首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The series of recently synthesized monomeric and homodimeric cyanine dyes based on monomethine cyanine chromophore with oxazolo[4,5-b]pyridinium and quinoline end groups [Vassilev A, Deligeorgiev T, Gadjev N, Drexhage K-H. Synthesis of novel monomeric and homodimeric cyanine dyes based on oxazolo[4,5-b]pyridinium and quinolinium end groups for nucleic acid detection, Dyes Pigm 2005;66:135-142] were studied as possible fluorescent probes for nucleic acids detection. Significant fluorescence enhancement and intensity level (quantum yield up to 0.75) was observed for all the dyes in the presence of DNA. The oxazolo[4,5-b]pyridinium cyanines demonstrated high sensitivity as fluorescent stains for post-electrophoretic visualization of nucleic acids in agarose gels upon both VIS and UV transillumination, and the visualized band contained 0.8 ng of dsDNA.  相似文献   

2.
A novel approach to the design of sensitive fluorescent probes for nucleic acids detection is proposed. Suitable modifications of tri- and pentamethine cyanine dyes in the polymethine chain and/or in the heterocyclic residues can result in a significant decrease in unbound dye fluorescence intensity and an increase in dye emission intensity in the presence of DNA compared to the unsubstituted dye. The sharp enhancement in the fluorescence intensity upon dye interaction with double-stranded DNA permits the application of the modified tri- and pentamethine dyes as fluorescent probes in double-stranded DNA detection in homogeneous assays.  相似文献   

3.
Molecular beacons are efficient and useful tools for quantitative detection of specific target nucleic acids. Thanks to their simple protocol, molecular beacons have great potential as substrates for biomolecular computing. Here we present a molecular beacon-based biomolecular computing method for quantitative detection and analysis of target nucleic acids. Whereas the conventional quantitative assays using fluorescent dyes have been designed for single target detection or multiplexed detection, the proposed method enables us not only to detect multiple targets but also to compute their quantitative information by weighted-sum of the targets. The detection and computation are performed on a molecular level simultaneously, and the outputs are detected as fluorescence signals. Experimental results show the feasibility and effectiveness of our weighted detection and linear combination method using molecular beacons. Our method can serve as a primitive operation of molecular pattern analysis, and we demonstrate successful binary classifications of molecular patterns made of synthetic oligonucleotide DNA molecules.  相似文献   

4.
S A Latt  M Marino  M Lalande 《Cytometry》1984,5(4):339-347
The spectroscopic properties of three new dyes, EK4, VL772, and LL585, free and bound to nucleic acids, are presented, with particular emphasis on their potential use in flow cytometry. Two of these dyes, EK4 and LL585, exhibit red fluorescence, while dye VL772 exhibits yellow fluorescence. Dye LL585 exhibits specificity for DNA, relative to RNA, and a marked enhancement of fluorescence efficiency upon binding to DNA, needed for a red fluorescent DNA-specific stain for flow cytometry. The dye penetrates live cells, although uniformity of nuclear fluorescence, as evidenced by DNA flow histograms, is better if the cells are first permeabilized with Triton X-100. Dye VL772 exhibits yellow fluorescence and little DNA-RNA discrimination, but may prove useful in conjunction with dye LL585 when simultaneous assay of cellular RNA and DNA is desired. Dye EK4 shares properties of the other two dyes but fluoresces with much less efficiency. Dyes LL585 and VL772, used singly, as a pair, or in combination with blue-fluorescing DNA specific dyes, such as bisbenzimidazole derivatives, should permit new, convenient analyses of the content and organization of cellular nucleic acids.  相似文献   

5.
The fluorescent cytosine analog tC(O) is on average the brightest probe of its kind and, moreover, it introduces minimal perturbations to the normal secondary structure of DNA. Here several ways of how tC(O), with an advantage, can be used as a local fluorescent probe in nucleic acid systems are presented. Most importantly, we show that tC(O) is an excellent probe for the detection of individual melting processes of complex nucleic acid structures containing a large number of separate secondary structure motifs. Since conventional UV-melting investigations merely monitor the global melting process of the whole nucleic acid structure, e.g. multi-hairpin systems in RNA/DNA, and thus is incapable of estimating individual melting transitions of such systems, tC(O) represents a new method of characterization. Furthermore, we find that tC(O) may be used to detect bulges and loops in nucleic acids as well as to distinguish a matched base-pair from several of the mismatched.  相似文献   

6.
Numerous biological mechanisms depend on nucleic acid--protein interactions. The first step to the understanding of these mechanisms is to identify interacting molecules. Knowing one partner, the identification of other associated molecular species can be carried out using affinity-based purification procedures. When the nucleic acid-binding protein is known, the nucleic acid can be isolated and identified by sensitive techniques such as polymerase chain reaction followed by DNA sequencing or hybridization on chips. The reverse identification procedure is less straightforward in part because interesting nucleic acid-binding proteins are generally of low abundance and there are no methods to amplify amino acid sequences. In this article, we will review the strategies that have been developed to identify nucleic acid-binding proteins. We will focus on methods permitting the identification of these proteins without a priori knowledge of protein candidates.  相似文献   

7.
Twenty three novel cyanine dyes have been applied as fluorescent stains for the detection of nucleic acids in agarose gel electrophoresis. Significant fluorescence enhancement of these dyes in the presence of double stranded DNA was observed. Five dyes offered superior sensitivity in the detection and quantification of DNA, over Ethidium Bromide, the most commonly used nucleic acid stain.  相似文献   

8.
Magnetic particles for the separation and purification of nucleic acids   总被引:1,自引:0,他引:1  
Nucleic acid separation is an increasingly important tool for molecular biology. Before modern technologies could be used, nucleic acid separation had been a time- and work-consuming process based on several extraction and centrifugation steps, often limited by small yields and low purities of the separation products, and not suited for automation and up-scaling. During the last few years, specifically functionalised magnetic particles were developed. Together with an appropriate buffer system, they allow for the quick and efficient purification directly after their extraction from crude cell extracts. Centrifugation steps were avoided. In addition, the new approach provided for an easy automation of the entire process and the isolation of nucleic acids from larger sample volumes. This review describes traditional methods and methods based on magnetic particles for nucleic acid purification. The synthesis of a variety of magnetic particles is presented in more detail. Various suppliers of magnetic particles for nucleic acid separation as well as suppliers offering particle-based kits for a variety of different sample materials are listed. Furthermore, commercially available manual magnetic separators and automated systems for magnetic particle handling and liquid handling are mentioned.  相似文献   

9.
DNA nanotechnology has seen large developments over the last 30 years through the combination of detection and discovery of DNAs, and solid phase synthesis to increase the chemical functionalities on nucleic acids, leading to the emergence of novel and sophisticated in features, nucleic acids-based biopolymers. Arguably, nanopores developed for fast and direct detection of a large variety of molecules, are part of a revolutionary technological evolution which led to cheaper, smaller and considerably easier to use devices enabling DNA detection and sequencing at the single-molecule level. Through their versatility, the nanopore-based tools proved useful biomedicine, nanoscale chemistry, biology and physics, as well as other disciplines spanning materials science to ecology and anthropology. This mini-review discusses the progress of nanopore- and hybridization-based DNA detection, and explores a range of state-of-the-art applications afforded through the combination of certain synthetically-derived polymers mimicking nucleic acids and nanopores, for the single-molecule biophysics on short DNA structures.  相似文献   

10.
11.
The ability to maximize the use of available nucleic acid sequence space would have been crucial during the presumed RNA world and confers selective advantage in many contemporary organisms. One way to access sequence space at a higher density would be to make use of both strands of a duplex nucleic acid for the production of functional molecules. As a demonstration of this possibility, two pairs of nucleic acid enzymes were engineered to be perfect complements, each with the capacity to adopt a distinct structure and catalyze a particular chemical transformation. Both members of each pair of enzymes exhibited nearly the same level of activity as the canonical form of the corresponding catalytic motif. The ability to generate functional nucleic acids encoded by both strands of a duplex has implications for the evolution of catalytic nucleic acids and the prospects for realizing maximum functionality from a given genetic sequence. Present address (Scott T. Kuhns): CancerVax Corp., 9393 Towne Center Drive, San Diego, CA 92121, USA  相似文献   

12.
We have developed a new helicase assay that overcomes many limitations of other assays used to measure this activity. This continuous, kinetic assay is based on the displacement of fluorescent dyes from dsDNA upon DNA unwinding. These ligands exhibit significant fluorescence enhancement when bound to duplex nucleic acids and serve as the reporter molecules of DNA unwinding. We evaluated the potential of several dyes [acridine orange, ethidium bromide, ethidium homodimer, bis-benzimide (DAPI), Hoechst 33258 and thiazole orange] to function as suitable reporter molecules and demonstrate that the latter three dyes can be used to monitor the helicase activity of Escherichia coli RecBCD enzyme. Both the binding stoichiometry of RecBCD enzyme for the ends of duplex DNA and the apparent rate of unwinding are not significantly perturbed by two of these dyes. The effects of temperature and salt concentration on the rate of unwinding were also examined. We propose that this dye displacement assay can be readily adapted for use with other DNA helicases, with RNA helicases, and with other enzymes that act on nucleic acids.  相似文献   

13.
Ultra-thin sections of various tissues were stained with ethidium bromide or propidium iodide, two fluorescent markers widely used for quantitation of nucleic acids. The fluorochromes, tested at different concentrations, were then revealed by incubation of the sections with neutralized phosphotungstic acid. We showed that at the electron microscopic level only nucleic acid-containing structures are revealed. Chromatin, nucleolus, and ribosomes appear to be stained by the end-product of the reaction. Furthermore, controls with proteases and nucleases showed that the staining is related to the binding of the fluorochromes to DNA and RNA and to the subsequent detection of the dyes by neutralized PTA.  相似文献   

14.
15.
We propose a new method for the separation of nucleic acids using multi-layered carbon nanotubes (CNTs) as an adsorbent. According to agarose gel electrophoresis, oxidized water-stable CNTs adsorb certain forms of nucleic acids, such as high molecular weight RNA, chromosomal DNA, linear and denatured forms of plasmid DNA. However, CNTs do not adsorb supercoiled form of plasmid DNA. Nucleic acids bound to CNTs can be readily removed by centrifugation whereas supercoiled plasmid DNA remains in solution. Upon the addition of divalent metal ions supercoiled plasmid DNA forms relatively stable complexes with CNTs due to chelation. Thus, new details about association of nucleic acids with CNTs were revealed and stoichiometry of the complexes was estimated. Our results can be used for fine purification of supercoiled plasmid DNA for gene therapy applications as well as manipulation of nucleic acids for biosensor design.  相似文献   

16.
Broad range DNA probes for detecting and amplifying eubacterial nucleic acids   总被引:18,自引:0,他引:18  
In this report we describe and characterize two oligomer probes that are broadly homologous to conserved eubacterial 16S ribosomal RNA (rRNA) sequences not present in human 18 rRNA or human mitochondrial 12S rRNA. One or both of the probes can detect all of 23 phylogenetically diverse eubacterial nucleic acids against which they were tested by dot blot hybridization. A sensitivity of about 1 bacterium per 10 eukaryotic cells was achieved. By using these oligomer sequences or their complements as primers in the polymerase chain reaction (PCR), the equivalent of 1 pg of E. coli DNA was detected in the presence of a large excess of eukaryotic DNA. Information useful for partial phylogenetic classification of detected organisms may be obtained by direct sequence analysis of the amplified DNA and comparison with known sequences or catalogs. Such broadly homologous probes offer advantages over more narrowly specific probes for detecting organisms whose identity is unknown. They could thus be employed for recognizing infection by organisms that cannot be cultured as may occur, for example, in tissue culture or in plant or animal diseases of unknown cause, provided the probes fail to hybridize with host nucleic acids.  相似文献   

17.
An ultrasensitive electrical detection method of nucleic acids has been demonstrated on sub-microgapped biosensor. In this method, peptide nucleic acid (PNA) probes were firstly immobilized in the gap areas of a pair of interdigited microelectrodes and then were hybridized with their complementary target DNA. After hybridization, hematin molecules were introduced into the DNA strand via zirconium-phosphate and zirconium-carbonate chemistries. The newly attached hematin molecules act as a catalyst to accelerate reducing ammoniacal silver ion to form silver nanoparticles, which span the gap of the interdigitated microelectrode. The conductance of the silver nanoparticles directly correlated with the number of the hybridized DNA molecules. Nearly 1fM sensitivity was achieved under optimal conditions. This approach is also applicable to the detection of RNA.  相似文献   

18.
Inclusion bodies (IBs) are commonly formed in Escherichiacoli due to over expression of recombinant proteins in non-native state. Isolation, denaturation and refolding of these IBs is generally performed to obtain functional protein. However, during this process IBs tend to form non-specific interactions with sheared nucleic acids from the genome, thus getting carried over into downstream processes. This may hinder the refolding of IBs into their native state. To circumvent this, we demonstrate a methodology termed soni-removal which involves disruption of nucleic acid–inclusion body interaction using sonication; followed by solvent based separation. As opposed to conventional techniques that use enzymes and column-based separations, soni-removal is a cost effective alternative for complete elimination of buried and/or strongly bound short nucleic acid contaminants from IBs.  相似文献   

19.
Chromatographic procedures currently used for the size-dependent fractionation of nucleic acids are reviewed. First, an attempt is made to clarify the concept of “size” of nucleic acids and then various aspects of the chromatography of nucleic acids are considered. It is emphasized that consideration of the dynamic three-dimensional structure of large polynucleotides in a rapidly flowing eluent is essential for both the better understanding of mechanism and the development of sophisticated procedures. Of the practical chromatographic techniques that are not based on true size fractionation, ion-exchange chromatography on non-porous column packings appears to be the most efficient. Other methods, such as hydrophobic interaction, are unlikely to become popular. As for truly size-dependent modes, there are gel permeation and slalom chromatography. Although media with extremely large pores become available, the efficiency of gel permeation is still low as a practical separation procedure for large nucleic acid molecules. Its best use seems to be in the field of physicochemical research into nucleic acids in solution. The newly discovered slalom chromatography is based on a principle completely different from all other chromatographic modes. It enables the efficient separation of large double-stranded DNA fragments of 5–50 kilo base pairs by discriminating their length. It has proved not only to be useful as a tool for nucleic acid research but also to have great significance in other fields, e.g. the hydrodynamics of polymer solutions, the search for new chromatographic modes, etc.  相似文献   

20.
Beyond their widespread application as genome-editing and regulatory tools, clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems also play a critical role in nucleic acid detection due to their high sensitivity and specificity. Recently developed Cas family effectors have opened the door to the development of new strategies for detecting different types of nucleic acids for a variety of purposes. Precise and efficient nucleic acid detection using CRISPR-Cas systems has the potential to advance both basic and applied biological research. In this review, we summarize the CRISPR-Cas systems used for the recognition and detection of specific nucleic acids for different purposes, including the detection of genomic DNA, nongenomic DNA, RNA, and pathogenic microbe genomes. Current challenges and further applications of CRISPR-based detection methods will be discussed according to the most recent developments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号