首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
《The Journal of cell biology》1993,123(5):1207-1222
The time course of molecular events that accompany degeneration and death after nerve growth factor (NGF) deprivation and neuroprotection by NGF and other agents was examined in cultures of NGF-dependent neonatal rat sympathetic neurons and compared to death by apoptosis. Within 12 h after onset of NGF deprivation, glucose uptake, protein synthesis, and RNA synthesis fell precipitously followed by a moderate decrease of mitochondrial function. The molecular mechanisms underlying the NGF deprivation-induced decrease of protein synthesis and neuronal death were compared and found to be different, demonstrating that this decrease of protein synthesis is insufficient to cause death subsequently. After these early changes and during the onset of neuronal atrophy, inhibition of protein synthesis ceased to halt neuronal degeneration while readdition of NGF or a cAMP analogue remained neuroprotective for 6 h. This suggests a model in which a putative killer protein reaches lethal levels several hours before the neurons cease to respond to readdition of NGF with survival and become committed to die. Preceding loss of viability by 5 h and concurrent with commitment to die, the neuronal DNA fragmented into oligonucleosomes. The temporal and pharmacological characteristics of DNA fragmentation is consistent with DNA fragmentation being part of the mechanism that commits the neuron to die. The antimitotic and neurotoxin cytosine arabinoside induced DNA fragmentation in the presence of NGF, supporting previous evidence that it mimicked NGF deprivation-induced death closely. Thus trophic factor deprivation- induced death occurs by apoptosis and is an example of programmed cell death.  相似文献   

2.
3.
4.
5.
6.
It is generally believed that the mechanism of action of neurotrophic factors involves uptake of neurotrophic factor by nerve terminals and retrograde transport through the axon and back to the cell body where the factor exerts its neurotrophic effect. This view originated with the observation almost 20 years ago that nerve growth factor (NGF) is retrogradely transported by sympathetic axons, arriving intact at the neuronal cell bodies in sympathetic ganglia. However, experiments using compartmented cultures of rat sympathetic neurons have shown that neurite growth is a local response of neurites to NGF locally applied to them which does not directly involve mechanisms in the cell body. Recently, several NGF-related neurotrophins have been identified, and several unrelated molecules have been shown to act as neurotrophic or differentiation factors for a variety of types of neurons in the peripheral and central nervous systems. It has become clear that knowledge of the mechanisms of action of these factors will be crucial to understanding neurodegenerative diseases and the development of treatments as well as the means to repair or minimize neuronal damage after spinal injury. The concepts derived from work with NGF suggest that the site of exposure of a neuron to a neurotrophic factor is important in determining its response. 1994 John Wiley & Sons, Inc.  相似文献   

7.
M Sieber-Blum 《Neuron》1991,6(6):949-955
Since trophic factors are increasingly recognized as playing a role in some decision-making steps during development, the influence of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) on the commitment of pluripotent neural crest cells was investigated by in vitro clonal analysis. BDNF caused an increase of up to 21-fold in the number of sensory neuron precursors per colony without a corresponding increase in the total number of cells. By contrast, BDNF treatment caused an equivalent decrease in the number of undifferentiated cells per colony. The data suggest that BDNF, but not NGF, directs pluripotent neural crest cells to differentiate along the primary sensory neuron lineage.  相似文献   

8.
Nerve growth factor and neuronal cell death   总被引:4,自引:0,他引:4  
The regulation of neuronal cell death by the neuronotrophic factor, nerve growth factor (NGF), has been described during neural development and following injury to the nervous system. Also, reduced NGF activity has been reported for the aged NGF-responsive neurons of the sympathetic nervous system and cholinergic regions of the central nervous system (CNS) in aged rodents and man. Although there is some knowledge of the molecular structure of the NGF and its receptor, less is known as to the mechanism of action of NGF. Here, a possible role for NGF in the regulation of oxidant--antioxidant balance is discussed as part of a molecular explanation for the known effects of NGF on neuronal survival during development, after injury, and in the aged CNS.  相似文献   

9.
10.
Young sympathetic neurons die when deprived of nerve growth factor (NGF). Under such circumstances, cell death is appropriate to the developing nervous system and requires RNA and protein synthesis. We have hypothesized the existence of an endogenous death program within neurons that is suppressed by trophic factors. The extent and timing of required changes in the synthetic events that comprise the death program are unknown. In an effort to characterize the biochemical events that mediate the death program further, we performed several experiments on embryonic rat sympathetic neurons in vitro. The death program was blocked with cycloheximide when total protein synthesis was inhibited > or = 80%. When protein synthesis was inhibited within 22 +/- 4 h of NGF deprivation, death was prevented in half the neurons. Hence, we define the commitment point for protein synthesis to be 22 +/- 4 h. Analogously, the commitment point for RNA synthesis was 26 +/- 4 h and that for NGF rescue, 24 +/- 4 h. We tested the ability of a wide variety of chemicals to interfere with the death program. Most compounds tested were unable to prevent neuronal death. Some treatments, however, did save NGF-deprived neurons and were subsequently characterized. These included ultraviolet light and agents that raise intracellular concentrations of cAMP. Finally, we looked for the neuronal expression in vitro and in vivo of genes that have been associated with programmed death in other cell types, including TRPM-2/SGP-2, polyubiquitin, TGF beta-1, c-fos, and c-myc. None of these genes showed significant activation associated with neuronal death.  相似文献   

11.
Physiological and pathological aging of the central nervous system (CNS) is characterized by functional neuronal impairments which may lead to perturbed cell homeostasis and eventually to neuronal death. Many toxic events may underlie age-related neurodegeneration. These include the effects of beta amyloid, Tau and mutated presenilin proteins, free radicals and oxidative stress, pro-inflammatory cytokines and lack of growth factor support, which can be individually or collectively involved. Taken individually, these toxicants can induce very diverse cell responses, thus requiring individually targeted corrective interventions upstream of common cell death (apoptotic) pathways. Recent preliminary evidence suggests that the pro-inflammatory cytokine tumour necrosis factor alpha (TNFalpha) and growth factor withdrawal can both activate a common apoptotic pathway in nerve growth factor (NGF)-responsive PC12 cells involving caspase 3, albeit through very distinct upstream pathways: the former through active signalling and the latter through passive or lack of survival signalling. Here, we show that NGF can rescue PC12 cells from both growth factor withdrawal- and TNFalpha-promoted cell death. However, NGF rescue from growth factor withdrawal requires NGF signalling through the high-affinity tyrosine kinase receptor (TrkA), while NGF rescue from TNFalpha-promoted cell death requires NGF signalling through the low-affinity p75NTR receptor. These results strengthen the idea that prevention of age- or pathology-associated neurodegeneration may require varied molecular approaches reflecting the diversity of the toxicants involved, possibly acting simultaneously.  相似文献   

12.
13.
To study the effect of nerve growth factor (NGF) on neuronal survival, growth, and differentiation, cultures of dissociated neonatal rat sympathetic neurons virtually free of other cell types were maintained for 3-4 wk. In the absence of NGF, the neurons did not survive for more than a day. Increased levels of NGF increased neuronal survival and growth (total protein and total lipid phosphate); saturation occurred at 0.5 microgram/ml 7S NGF. Neuronal differentiation examined by measuring catecholamine (CA) production from tyrosine also depended on the level of NGF in the culture medium. As the NGF concentration was raised, CA production per neuron, per nanogram protein, or per picomole lipid phosphate increased until saturation was achieved between 1 and 5 microgram/ml 7S NGF. Thus, NGF induces neuronal survival, growth, and differentiation of CA production in a dose-dependent fashion. Neuronal growth and differentiation were quantitatively compared in the presence of the high and low molecular weight forms of NGF; no significant functional differences were found.  相似文献   

14.
Differential screening of cDNA libraries was used to detect and prepare probes for mRNAs that are regulated in PC12 rat pheochromocytoma cells by long-term (2-week) treatment with nerve growth factor (NGF). In response to NGF, PC12 cells change from a chromaffin cell-like to a sympathetic-neuron-like phenotype. Thus, one aim of this study was to identify NGF-regulated mRNAs that may be associated with the attainment of neuronal properties. Eight NGF-regulated mRNAs are described. Five of these increase 3- to 10-fold and three decrease 2- to 10-fold after long-term NGF exposure. Each mRNA was characterized with respect to the time course of the NGF response, regulation by agents other than NGF, and rat tissue distribution. Partial sequences of the cDNAs were used to search for homologies to known sequences. Homology analysis revealed that one mRNA (increased 10-fold) encodes the peptide thymosin beta 4 and a second mRNA (decreased 2-fold) encodes tyrosine hydroxylase. Another of the increased mRNAs was very abundant in sympathetic ganglia, barely detectable in brain and adrenals, and undetectable in all other tissues surveyed. One of the decreased mRNAs, by contrast, was very abundant in the adrenals and nearly absent in the sympathetic ganglia. With the exception of fibroblast growth factor, which is the only other agent known to mimic the differentiating effects of NGF on PC12 cells, none of the treatments tested (epidermal growth factor, insulin, dibutyryl cyclic AMP, dexamethasone, phorbol ester, and depolarization) reproduced the regulation observed with NGF. These and additional findings suggest that the NGF-regulated mRNAs may play roles in the establishment of the neuronal phenotype and that the probes described here will be useful to study the mechanism of action of NGF and the development and differentiation of neurons.  相似文献   

15.
Manipulation of neurotrophin (NT) signalling by administration or depletion of NTs, by transgenic overexpression or by deletion of genes coding for NTs and their receptors has demonstrated the importance of NT signalling for the survival and differentiation of neurons in sympathetic and dorsal root ganglia (DRG). Combination with mutation of the proapoptotic Bax gene allows the separation of survival and differentiation effects. These studies together with cell culture analysis suggest that NT signalling directly regulates the differentiation of neuron subpopulations and their integration into neural networks. The high-affinity NT receptors trkA, trkB and trkC are restricted to subpopulations of mature neurons, whereas their expression at early developmental stages largely overlaps. trkC is expressed throughout sympathetic ganglia and DRG early after ganglion formation but becomes restricted to small neuron subpopulations during embryogenesis when trkA is turned on. The temporal relationship between trkA and trkC expression is conserved between sympathetic ganglia and DRG. In DRG, NGF signalling is required not only for survival, but also for the differentiation of nociceptors. Expression of neuropeptides calcitonin gene-related peptide and substance P, which specify peptidergic nociceptors, depends on nerve growth factor (NGF) signalling. ret expression indicative of non-peptidergic nociceptors is also promoted by the NGF-signalling pathway. Regulation of TRP channels by NGF signalling might specify the temperature sensitivity of afferent neurons embryonically. The manipulation of NGF levels “tunes” heat sensitivity in nociceptors at postnatal and adult stages. Brain-derived neurotrophic factor signalling is required for subpopulations of DRG neurons that are not fully characterized; it affects mechanical sensitivity in slowly adapting, low-threshold mechanoreceptors and might involve the regulation of DEG/ENaC ion channels. NT3 signalling is required for the generation and survival of various DRG neuron classes, in particular proprioceptors. Its importance for peripheral projections and central connectivity of proprioceptors demonstrates the significance of NT signalling for integrating responsive neurons in neural networks. The molecular targets of NT3 signalling in proprioceptor differentiation remain to be characterized. In sympathetic ganglia, NGF signalling regulates dendritic development and axonal projections. Its role in the specification of other neuronal properties is less well analysed. In vitro analysis suggests the involvement of NT signalling in the choice between the noradrenergic and cholinergic transmitter phenotype, in the expression of various classes of ion channels and for target connectivity. In vivo analysis is required to show the degree to which NT signalling regulates these sympathetic neuron properties in developing embryos and postnatally. U.E. is supported by the DFG (Er145-4) and the Gemeinnützige Hertie-Stiftung.  相似文献   

16.
17.
18.
目的和方法:采用全细胞膜片钳技术观察神经生长因子(NGF)分化后的PC12细胞对乙酰胆碱(ACh)的敏感性,并对ACh诱发电流(IACh)的特性进行分析。结果:NGF处理后的PC12乐仅形态上向交感神经元分化,而且具有电学兴奋性,它对ACh敏感性比未分化前显著提高。药理学鉴定表明PC12上的IACh是由烟碱受体(nAChR)引起的,具有明显的失敏特性。宏观IACh呈内向整流和浓度依赖性。结论:PC12细胞培养方便,同源性好,加入NGF后向交感神经元分化,且其具有神经元烟碱受体,可以作为交感神经元烟碱受体研究的很好的模型系统。  相似文献   

19.
Nerve growth factor: Cellular localization and regulation of synthesis   总被引:1,自引:0,他引:1  
1. The role of nerve growth factor (NGF) as a retrograde messenger between peripheral target tissues and innervating sympathetic and neural crest-derived sensory neurons is supported by the observations that (a) the interruption of retrograde axonal transport has the same effects as the neutralization of endogenous NGF by anti-NGF antibodies and (b) the close correlation between the density of innervation by fibers of NGF-responsive neurons and the levels of NGF and mRNANGF in their target organs. 2. In situ hybridization experiments have demonstrated that a great variety of cells in the projection field or NGF-responsive neurons is synthesizing NGF, among them epithelial cells, smooth muscle cells, fibroblasts, and Schwann cells. 3. The temporal correlation between the growth of trigeminal sensory fibers into the whisker pad of the mouse and the commencement of NGF synthesis initially suggested a causal relationship between these two events. However, in chick embryos rendered aneural by prior removal of the neural tube or the neural crest, it was shown that the onset of NGF synthesis in the periphery is independent of neurons, and is controlled by an endogenous "clock" whose regulatory mechanism remains to be established. 4. A comparison between NGF synthesis in the nonneuronal cells of the newborn rat sciatic nerve and that in the adult sciatic nerve after lesion provided evidence for the important regulatory role played by a secretory product of activated macrophages. The identity of this product is currently under investigation.  相似文献   

20.
神经生长因子是神经营养因子家族成员之一,对不同时期神经元的存活、分化、生长及损伤后的修复和再生都有着十分重要的作用。不仅在神经系统中,随着人类的其他正常和肿瘤组织中同样也检测得到了NGF,神经生长因子在各方面的应用也得到了重视并均已得到了证实。NGF功能的发挥离不开与其受体的结合,根据NGF表面糖蛋白与凝集素结合能力的不同,其受体可被分为高亲和力受体酪氨酸激酶A和低亲和力受体p75。Trk A与NGF结合后所介导的信号通路主要有:1MAPK通路;2PLC-γ通路;3PI3K/PKB通路。而p75与NGF结合介导的信号传导通路主要包括:1NF-κB通路;2JNK-p53-Bax凋亡通路;3神经酰胺通路。Trk A一般介导的是正性信号,如促进神经细胞生长、维持神经细胞的存活等;而p75既可促进神经细胞存活,也可诱导神经细胞凋亡,但以后者为主。当Trk A与p75同时表达时,Trk A可抑制p75诱导细胞凋亡,使受损神经细胞大量增殖,所以其生物学总效应是促进神经细胞的生长和存活。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号