首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we analyze through a polyphasic approach several Bradyrhizobium strains isolated in Spain and Morocco from root nodules of Retama sphaerocarpa and Retama monosperma. All the strains have identical 16S rRNA genes and their closest relative species is Bradyrhizobium lablabi CCBAU 23086T, with 99.41% identity with respect to the strain Ro19T. Despite the closeness of the 16S rRNA genes, the housekeeping genes recA, atpD and glnII were divergent in Ro19T and B. lablabi CCBAU 23086T, with identity values of 95.71%, 93.75% and 93.11%, respectively. These differences were congruent with DNA–DNA hybridization analysis that revealed an average of 35% relatedness between the novel species and B. lablabi CCBAU 23086T. Also, differential phenotypic characteristics of the new species were found with respect to the already described species of Bradyrhizobium. Based on the genotypic and phenotypic data obtained in this study, we propose to classify the group of strains isolated from R. sphaerocarpa and R. monosperma as a novel species named Bradyrhizobium retamae sp. nov. (type strain Ro19T = LMG 27393T = CECT 8261T). The analysis of symbiotic genes revealed that some of these strains constitute a new symbiovar within genus Bradyrhizobium for which we propose the name “retamae”, that mainly contains nodulating strains isolated from Retama species in different continents.  相似文献   

2.
3.
Bacterial strains isolated from nitrogen-fixing nodules of Lupinus mariae-josephae have been characterized following genetic, phenotypic and symbiotic approaches. Analysis of 16S rRNA genes placed them in a group together with Bradyrhizobium elkanii USDA 76T, B. pachyrhizi PAC48T, B. jicamae PAC68T, ‘B. retamae’ Ro19T and B. lablabi CCBAU 23086T with over 99.0% identity. Phylogenetic analysis of concatenated housekeeping genes, recA, atpD and glnII, suggested that L. mariae-josephae strains represent a new Bradyrhizobium species, closely related to B. lablabi CCBAU 23086T, B. jicamae PAC68T and ‘B. retamae’ Ro19T with 92.1, 91.9 and 90.8% identity, respectively. These results are consistent with overall genomic identities calculated as Average Nucleotide Identity (ANIm) using draft genomic sequences obtained for relevant strains. While L. mariae-josephae strains LmjM3T/LmjM6 exhibited a 99.2% ANIm value, they were significantly distant (<93% ANIm) from type strains of their closest species (‘B. retamae’ Ro19T, B. lablabi CCBAU 23086T and B. jicamae PAC68T). Whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (WC-MALDI-TOF-MS) analysis of proteomic patterns of the same strains was consistent with these results. The symbiosis-related genes nodC, nodA and nifH genes from strains nodulating L. mariae-josephae were phylogenetically related to those from ‘B. retamae’ Ro19T, but divergent from those of strains that nodulate other lupine species. Based on genetic, genomic, proteomic and phenotypic data presented in this study, L. mariae-josephae nodulating strains LmjM3T, LmjM6 and LmjM2 should be grouped within a new species for which the name Bradyrhizobium valentinum sp. nov. is proposed (type strain LmjM3T = CECT 8364T, LMG 2761T)  相似文献   

4.
In a survey of rhizobia associated with the native legumes in Yunnan Province, China, seven and nine strains isolated from the root nodules of Psoralea corylifolia, Sesbania cannabina and Medicago lupulina were respectively classified into the novel genomic species groups I and II in the genus Ensifer (former Sinorhizobium) based on the sequence analyses of the 16S rRNA gene. Analyses of concatenated housekeeping genes (atpD, recA and glnII) further revealed that they were distinct lineages in the genus, and group I was most similar to Ensifer terangae and Ensifer garamanticus (both with 94.2% similarity), while group II was most similar to Ensifer adhaerens (94.0%). These groups could be distinguished from closely related species by DNA–DNA relatedness, MALID-TOF MS, cellular fatty acid profiles and a series of phenotypic characters. Therefore, two novel species were proposed: Ensifer psoraleae sp. nov. (seven strains, type strain CCBAU 65732T = LMG 26835T = HAMBI 3286T) and Ensifer sesbaniae sp. nov. (nine strains, type strain CCBAU 65729T = LMG 26833T = HAMBI 3287T). They had a DNA G + C mol% (Tm) of 58.9 and 60.4, respectively. Both of the type strains formed effective nodules on common bean (Phaseolus vulgaris) and their hosts of origin. In addition, the previously described species Sinorhizobium morelense and Sinorhizobium americanum were renamed as Ensifer morelense comb. nov. and Ensifer americanum comb. nov. according to the accumulated data from different studies.  相似文献   

5.
The genus Tissierella and its relatives Tepidimicrobium, Soehngenia and Sporanaerobacter comprise anaerobic Gram-positive bacilli classified along with Gram-positive cocci in a family with controversial placement designated as incertae sedis XI, in the phylum Firmicutes. We performed a top-down reappraisal of the taxonomy from the phylum to the species level within the genus Tissierella. Reconstruction of high-rank 16S rRNA gene-based phylogenies and their interpretation in a taxonomic purpose allowed defining Tissierellia classis nov. within the phylum Firmicutes while the frames of Tissierellales ord. nov. and Tissierellaceae fam. nov. have to be further strengthened. For species delineation in the genus Tissierella, we studied a population of clinical strains. Beside Tissierella praeacuta, a sub-population of five strains formed a clade in multilocus phylogenies (16S rRNA, cpn60, tpi, recA and spo0A genes). Data such as 16S rRNA gene similarity level, population structure, chromosome organization and murein type indicated that this clade corresponded to a novel species for which the name Tissierella carlieri sp. nov. is proposed, with type strain LBN 295T = AIP 268.01T = DSM 23816T = CCUG 60010T. Such an approach, associating a phylogenetic reappraisal of high-level taxonomic ranks with weak taxonomic structure and a population study for genus and species delineation is needed to strengthen the taxonomic frame of incertae sedis groups in the phylum Firmicutes.  相似文献   

6.
Four isolates of Gram-negative facultatively anaerobic bacteria, three of them producing NDM-1 carbapenemase, were isolated from hospitalized patients and outpatients attending two military hospitals in Rawalpindi, Pakistan, and studied for their taxonomic position. Initially the strains were phenotypically identified as Citrobacter species. Comparative analysis of 16S rRNA gene sequences then showed that the four strains shared >97%, but in no case >98.3%, 16S rRNA gene sequence similarities to members of the genera Citrobacter, Kluyvera, Pantoea, Enterobacter and Raoultella, but always formed a separate cluster in respective phylogenetic trees. Based on multilocus sequence analysis (MLSA) including partial recN, rpoA, thdF and rpoB gene sequence and respective amino acid sequence analysis it turned out that the strains also here always formed separate clusters. Based on further comparative analyses including DNA–DNA hybridizations, genomic fingerprint analysis using rep- and RAPD-PCRs and physiological tests, it is proposed to classify these four strains into the novel genus Pseudocitrobacter gen. nov. with a new species Pseudocitrobacter faecalis sp. nov. with strain 25 CITT (= CCM 8479T = LMG 27751T) and Pseudocitrobacter anthropi sp. nov. with strain C138T (= CCM 8478T = LMG 27750T), as the type strains, respectively.  相似文献   

7.
Gram-negative, facultatively anaerobic bacteria were isolated from symptomatic oak tissue in the UK and USA. Partial gyrB sequencing placed ten strains in the genus Brenneria, with B. goodwinii as the closest phylogenetic relative. The strains were investigated further using a polyphasic approach including MLSA (based on partial gyrB, rpoB, infB and atpD gene sequences), 16S rRNA gene sequencing, DNA–DNA relatedness studies and both phenotypic and chemotaxonomic assays. The MLSA and 16S rRNA gene analyses separated the strains into two groups based on origin, suggesting that they belong to Brenneria as two novel species. However, the DNA–DNA relatedness values revealed a closer relationship between the groups and indicated that they should belong to the same species. As the two groups of strains from the UK and USA can be differentiated from each other phenotypically and by ERIC PCR fingerprints, it is proposed to classify them as novel subspecies of a novel Brenneria species. The name Brenneria roseae sp. nov. (FRB 222T = LMG 27714T = NCPPB 4581T) is proposed, with Brenneria roseae subsp. roseae ssp. nov. (FRB 222T = LMG 27714T = NCPPB 4581T) for the strains from the UK and Brenneria roseae subsp. americana ssp. nov. (FRB 223T = LMG 27715T = NCPPB 4582T) for the strains from the USA.  相似文献   

8.
Four strains (M15∅_3, M17T, M49 and R37T) were isolated from Mediterranean seawater at Malvarrosa beach, Valencia, Spain. Together with an older preserved isolate (strain 2OM6) from cultured oysters at Vinaroz, Castellón, Spain, the strains were thoroughly characterized in a polyphasic study and were placed phylogenetically within the Roseobacter clade in the family Rhodobacteraceae. Highest 16S rRNA sequence similarities of the five strains to the types of any established species corresponded to Tropicibacter multivorans (95.8–96.4%), Phaeobacter inhibens (95.9–96.3%) and Phaeobacter gallaeciensis (95.9–96.2%). On the other hand, whole genome (ANI) and protein fingerprinting (MALDI-TOF) data proved: (i) non clonality among the strains, and (ii) the existence of two genospecies, one consisting of strains M15∅_3, M17T, M49 and 2OM6 and another one consisting of strain R37T. Phenotypic traits determined allow differentiating both genospecies from each other and from closely related taxa. In view of all data collected we propose to accommodate these isolates in two species as members of the genus Tropicibacter, Tropicibacter mediterraneus sp. nov. (type strain M17T = CECT 7615T = KCTC 23058T) and Tropicibacter litoreus sp. nov. (type strain R37T = CECT 7639T = KCTC 23353T).  相似文献   

9.
Three novel Gram-positive, aerobic, actinobacterial strains, CF5/2T, CF5/1 and CF7/1, were isolated in 2007 during environmental screening of arid desert soil in the Sahara desert, Chad. Results from riboprinting, MALDI-TOF protein spectra and 16S rRNA sequence analysis confirmed that all three strains belonged to the same species. Phylogenetic analysis of 16S rRNA sequences with the strains’ closest relatives indicated that they represented a distinct species. The three novel strains also shared a number of physiological and biochemical characteristics distinct from previously named Geodermatophilus species. The novel strains’ peptidoglycan contained meso-diaminopimelic acid; their main phospholipids were phosphatidylcholine, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol and a small amount of phosphatidylglycerol; MK-9(H4) was the dominant menaquinone. The major cellular fatty acids were the branched-chain saturated acids iso-C16:0 and iso-C15:0. Galactose was detected as diagnostic sugar. Based on these chemotaxonomic results, 16S rRNA gene sequence analysis and DNA–DNA hybridization between strain CF5/2T and the type strains of Geodermatophilus saharensis, Geodermatophilus arenarius, Geodermatophilus nigrescens, Geodermatophilus telluris and Geodermatophilus siccatus, the isolates CF5/2T, CF5/1 and CF7/1 are proposed to represent a novel species, Geodermatophilus tzadiensis, with type strain CF5/2T = DSM 45416 = MTCC 11411 and two reference strains, CF5/1 (DSM 45415) and CF7/1 (DSM 45420).  相似文献   

10.
11.
We investigated the taxonomic status of a phenetically unique group of 25 Acinetobacter strains which were isolated from multiple soil and water samples collected in natural ecosystems in the Czech Republic. Based on the comparative sequence analyses of the rpoB, gyrB, and 16S rRNA genes, the strains formed a coherent and well separated branch within the genus Acinetobacter. The genomic uniqueness of the group at the species level was supported by the low average nucleotide identity values (≤77.37%) between the whole genome sequences of strain ANC 3994T (NCBI accession no. APOH00000000) and the representatives of the known Acinetobacter species. Moreover, all 25 strains created a tight cluster clearly separated from all hitherto described species based on whole-cell protein profiling by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and shared a unique combination of metabolic and physiological properties. The capacity to assimilate l-histidine and the inability to grow at 35 °C differentiated them from their phenotypically closest neighbor, Acinetobacter johnsonii. We conclude that the 25 strains represent a novel Acinetobacter species, for which the name Acinetobacter bohemicus sp. nov. is proposed. The type strain of A. bohemicus is ANC 3994T (=CIP 110496T = CCUG 63842T = CCM 8462T).  相似文献   

12.
13.
Seventeen fructose-6-phosphate phosphoketolase-positive bacterial strains were isolated from the digestive tract of wild pigs (Sus scrofa). Most of them were identified as Bifidobacterium boum according to sequences of 16S rRNA gene. Two strains isolated from the small intestine content had unusual morphology of cells in comparison with bifidobacteria. Cells growing in liquid anaerobic media were regular shaped rods arranged mostly in pairs. These isolates showed relatively low 16S rRNA gene sequence similarities (maximum identity of 94%) to members of the family Bifidobacteriaceae. Nevertheless, phylogenetic analyses of 16S rRNA, hsp60 and xfp gene sequences revealed that these strains are more related to recently described Neoscardovia, Aeriscardovia and other scardovial genera, than to Bifidobacterium species. Partial gene sequences of other phylogenetic markers showed low (65.8–89.5%) similarities to genome sequences of bifidobacteria and Gardnerella vaginalis. The major fatty acids detected in cells of the representative strain DPTE4T were C16:0, C18:1, C14:0. The peptidoglycan type of the DPTE4T strain was A3β l-Orn(l-Lys)-l-Ser(l-Ala)-l-Ala2. Polar lipid analysis revealed two phosphoglycolipids and phospholipids, a glycolipid and diphosphatidylglycerol. The results of phylogenetic, genotypic and phenotypic analyses support the proposal of a novel taxa, Pseudoscardovia suis gen. nov., sp. nov. (type strain = DPTE4T = DSM 24744T = CCM 7942T).  相似文献   

14.
Three strains recovered from mussels (F26), sewage (SW28-13T) and pork meat (F41T) were characterized as Arcobacter. They did not appear to resemble any known species on the basis of their 16S rDNA-RFLP patterns and the rpoB gene analyses. However, strains F26 and SW28-13T appeared to be the same species. The 16S rRNA gene sequence similarity of strains SW28-13T and F41T to the type strains of all other Arcobacter species ranged from 94.1% to 99.6% and 93.4% to 98.8%, respectively. Phenotypic characteristics and the DNA–DNA hybridization (DDH) results showed that they belonged to 2 new Arcobacter species. A multilocus phylogenetic analysis (MLPA) with the concatenated sequences of 5 housekeeping genes (gyrA, atpA, rpoB, gyrB and hsp60) was used for the first time in the genus, showing concordance with the 16S rRNA gene phylogenetic analysis and DDH results. The MALDI-TOF mass spectra also discriminated these strains as two new species. The names proposed for them are Arcobacter cloacae with the type strain SW28-13T (=CECT 7834T = LMG 26153T) and Arcobacter suis with the type strain F41T (=CECT 7833T = LMG 26152T).  相似文献   

15.
16.
A facultatively anaerobe, moderately halophilic, Gram-negative, filamentous, non motile and unpigmented bacterium, designated M30T, was isolated from coastal Mediterranean Sea water in Valencia, Spain. Phylogenetic analysis based on 16S rRNA sequences placed this strain in the phylum “Bacteroidetes” with Marinifilum fragile JC2469T as its closest relative with 97% sequence similarity. Average nucleotide identity (ANI) values between both strains were far below the 95% threshold value for species delineation (about 89% using BLAST and about 90% using MUMmer). A comprehensive polyphasic study, including morphological, biochemical, physiological, chemotaxonomic and phylogenetic data, confirmed the independent species status of strain M30T within the genus Marinifilum, for which the name Marinifilum flexuosum sp. nov. is proposed. The type strain of Marinifilum flexuosum is M30T (=CECT 7448T = DSM 21950T).  相似文献   

17.
Two Gram-staining-negative, moderately halophilic bacteria, strains M1-18T and L1-16, were isolated from a saltern located in Huelva (Spain). They were motile, strictly aerobic rods, growing in the presence of 3–25% (w/v) NaCl (optimal growth at 7.5–10% [w/v] NaCl), between pH 4.0 and 9.0 (optimal at pH 6.0–7.0) and at temperatures between 15 and 40 °C (optimal at 37 °C). Phylogenetic analysis based on 16S rRNA gene sequence comparison showed that both strains showed the higher similarity values with Chromohalobacter israelensis ATCC 43985T (95.2–94.8%) and Chromohalobacter salexigens DSM 3043T (95.0–94.9%), and similarity values lower than 94.6% with other species of the genera Chromohalobacter, Kushneria, Cobetia or Halomonas. Multilocus sequence analysis (MLSA) based on the partial sequences of atpA, rpoD and secA housekeeping genes indicated that the new isolates formed an independent and monophyletic branch that was related to the peripheral genera of the family Halomonadaceae, Halotalea, Carnimonas and Zymobacter, supporting their placement as a new genus of the Halomonadaceae. The DNA–DNA hybridization between both strains was 82%, whereas the values between strain M1-18T and the most closely related species of Chromohalobacter and Kushneria were equal or lower to 48%. The major cellular fatty acids were C18:1ω7c/C18:1ω6c, C16:0, and C16:1ω7c/C16:1ω6c, a profile that differentiate this new taxon from species of the related genera. We propose the placement of both strains as a novel genus and species, within the family Halomonadaceae, with the name Larsenia salina gen. nov., sp. nov. The type strain is M1-18T (= CCM 8464 = CECT 8192T = IBRC-M 10767T = LMG 27461T).  相似文献   

18.
A taxonomic study was carried out on strains 22II1-22F38T and 22II-S13e, which were isolated from sea water and sediment from the Atlantic Ocean, respectively. The two strains were Gram-negative, oxidase and catalase positive, oval to pear shaped, and motile by a single polar flagellum. Phylogenetic analysis based on 16S rRNA gene sequences indicated that both strains belonged to the genus Hyphomonas, with highest sequence similarity (98.2%) to the type strains H. jannaschiana DSM 5153T and H. johnsonii ATCC 43964T. The genomic ANIm values and DNA-DNA hybridization estimate values between strain 22II1-22F38T and seven type strains ranged from 82.84% to 84.10% and from 18.0% to 19.1%, respectively. Isolate 22II1-22F38T had a G + C content of 58.3% and used Q-11 as the predominant respiratory quinone. The combined phenotypic and genotypic data showed that both strains represented a novel species of the genus Hyphomonas, for which the name Hyphomonas atlanticus sp. nov. is proposed, with the type strain being 22II1-22F38T (=LMG 27916T = MCCC 1A09418T). In addition, we conclude that Hyphomonas hirschiana is a later synonym of Hyphomonas neptunium.  相似文献   

19.
Comparison of HaeIII- and HpaII-restriction profiles of PCR-amplified 16S-23S rDNA ITS regions of Gluconacetobacter sp. LMG 1529T and SKU 1109 with restriction profiles of reference strains of acetic acid bacteria described by Tr?ek and Teuber [34] revealed the same but unique restriction profiles for LMG 1529T and SKU 1109. Further analyses of nearly complete 16S rRNA gene sequences, nearly complete 16S-23S rDNA ITS sequences, as well as concatenated partial sequences of the housekeeping genes dnaK, groEL and rpoB, allocated both strains to a single phylogenetic cluster well separated from the other species of the genus Gluconacetobacter. DNA–DNA hybridizations confirmed their novel species identity by 73% DNA–DNA relatedness between both strains, and values below the species level (<70%) between SKU 1109 and the type strains of the closest phylogenetic neighbors. The classification of strains LMG 1529T and SKU 1109 into a single novel species was confirmed also by AFLP and (GTG)5-PCR DNA fingerprinting data, as well as by phenotypic data. Strains LMG 1529T and SKU 1109 can be differentiated from their closely related Gluconacetobacter species, Gluconacetobacter entanii and Gluconacetobacter hansenii, by their ability to form 2-keto-d-gluconic acid from d-glucose, their ability to use d-mannitol, d-gluconate and glycerol as carbon source and form acid from d-fructose, and their ability to grow without acetic acid. The major fatty acid of LMG 1529T and SKU 1109 is C18:1ω7c (60.2–64.8%). The DNA G + C content of LMG 1529T and SKU 1109 is 62.5 and 63.3 mol% respectively. The name Gluconacetobacter maltaceti sp. nov. is proposed. The type strain is LMG 1529T (= NBRC 14815T = NCIMB 8752T).  相似文献   

20.
Two isolates, with an optimum growth temperature of about 45–50 °C and an optimum pH for growth between 7.5 and 8.5, were recovered from a hot spring in the Furnas area on the Island of São Miguel in the Azores. Strains form irregular rod-shaped cells are motile and stain Gram negative. The cells multiply by budding. These strains are non-pigmented, strictly aerobic, catalase and oxidase positive. These organisms assimilated carbohydrates, organic acids and amino acids. The major fatty acids are 19:0cyclo ω8c and 18:0. Ubiquinone 10 is the major respiratory quinone. The major polar lipids are diphosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine in addition to one unidentified aminolipid and one unidentified glycolipid. Bacteriochlorophyll a, puf genes and RuBisCo genes were not detected. Analysis of the 16S rRNA gene shows the strains to cluster with species of the genera Afifella, Rhodobium, Anderseniella and Amorphus to which they have sequence similarity in the range 93–94%. Based on 16S rRNA gene sequence analysis, physiological and biochemical characteristics we describe a new species of a novel genus represented by strain CB-27AT (=DSM 19345T=LMG 24113T) for which we propose the name Tepidamorphus gemmatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号