuitry replicates the pattern of cortical circuitry but not its function, playing a more regulatory role instead. Thalamic neurons differ from cortical neurons in their inherent rhythmicity, and the pattern of cortico-thalamic connections must govern the formation of specific resonant circuits. The broad implication is that the pulvinar acts to coordinate cortical information processing by facilitating and sustaining the formation of synchronized trans-areal assemblies; a more pointed suggestion is that, owing to the considerable blurring of cortical topography in the pulvinar, rival cortical assemblies may be in competition to recruit thalamic elements in order to outlast each other in activity.  相似文献   

18.
实验在33例清醒、肌肉麻痹和切断双侧迷走神经的家兔上进行,观察了刺激丘脑不同核团(VIL,VL,VPM 和 MI)和胼胝体纤维以激活皮层时膈神经的放电效应。当在吸气相(膈神经放电时)给予上述核团及胼胝体纤维电脉冲刺激,可使膈神经放电短暂抑制,随后的呼气相缩短、吸气相提前出现。如果在呼气相刺激上述核团,也能使该呼气时相缩短,随后的吸气时相提前出现。当在皮层接受 VL 投射的局部区域给予回苏灵后,再刺激 VL,皮层诱发电位增大,除使原先的膈神经放电效应更为明显外,还可在呼气相刺激时引起膈神经即刻的短暂放电。以上实验结果提示,当用回苏灵使皮层活动加强后,刺激丘脑 VL 引起的膈神经放电效应明显增强。损毁红核或切断皮层下行传导束但保留皮层脊髓束后,刺激丘脑引起的膈神经放电效应均不受影响,表明传入冲动激活皮层后引起的膈神经放电效应可能主要经皮层脊髓束下传,而皮层红核脊髓束不起重要作用。  相似文献   

19.
Rats discriminate surface textures using their whiskers (vibrissae), but how whiskers extract texture information, and how this information is encoded by the brain, are not known. In the resonance model, whisker motion across different textures excites mechanical resonance in distinct subsets of whiskers, due to variation across whiskers in resonance frequency, which varies with whisker length. Texture information is therefore encoded by the spatial pattern of activated whiskers. In the competing kinetic signature model, different textures excite resonance equally across whiskers, and instead, texture is encoded by characteristic, nonuniform temporal patterns of whisker motion. We tested these models by measuring whisker motion in awake, behaving rats whisking in air and onto sandpaper surfaces. Resonant motion was prominent during whisking in air, with fundamental frequencies ranging from approximately 35 Hz for the long Delta whisker to approximately 110 Hz for the shorter D3 whisker. Resonant vibrations also occurred while whisking against textures, but the amplitude of resonance within single whiskers was independent of texture, contradicting the resonance model. Rather, whiskers resonated transiently during discrete, high-velocity, and high-acceleration slip-stick events, which occurred prominently during whisking on surfaces. The rate and magnitude of slip-stick events varied systematically with texture. These results suggest that texture is encoded not by differential resonant motion across whiskers, but by the magnitude and temporal pattern of slip-stick motion. These findings predict a temporal code for texture in neural spike trains.  相似文献   

20.
大鼠的初级体感皮层(primary somatosensory cortex,SⅠ)虽然只接受来自对侧胡须的上行输入,但仍可以被同侧胡须刺激所激活.解剖学研究发现,在两侧SⅠ皮层之间有两条传递胡须信息胼胝体通路:一条是类颗粒区(perigranular zone,PGZ)通路;另一条是异颗粒区(dysgranular zone,DZ)通路.然而,哪一条通路在传递胡须刺激信息的过程中起主要作用还不清楚.本研究使用电压敏感染料(voltage-sensitive dye,VSD)成像技术来观察胡须刺激时整个SⅠ的神经元群体活动的空间分布和时间特性.实验发现,对侧胡须刺激首先激活barrel(颗粒区,granular zone,GZ),然后以兴奋波的形式传播到胡须感觉区(sub-barrel field cortex,BFC)外侧的DZ.而与首先激活BFC的对侧胡须刺激不同,同侧胡须刺激首先激活SⅠ的DZ.所激发的皮层兴奋以波的形式传播并扩散至BFC.失活另一侧皮层可以抑制这种同侧反应.电刺激另一侧半球皮层与刺激同侧胡须类似,也首先激活成像侧DZ.我们的实验结果显示,胡须刺激激活对侧SⅠ,在经过胼胝体传导后,另一侧半球的DZ(同侧于被刺激的胡须)被激活.连接双侧皮层DZ区的胼胝体连接在SⅠ对同侧胡须刺激的反应中起了主导作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号