首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mice lacking the growth-associated protein GAP-43 (KO) show disrupted cortical topography and no barrels. Whisker-related patterns of cells are normal in the KO brainstem trigeminal complex (BSTC), while the pattern in KO ventrobasal thalamus (VB) is somewhat compromised. To better understand the basis for VB and cortical abnormalities, we used small placements of DiI to trace axonal projections between BSTC, VB, and barrel cortex in wildtype (WT) and GAP-43 KO mice. The trigeminothalamic (TT) pathway consists of axons from cells in the Nucleus Prinicipalis that project to the contralateral VB thalamus. DiI-labeled KO TT axons crossed the midline from BSTC and projected to contralateral VB normally, consistent with normal BSTC cytoarchitecture. By contrast, the KO thalamocortical axons (TCA) projection was highly abnormal. KO TCAs showed delays of 1-2 days in initial ingrowth to cortex. Postnatally, KO TCAs showed multiple pathfinding errors near intermediate targets, and were abnormally fasciculated within the internal capsule (IC). Interestingly, most individually labeled KO TCAs terminated in deep layers instead of in layer IV as in WT. This misprojection is consistent with birthdating analysis in KO mice, which revealed that neurons normally destined for layer IV remain in deep cortical layers. Early outgrowth of KO corticofugal (CF) axons was similar for both genotypes. However, at P7 KO CF fibers remained bundled as they entered the IC, and exhibited few terminal branches in VB. Thus, the establishment of axonal projections between thalamus and cortex are disrupted in GAP-43 KO mice.  相似文献   

2.
Extracellular unit recordings were made at various depths within SmI barrel cortex of immobilized, sedated rats, in the presence and absence of titrated amounts of the GABAA receptor antagonist bicuculline methiodide (BMI). Principal and adjacent whiskers were moved singly, or in paired combination in a condition-test paradigm, to assess excitatory and inhibitory receptive field (RF) characteristics. Neurons were classified as regular- or fast-spike units, and divided into three laminar groups: supragranular, granular (barrel), and infragranular. BMI increased response magnitude and duration, but did not affect response latencies. The excitatory RFs of barrel units, which are the most tightly focused on the principal whisker, were the most greatly defocused by BMI; infragranular units were least affected. All three layers had approximately equal amounts of adjacent whisker-evoked, surround inhibition, but BMI counteracted this inhibition substantially in barrel units and less so in infragranular units. The effects of BMI were most consistent in the barrel; more heterogeneity was found in the non-granular layers. These lamina-dependent effects of BMI are consistent with the idea that between-whisker inhibition is generated mostly within individual layer IV barrels as a result of the rapid engagement of strong, local inhibitory circuitry, and is subsequently embedded in layer IV's output to non-layer IV neurons. The latter's surround inhibition is thus relatively resistant to antagonism by locally applied BMI. The greater heterogeneity of non-granular units in terms of RF properties and the effects of BMI is consistent with other findings demonstrating that neighboring neurons in these layers may participate in different local circuits.  相似文献   

3.
4.
The present article discusses computational hypotheses on corticothalamic feedback and modulation of cortical response properties. We have recently proposed that the two phenomena are related, hypothesizing that neuronal velocity preference in the visual cortex is altered by feedback to the lateral geniculate nucleus. We now contrast the common view that response adaptation to stimuli subserves a function of redundancy reduction with the idea that it may enhance cortical representation of objects. Our arguments lead to the concept that the corticothalamic loop is involved in reducing sensory input to behaviourally relevant aspects, a pre-attentive gating.  相似文献   

5.
6.
Afanas'ev  S. V.  Kosov  S. S. 《Neurophysiology》1986,18(5):494-500
Potentials produced in the frog thalamus by electrical stimulation of the peripheral nerves were investigated by sink and current source-density analysis. Sinks, which are viewed as potential generation sites, were located in three regions: the cell-free zone of the ventral thalamus adjoining the ventrolateral nucleus, the ventromedial and ventrolateral nuclei, and the caudal section of the dorsal thalamus. Evoked activity was recorded in individual neurons in the area of the second and third of these sinks. The first sink failed to form after section of the dorsal tracks of the spinal cord, while the remaining two only appeared after a considerably extended latency. It is suggested that nuclei of the ventral and caudal sections of the dorsal thalamus receive somatic impulses through the systems connected with the dorsal as well as the ventrolateral columns of the spinal cord. The direct projections of the primordial nuclei of dorsal columns may be involved in afferentation the ventral thalamus.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 18, No. 5, pp. 687–695, September–October, 1986.  相似文献   

7.
8.
9.
We consider a dynamical model of cell cycles of n cells in a culture in which cells in one specific phase (S for signalling) of the cell cycle produce chemical agents that influence the growth/cell cycle progression of cells in another phase (R for responsive). In the case that the feedback is negative, it is known that subpopulations of cells tend to become clustered in the cell cycle; while for a positive feedback, all the cells tend to become synchronized. In this paper, we suppose that there is a gap between the two phases. The gap can be thought of as modelling the physical reality of a time delay in the production and action of the signalling agents. We completely analyse the dynamics of this system when the cells are arranged into two cell cycle clusters. We also consider the stability of certain important periodic solutions in which clusters of cells have a cyclic arrangement and there are just enough clusters to allow interactions between them. We find that the inclusion of a small gap does not greatly alter the global dynamics of the system; there are still large open sets of parameters for which clustered solutions are stable. Thus, we add to the evidence that clustering can be a robust phenomenon in biological systems. However, the gap does effect the system by enhancing the stability of the stable clustered solutions. We explain this phenomenon in terms of contraction rates (Floquet exponents) in various invariant subspaces of the system. We conclude that in systems for which these models are reasonable, a delay in signalling is advantageous to the emergence of clustering.  相似文献   

10.
The time-course of formation of the conditioned defence reflex and electromyograms of the working forelimb were studied on cats with classical and commissural somatosensory pathways transections. It was established that exclusion of the classical somatosensory projections only reduces the rate of the skill formation that is related to the possibility of conducting feedback signals via the remaining commissural pathways. However, the commissural channel in question is not effective enough, since its isolated functioning is accompanied by an increase in the duration of instrumental movement. The combined transection of the classical and commissural somatosensory pathways excludes the possibility of formation of the conditioned reflex on the "deafferented" limb. The lack of direct visual control over the moving forelimb does not essentially affect the behavioral and electromyographic data.  相似文献   

11.
Anticancer suicide gene therapy using herpes simplex virus-thymidine kinase (HSV-tk) and ganciclovir (GCV) features the unique advantage of being able to elicit brisk host immune response against tumors and the host response reportedly can be potentiated with the co-expression of other appropriate immune- or apoptosis-related genes. We introduced a novel antiapoptotic gene, bfl-1, to test its applicability in the HSV-tk/GCV system. CT-26 murine colon cancer cells transfected with HSV-tk, alone or in combination with bcl-xL or bfl-1, were either grown in vitro or injected into syngeneic mice, followed by GCV administration. The co-expression of bfl-1 was associated with the upregulation of CD95 and CD40 ligand (CD40L) in vitro and with pronounced intratumoral T-lymphocyte infiltration in vivo. These results add to the previous findings that antiapoptotic genes can be used as an adjunctive component in the HSV-tk/GCV system to enhance host immune response against tumors.  相似文献   

12.
The morphology and topography of neurons whose axons form the nonspecific thalamic input in the primary somatosensory area were studied in the cat forebrain by the retrograde axonal horseradish peroxidase transport method. Stained cells were found in the dorsolateral part of the nucleus ventralis anterior, and were diffusely distributed in the nucleus centralis, lateralis, the lateral part of the nucleus dorsalis medialis, and the dorsal part of the centrum medianum. In the nucleus paracentralis only solitary, palely stained neurons were detected. Cells stained with horse-radish peroxidase were multipolar, triangular, or fusiform. The results are evidence that besides the ventrobasal complex, the nonspecific nuclei of the diencephalon also project into the somatosensory cortex. This indicates the existence of multiple afferent thalamic inputs into the somatic cortex.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 11, No. 5, pp. 435–440, September–October, 1979.  相似文献   

13.
14.
The cerebral cortex, thalamus and basal ganglia together form an important network in the brain, which is closely related to several nerve diseases, such as parkinson disease, epilepsy seizure and so on. Absence seizure can be characterized by 2–4 Hz oscillatory activity, and it can be induced by abnormal interactions between the cerebral cortex and thalamus. Many experimental results have also shown that basal ganglia are a key neural structure, which closely links the corticothalamic system in the brain. Presently, we use a corticothalamic-basal ganglia model to study which pathways in corticothalamic system can induce absence seizures and how these oscillatory activities can be controlled by projections from the substantia nigra pars reticulata (SNr) to the thalamic reticular nucleus (TRN) or the specific relay nuclei (SRN) of the thalamus. By tuning the projection strength of the pathway “Excitatory pyramidal cortex-SRN”, ”SRN-Excitatory pyramidal cortex” and “SRN–TRN” respectively, different firing states including absence seizures can appear. This indicates that absence seizures can be induced by tuning the connection strength of the considered pathway. In addition, typical absence epilepsy seizure state “spike-and-slow wave discharges” can be controlled by adjusting the activation level of the SNr as the pathways SNr–SRN and SNr–TRN open independently or together. Our results emphasize the importance of basal ganglia in controlling absence seizures in the corticothalamic system, and can provide a potential idea for the clinical treatment.  相似文献   

15.
The distribution of the 200/220 KDa J1 glycoprotein (J1-200/220), within the developing vibrissae-related barrel field of the mouse somatosensory cortex, was studied by immunocytochemistry using a monoclonal antibody. J1-200/220, a member of the L2/HNK-1 family of adhesion molecules, also appears to be the mouse homologue of tenascin. J1/tenascin-positive barrel-like structures are visible in the somatosensory cortex between 24 and 48 hr after birth, with the molecule present in prospective barrel boundaries. Immunoelectronmicroscopy reveals labeling that is associated with glial and neuronal plasma membranes, as well as glial end-feet on blood vessels. A possible major source of J1/tenascin expression at this time is astrocyte precursor cells and radial glia. In the putative astrocyte precursor cells, immunolabeling was observed within organelles including the Golgi apparatus. At P6-7 J1/tenascin is most prevalent within prospective interbarrel septae. J1/tenascin-positive barrel boundaries are barely visible on P9 and not observed on P16. The findings indicate that J1/tenascin represents a major component of previously described "hidden" boundaries that we have seen during development using other methodologies. The expression of adhesion molecule-rich boundaries during the critical stages of barrel field formation indicates roles for such molecules during specific cerebral cortical pattern formation events.  相似文献   

16.
Electrolytic destruction of whisker follicles in mice on the day of birth has been found to cause degeneration in the sensory nerve fibres supplying the follicles. The severity of the degeneration has been assessed in animals between 2 and 20 days old by counting the total number of myelinated fibres in the maxillary nerves on both normal and lesioned sides. The degeneration is apparent after 2 days and by 20 days the nerve on the lesioned side contains only 38% of the normal fibre content. This degeneration has also been shown to involve the trigeminal root, central to the ganglion. In addition, the lesioning procedure modifies the terminations of thalamocortical fibres in the barrel region of the sensory cortex. These terminations are normally in clusters, each corresponding to a barrel, but, after lesioning the follicles, the terminals appear to be evenly distributed in layer IV and cortical barrel structures no longer develop. In postnatal mice, electrolytic destruction of whisker follicles had less effect upon maxillary nerve fibres and cortical barrels. The number of myelinated axons surviving until day 20 increased progressively with later lesioning to reach nearly 80% of the control level when lesions were made on day 10. Cortical barrels became secure earlier than the maxillary nerve, for a normal number of cortical barrels was present at day 12 when follicles were destroyed on day 4. The implications of these results for the formation of cortical barrels is discussed.  相似文献   

17.
An estimation was carried out by factor analysis method of informative value of alpha-like rhythm, EEG theta-rhythm, local cerebral blood filling and oxygen tension (pO2) in estimation of functional state of cerebral structures under submaximal physical loads. Experiments were carried out on 35 rabbits with electrodes chronically implanted in the sensorimotor cortex and reticular formation. The obtained values were processed by a variant of factor analysis--a method of main components. For interpretation of factor loads matrix an orthogonal turn of factor axes was carried out according to varimax criterion. It has been established that informative value of the parameters depends on the brain structure where the given parameters were defined. Dynamics of pO2 and the theta-rhythm mostly influence the changes in other parameters. The states of structures before and during the period of physical load after-effect are mostly characterized by the brain local blood filling and less by the theta-rhythm amplitude.  相似文献   

18.
Lodovichi C  Belluscio L  Katz LC 《Neuron》2003,38(2):265-276
In rodents, each main olfactory bulb contains two mirror-symmetric glomerular maps, a feature not found in the initial topographic maps of other sensory systems. Targeting tracer injections to identified glomeruli revealed that isofunctional odor columns-translaminar assemblies connected to a given glomerulus-were specifically and reciprocally interconnected through a mutually inhibitory circuit with exquisite topographic specificity. Thus, instead of containing two mirror-symmetric maps, we propose that the olfactory bulb contains a single integrated map in which isofunctional odor columns are connected through an intrabulbar link, analogous to the specific horizontal connections linking iso-orientation columns in primary visual cortex.  相似文献   

19.
The retrograde horseradish peroxidase (HRP) transport method was used to study the location and morphology of neuron groups in the ventrobasal complex of the thalamus projecting to the region of vibrissal representation in the somatosensory cortex in rats. Injection of HRP into a circumscribed region of the somatosensory cortex revealed the following pattern of organization of the thalamocortical relay groups of neurons. Labeled neurons were located in the ventroposterolateral nucleus of the ventrobasal complex and were associated in groups 100–120 µ in diameter. Staining of several groups, even after minimal injections of HRP, and an increase in the number of labeled cells in each group with an increase in the zone of injection of HRP in the cortex suggest the presence of both convergence and divergence of specific thalamocortical pathways. The different shapes of the relay neurons and differences in the degree of HRP accumulation by them may indicate differences in their functional role in thalamocortical integration.Research Institute of Neurocybernetics, Rostov State University. Translated from Neirofiziologiya, Vol. 14, No. 6, pp. 631–635, November–December, 1982.  相似文献   

20.
The interaction between ecological and hydrological processes is particularly important in arid and semi-arid regions. Often the interaction between these processes is not completely understood and they are studied separately. We developed a grid-based computer model simulating the dynamics of the four most common vegetation types (perennial grass, annuals, dwarf shrubs and shrubs) and related hydrological processes in the region studied. Eco-hydrological interactions gain importance in rangelands with increasing slope, where vegetation cover obstructs run-off and decreases evaporation from the soil. Overgrazing can influence these positive feedback mechanisms. In this study, we first show that model predictions of cover and productivity of the vegetation types are realistic by comparing them with estimates obtained from field surveys. Then, we apply a realistic range in slope angle combined with two land use regimes (light versus heavy grazing intensity).Our simulation results reveal that hydrological processes and associated productivity are strongly affected by slope, whereas the magnitude of this impact depends on overgrazing. Under low stocking rates, undisturbed vegetation is maintained and run-off and evaporation remain low on flat plains and gentle slope. On steep slopes, run-off and evaporation become larger, while water retention potential decreases, which leads to reduced productivity. Overgrazing, however, reduces vegetation cover and biomass production and the landscape's ability to conserve water decreases even on flat plains and gentle slopes.Generally, the abundance of perennial grasses and shrubs decreases with increasing slope and grazing. Dominance is shifted towards shrubs and annuals. As a management recommendation we suggest that different vegetation growth forms should not only be regarded as forage producers but also as regulators of ecosystem functioning. Particularly on sloping range lands, a high percentage of cover by perennial vegetation insures that water is retained in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号