首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The multifunctional protein (MFP) of peroxisomal beta-oxidation catalyses four separate reactions, two of which (2-trans enoyl-CoA hydratase and L-3-hydroxyacyl-CoA dehydrogenase) are core activities required for the catabolism of all fatty acids. We have isolated and characterized five Arabidopsis thaliana mutants in the MFP2 gene that is expressed predominantly in germinating seeds. Seedlings of mfp2 require an exogenous supply of sucrose for seedling establishment to occur. Analysis of mfp2-1 seedlings revealed that seed storage lipid was catabolized more slowly, long-chain acyl-CoA substrates accumulated and there was an increase in peroxisome size. Despite a reduction in the rate of beta-oxidation, mfp2 seedlings are not resistant to the herbicide 2,4-dichlorophenoxybutyric acid, which is catabolized to the auxin 2,4-dichlorophenoxyacetic acid by beta-oxidation. Acyl-CoA feeding experiments show that the MFP2 2-trans enoyl-CoA hydratase only exhibits activity against long chain (C18:0) substrates, whereas the MFP2 L-3-hydroxyacyl-CoA dehydrogenase is active on C6:0, C12:0 and C18:0 substrates. A mutation in the abnormal inflorescence meristem gene AIM1, the only homologue of MFP2, results in an abnormal inflorescence meristem phenotype in mature plants (Richmond and Bleecker, Plant Cell 11, 1999, 1911) demonstrating that the role of these genes is very different. The mfp2-1 aim1double mutant aborted during the early stages of embryo development showing that these two proteins share a common function that is essential for this key stage in the life cycle.  相似文献   

2.
Our recently developed off-lattice bead model capable of simulating protein structures with mixed alpha/beta content has been extended to model the folding of a ubiquitin-like protein and provides a means for examining the more complex kinetics involved in the folding of larger proteins. Using trajectories generated from constant-temperature Langevin dynamics simulations and sampling with the multiple multi-histogram method over five-order parameters, we are able to characterize the free energy landscape for folding and find evidence for folding through compact intermediates. Our model reproduces the observation that the C-terminus loop structure in ubiquitin is the last to fold in the folding process and most likely plays a spectator role in the folding kinetics. The possibility of a productive metastable intermediate along the folding pathway consisting of collapsed states with no secondary structure, and of intermediates or transition structures involving secondary structural elements occurring early in the sequence, is also supported by our model. The kinetics of folding remain multi-exponential below the folding temperature, with glass-like kinetics appearing at T/T(f) approximately 0.86. This new physicochemical model, designed to be predictive, helps validate the value of modeling protein folding at this level of detail for genomic-scale studies, and motivates further studies of other protein topologies and the impact of more complex energy functions, such as the addition of solvation forces.  相似文献   

3.
Arabidopsis thaliana gene At5g06450 encodes a putative DnaQ‐like 3′‐5′ exonuclease domain‐containing protein (AtDECP). The DnaQ‐like 3′‐5′ exonuclease domain is often found as a proofreading domain of DNA polymerases. The overall structure of AtDECP adopts an RNase H fold that consists of a mixed β‐sheet flanked by α‐helices. Interestingly, AtDECP forms a homohexameric assembly with a central six fold symmetry, generating a central cavity. The ring‐shaped structure and comparison with WRN‐exo, the best structural homologue of AtDECP, suggest a possible mechanism for implementing its exonuclease activity using positively charged patch on the N‐terminal side of the homohexameric assembly. The homohexameric structure of AtDECP provides unique information about the interaction between the DnaQ‐like 3′‐5′ exonuclease and its substrate nucleic acids.Proteins 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
The structure of Mth677, a hypothetical protein from Methanobacterium thermoautotrophicum (Mth), has been determined by using heteronuclear nuclear magnetic resonance (NMR) methods on a double-labeled (15)N-(13)C sample. Mth677 adopts a novel alpha+beta fold, consisting of two alpha-helices (one N terminal and one C terminal) packed on the same side of a central beta-hairpin. This structure is likely shared by its three orthologs, detected in three other Archaebacteria. There are no clear features in the sequences of these proteins or in the genome organization of Mth to make a reliable functional assignment to this protein. However, the structural similarity to Escherichia coli MinE, the protein which controls that division occurs at the midcell site, lends support to the proposal that Mth677 might be, in Mth, the counterpart of the topological specificity domain of MinE in E. coli.  相似文献   

5.
Li H  Fung KL  Jin DY  Chung SS  Ching YP  Ng IO  Sze KH  Ko BC  Sun H 《Proteins》2007,67(4):1154-1166
The deleted in liver cancer 2 (DLC2) is a tumor suppressor gene, frequently found to be underexpressed in hepatocellular carcinoma. DLC2 is a multidomain protein containing a sterile alpha-motif (SAM) domain, a GTPase-activating protein (GAP) domain, and a lipid-binding StAR-related lipid-transfer (START) domain. The SAM domain of DLC2, DLC2-SAM, exhibits a low level of sequence homology (15-30%) with other SAM domains, and appears to be the prototype of a new subfamily of SAM domains found in DLC2-related proteins. In the present study, we have determined the three-dimensional solution structure of DLC2-SAM using NMR methods together with molecular dynamics simulated annealing. In addition, we performed a backbone dynamics study. The DLC2-SAM packed as a unique four alpha-helical bundle stabilized by interhelix hydrophobic interactions. The arrangement of the four helices is distinct from all other known SAM domains. In contrast to some members of the SAM domain family which form either dimers or oligomers, both biochemical analyses and rotational correlation time (tau(c)) measured by backbone 15N relaxation experiments indicated that DLC2-SAM exists as a monomer in solution. The interaction of DLC2-SAM domain with sodium dodecyl sulfate (SDS) micelles and 1,2-dimyristoyl-sn-glycerol-3-phosphatidylglycerol (DMPG) phospholipids was examined by CD and NMR spectroscopic techniques. The DLC2-SAM exhibits membrane binding properties accompanied by minor loss of the secondary structure of the protein. Deletion studies showed that the self-association of DLC2 in vivo does not require SAM domain, instead, a protein domain consisting of residues 120-672 mediates the self-association of DLC2.  相似文献   

6.
Wang Z  Plaxco KW  Makarov DE 《Biopolymers》2007,86(4):321-328
Although recent spectroscopic studies of chemically denatured proteins hint at significant nonrandom residual structure, the results of extensive small angle X-ray scattering studies suggest random coil behavior, calling for a coherent understanding of these seemingly contradicting observations. Here, we report the results of a Monte Carlo study of the effects of two types of local structures, alpha helix and Polyproline II (PPII) helix, on the dimensions of random coil polyalanine chains viewed as a model of highly denatured proteins. We find that although Flory's power law scaling, long regarded as a signature of random coil behavior, holds for chains containing up to 90% alpha or PPII helix, the absolute magnitude of the chain dimensions is sensitive to helix content. As residual alpha helix content increases, the chain contracts until it reaches a minimum radius at approximately 70% helix, after which the chain dimensions expand rapidly. With an alpha helix content of approximately 20%, corresponding to the Ramachandran probability of being in the helical basin, experimentally observed radii of gyration are recovered. Experimental radii are similarly recovered at an alpha helix content of approximately 87%, providing an explanation for the previously puzzling experimental finding that the dimensions of the highly helical methanol-induced unfolded state are experimentally indistinguishable from those of the helix-poor urea-unfolded state. In contrast, the radius of gyration increases monotonically with increasing PPII content, and is always more expanded than the dimensions observed experimentally. These results suggest that PPII is unlikely the sole, dominant preferred conformation for unfolded proteins.  相似文献   

7.
Cieplak M  Hoang TX  Robbins MO 《Proteins》2002,49(1):104-113
Mechanical stretching of secondary structures is studied through molecular dynamics simulations of a Go-like model. Force versus displacement curves are studied as a function of the stiffness and velocity of the pulling device. The succession of stretching events, as measured by the order in which contacts are ruptured, is compared to the sequencing of events during thermal folding and unfolding. Opposite cross-correlations are found for an alpha-helix and a beta-hairpin structure. In a tandem of two alpha-helices, the two constituent helices unravel nearly simultaneously. A simple condition for simultaneous versus sequential unraveling of repeat units is presented.  相似文献   

8.
Liu YJ  Cheng CS  Lai SM  Hsu MP  Chen CS  Lyu PC 《Proteins》2006,63(4):777-786
Vigna radiata plant defensin 1 (VrD1) is the first reported plant defensin exhibiting insecticidal activity. We report herein the nuclear magnetic resonance solution structure of VrD1 and the implication on its insecticidal activity. The root-mean-square deviation values are 0.51 +/- 0.35 and 1.23 +/- 0.29 A for backbone and all heavy atoms, respectively. The VrD1 structure comprises a triple-stranded antiparallel beta-sheet, an alpha-helix, and a 3(10) helix stabilized by four disulfide bonds, forming a typical cysteine-stabilized alphabeta motif. Among plant defensins of known structure, VrD1 is the first to contain a 3(10) helix. Glu26 is highly conserved among defensins; VrD1 contains an arginine at this position, which may induce a shift in the orientation of Trp10, thereby promoting the formation of this 3(10) helix. Moreover, VrD1 inhibits Tenebrio molitor alpha-amylase. Alpha-amylase has an essential role in the digestion of plant starch in the insect gut, and expression of the common bean alpha-amylase inhibitor 1 in transgenic pea imparts complete resistance against bruchids. These results imply that VrD1 insecticidal activity has its basis in the inhibition of a polysaccharide hydrolase. Sequence and structural comparisons between two groups of plant defensins having different specificity toward insect alpha-amylase reveal that the loop between beta2 and beta3 is the probable binding site for the alpha-amylase. Computational docking experiments were used to study VrD1-alpha-amylase interactions, and these results provide information that may be used to improve the insecticidal activity of VrD1.  相似文献   

9.
Proteins in the intracellular lipid-binding protein (iLBP) family show remarkably high structural conservation despite their low-sequence identity. A multiple-sequence alignment using 52 sequences of iLBP family members revealed 15 fully conserved positions, with a disproportionately high number of these (n=7) located in the relatively small helical region. The conserved positions displayed high structural conservation based on comparisons of known iLBP crystal structures. It is striking that the beta-sheet domain had few conserved positions, despite its high structural conservation. This observation prompted us to analyze pair-wise interactions within the beta-sheet region to ask whether structural information was encoded in interacting amino acid pairs. We conducted this analysis on the iLBP family member, cellular retinoic acid-binding protein I (CRABP I), whose folding mechanism is under study in our laboratory. Indeed, an analysis based on a simple classification of hydrophobic and polar amino acids revealed a network of conserved interactions in CRABP I that cluster spatially, suggesting a possible nucleation site for folding. Significantly, a small number of residues participated in multiple conserved interactions, suggesting a key role for these sites in the structure and folding of CRABP I. The results presented here correlate well with available experimental evidence on folding of CRABPs and their family members and suggest future experiments. The analysis also shows the usefulness of considering pair-wise conservation based on a simple classification of amino acids, in analyzing sequences and structures to find common core regions among homologues.  相似文献   

10.
The protein kinase CK2 (former name: "casein kinase 2") predominantly occurs as a heterotetrameric holoenzyme composed of two catalytic chains (CK2alpha) and two noncatalytic subunits (CK2beta). The CK2beta subunits form a stable dimer to which the CK2alpha monomers are attached independently. In contrast to the cyclins in the case of the cyclin-dependent kinases CK2beta is no on-switch of CK2alpha; rather the formation of the CK2 holoenzyme is accompanied with an overall change of the enzyme's profile including a modulation of the substrate specificity, an increase of the thermostability, and an allocation of docking sites for membranes and other proteins. In this study we used C-terminal deletion variants of human CK2alpha and CK2beta that were enzymologically fully competent and in particular able to form a heterotetrameric holoenzyme. With differential scanning calorimetry (DSC) we confirmed the strong thermostabilization effect of CK2alpha on CK2beta with an upshift of the CK2alpha melting temperature of more than 9 degrees . Using isothermal titration calorimetry (ITC) we measured a dissociation constant of 12.6 nM. This high affinity between CK2alpha and CK2beta is mainly caused by enthalpic rather than entropic contributions. Finally, we determined a crystal structure of the CK2beta construct to 2.8 A resolution and revealed by structural comparisons with the CK2 holoenzyme structure that the CK2beta conformation is largely conserved upon association with CK2alpha, whereas the latter undergoes significant structural adaptations of its backbone.  相似文献   

11.
Folding type-specific secondary structure propensities of 20 naturally occurring amino acids have been derived from α-helical, β-sheet, α/β, and α+β proteins of known structures. These data show that each residue type of amino acids has intrinsic propensities in different regions of secondary structures for different folding types of proteins. Each of the folding types shows markedly different rank ordering, indicating folding type-specific effects on the secondary structure propensities of amino acids. Rigorous statistical tests have been made to validate the folding type-specific effects. It should be noted that α and β proteins have relatively small α-helices and β-strands forming propensities respectively compared with those of α+β and α/β proteins. This may suggest that, with more complex architectures than α and β proteins, α+β and α/β proteins require larger propensities to distinguish from interacting α-helices and β-strands. Our finding of folding type-specific secondary structure propensities suggests that sequence space accessible to each folding type may have differing features. Differing sequence space features might be constrained by topological requirement for each of the folding types. Almost all strong β-sheet forming residues are hydrophobic in character regardless of folding types, thus suggesting the hydrophobicities of side chains as a key determinant of β-sheet structures. In contrast, conformational entropy of side chains is a major determinant of the helical propensities of amino acids, although other interactions such as hydrophobicities and charged interactions cannot be neglected. These results will be helpful to protein design, class-based secondary structure prediction, and protein folding. © 1998 John Wiley & Sons, Inc. Biopoly 45: 35–49, 1998  相似文献   

12.
The human interleukin-3 receptor (hIL-3R) consists of a unique alpha subunit (hIL-3Ralpha) and a common beta subunit (betac). Binding of IL-3 to IL-3R activates Janus kinases JAK1 and JAK2. Our previously study showed that JAK2 and JAK1 were constitutively associated with the hIL-3Ralpha and betac subunits, respectively. In this study, we further demonstrate that JAK2 binds to the intracellular domain of hIL-3Ralpha and JAK1 binds to the Box 1 and Box 2 motifs of betac using GST-hIL-3R fusion proteins in pull-down assays. JAK1 mutational analysis revealed that its JH7-3 domains bound directly to the Box 1 and Box 2 motifs of betac. We further examined the role of JAK1 JH7-3 domains in JAK1 and JAK2-mediated signaling using the CDJAKs fusion proteins, which consisted of a CD16 extracellular domain, a CD7 transmembrane domain, and either JAK1 (CDJAK1), JAK2 (CDJAK2), or JAK1-JH7-3 domains (CDJAK1-JH7-3) as intracellular domains. Anti-CD16 antibody crosslinking of wild type fusion proteins CDJAK1 with CDJAK2 could mimic IL-3 signaling, however, the crosslinking of fusion proteins CDJAK1-JH7-3 with CDJAK2 failed to activate downstream proteins. These results suggest that the JAK1-JH7-3 domains are required for betac interaction and abolish wild type JAK1 and JAK2-mediated signaling.  相似文献   

13.
Oku H  Yamada K  Katakai R 《Biopolymers》2008,89(4):270-283
The depsipeptides Boc-Leu-Lac-OEt (1) and Boc-(Leu-Leu-Lac)(n)-OEt (n = 1, 2) (2 and 3, respectively) (Boc = tert-butyloxycarbonyl, Lac = L-lactic acid residue) has been synthesized and studied by crystallographic, CD spectroscopic, and ESI-MS analyses. In the packing cells, those three compounds adopt beta-strand conformations. Each molecule is linked into a dimer (1) or an infinite assembly (2 and 3) by tight hydrogen bonds of the type NH...O==C. Interestingly, the hexamer, 3 shows the first example of antiparallel pleated beta-sheet crystal structure for a depsipeptide molecule. In the packing cells, especially for 3, the ester groups O--C==O are perpendicularly oriented to the amide groups NH--C==O and beta-sheet planes to avoid the interaction between --O--(ester) and O==C. Therefore, when the chain length become longer, the O...O==C repulsion interaction works as a beta-sheet breaker and hence promotes an alpha-helical structure as observed for Boc-(Leu-Leu-Lac)(3)-Leu-Leu-OEt (4) (Oku et al. Biopolymers 2004, 75, 242-254) and Boc-(Leu-Leu-Lac)(n)-OEt (n = 4-6) (5-7) (Katakai et al., Biopolymers 1996, 38, 285-290), in which the O...O==C repulsion does not cause significant structural changes in alpha-helical main chains. Therefore from the structural and spectroscopic analyses, we have found governing factors for the specificity in the beta-sheet and alpha-helix decision in this series of depsipeptides, -(Leu-Leu-Lac)(n)-.  相似文献   

14.
The structure of AF2331, a 11‐kDa orphan protein of unknown function from Archaeoglobus fulgidus, was solved by Se‐Met MAD to 2.4 Å resolution. The structure consists of an α + β fold formed by an unusual homodimer, where the two core β‐sheets are interdigitated, containing strands alternating from both subunits. The decrease in solvent‐accessible surface area upon dimerization is unusually large (3960 Å2) for a protein of its size. The percentage of the total surface area buried in the interface (41.1%) is one of the largest observed in a nonredundant set of homodimers in the PDB and is above the mean for nearly all other types of homo‐oligomers. AF2331 has no sequence homologs, and no structure similar to AF2331 could be found in the PDB using the CE, TM‐align, DALI, or SSM packages. The protein has been identified in Pfam 23.0 as the archetype of a new superfamily and is topologically dissimilar to all other proteins with the “3‐Layer (BBA) Sandwich” fold in CATH. Therefore, we propose that AF2331 forms a novel α + β fold. AF2331 contains multiple negatively charged surface clusters and is located on the same operon as the basic protein AF2330. We hypothesize that AF2331 and AF2330 may form a charge‐stabilized complex in vivo, though the role of the negatively charged surface clusters is not clear.  相似文献   

15.
16.
17.
Cyclooxygenase‐2 (COX‐2) has been recently identified to be involved in the pathogenesis of Alzheimer's disease (AD). Yet, the role of an important COX‐2 metabolic product, prostaglandin (PG) I2, in the pathogenesis of AD remains unknown. Using human‐ and mouse‐derived neuronal cells as well as amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice as model systems, we elucidated the mechanism of anterior pharynx‐defective (APH)‐1α and pharynx‐defective‐1β induction. In particular, we found that PGI2 production increased during the course of AD development. Then, PGI2 accumulation in neuronal cells activates PKA/CREB and JNK/c‐Jun signaling pathways by phosphorylation, which results in APH‐1α/1β expression. As PGI2 is an important metabolic by‐product of COX‐2, its suppression by NS398 treatment decreases the expression of APH‐1α/1β in neuronal cells and APP/PS1 mice. More importantly, β‐amyloid protein (Aβ) oligomers in the cerebrospinal fluid (CSF) of APP/PS1 mice are critical for stimulating the expression of APH‐1α/1β, which was blocked by NS398 incubation. Finally, the induction of APH‐1α/1β was confirmed in the brains of patients with AD. Thus, these findings not only provide novel insights into the mechanism of PGI2‐induced AD progression but also are instrumental for improving clinical therapies to combat AD.  相似文献   

18.
The perception of environmental stress in animal cells engineered to produce heterologous protein leads to the induction of stress signaling pathways and ultimately apoptosis and cell death. Protein synthesis is regulated in response to various environmental stresses by phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 (eIF2). In this study we have utilized a model system of Chinese hamster ovary cells engineered to secrete recombinant TIMP-1 protein to investigate the relationship between the cellular rate of protein synthesis, eIF2alpha phosphorylation, cellular stress perception, and the rate of cell specific recombinant protein synthesis. The rate of total protein synthesis was maximal after 48 hours of culture, remaining relatively high until 96 hours of culture, after which a decline was observed. Towards the end of culture a marked increase in labeled secreted protein was observed. Total eIF2alpha expression levels were high during the exponential growth phase and decreased slightly towards the end of culture. On the other hand, the relative expression of phosphorylated eIF2alpha showed a bi-phasic response with a small increase in phosphorylated eIF2alpha observed at 48 hours of culture, and a significant increase at 120 hours post-inoculation. The large increase in phosphorylated eIF2alpha coincided with the observed increase in labeled secreted protein and the decline in total cellular protein synthesis. A marked increase in ubiquitination was also observed at 120 hours post-inoculation that coincided with reduced rates of cellular protein synthesis and mRNA translation attenuation. We suggest that eIF2alpha phosphorylation is an indicator of cellular stress perception, which could be exploited in recombinant protein manufacturing to commence feeding and engineering strategies.  相似文献   

19.
The solution structure and stability of N-terminally truncated beta2-microglobulin (deltaN6beta2-m), the major modification in ex vivo fibrils, have been investigated by a variety of biophysical techniques. The results show that deltaN6beta2-m has a free energy of stabilization that is reduced by 2.5 kcal/mol compared to the intact protein. Hydrogen exchange of a mixture of the truncated and full-length proteins at microM concentrations at pH 6.5 monitored by electrospray mass spectrometry reveals that deltaN6beta2-m is significantly less protected than its wild-type counterpart. Analysis of deltaN6beta2-m by NMR shows that this loss of protection occurs in beta strands I, III, and part of II. At mM concentration gel filtration analysis shows that deltaN6beta2-m forms a series of oligomers, including trimers and tetramers, and NMR analysis indicates that strand V is involved in intermolecular interactions that stabilize this association. The truncated species of beta2-microglobulin was found to have a higher tendency to self-associate than the intact molecule, and unlike wild-type protein, is able to form amyloid fibrils at physiological pH. Limited proteolysis experiments and analysis by mass spectrometry support the conformational modifications identified by NMR and suggest that deltaN6beta2-m could be a key intermediate of a proteolytic pathway of beta2-microglobulin. Overall, the data suggest that removal of the six residues from the N-terminus of beta2-microglobulin has a major effect on the stability of the overall fold. Part of the tertiary structure is preserved substantially by the disulfide bridge between Cys25 and Cys80, but the pairing between beta-strands far removed from this constrain is greatly perturbed.  相似文献   

20.
Atypical enteropathogenic Escherichia coli (aEPEC) are heterogeneous strains in terms of serotypes, adherence patterns and the presence of novel virulence factors. This heterogeneity is intriguing, promoting studies trying to characterize these novel proteins and to better comprehend this pathotype group. In a previous study analyzing low‐molecular mass proteomes of four representative aEPEC strains of three different adhesion phenotypes, we classified proteins according to their annotated function, with most of them being involved in metabolism and transport; while some of them were classified as hypothetical proteins. The majority of the hypothetical proteins were homologue products of genes identified in the genome of enterohemorrhagic E. coli. One of the hypothetical proteins was annotated as Z2335, with orthologue in EPEC, and by bioinformatics analysis, this protein was revealed to be the universal stress protein F (UspF). Thus, herein we successfully obtained a recombinant UspF protein from aEPEC, which is a α/β, ATP‐binding protein involved in stress response, with comparable protein production among the four studied strains, but showing noteworthy differences when cultivated in different stress conditions, also present in other enterobacterial species, such as Shigella sonnei and Citrobacter freundii. Furthermore, our results confirm that the Usp protein superfamily encompasses a conserved group of proteins involved in stress resistance in aEPEC and other Enterobacteriaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号