首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this study was to investigate the role of polyamines during meiotic maturation of Xenopus oocytes. The results indicate a rapid and significant increase in the activity of ornithine decarboxylase (ODC), the rate-limiting enzyme in the polyamine biosynthetic pathway, during the meiotic maturation induced by either progesterone or human chorionic gonadotropin (HCG). This increase in the enzyme activity was followed by an accumulation of putrescine without any effect on the levels of spermidine or spermine. The inhibition of ODC activity and the accumulation of putrescine levels by α-difluoromethyl ornithine (DFMO), a catalytic irreversible inhibitor of ODC, also resulted in the inhibition of maturation mediated by progesterone in Xenopus oocytes. DFMO caused an inhibition of both maturation and ovulation induced by HCG in ovarian fragments. This inhibition was readily reversible by exogenous supply of putrescine to the medium. These observations suggest that putrescine plays an important role during the meiotic maturation of amphibian oocytes.  相似文献   

2.
Theiss C  Bohley P  Voigt J 《Plant physiology》2002,128(4):1470-1479
Polyamines are required for cell growth and cell division in eukaryotic and prokaryotic organisms. In the unicellular green alga Chlamydomonas reinhardtii, biosynthesis of the commonly occurring polyamines (putrescine, spermidine, and spermine) is dependent on the activity of ornithine decarboxylase (ODC, EC 4.1.1.17) catalyzing the formation of putrescine, which is the precursor of the other two polyamines. In synchronized C. reinhardtii cultures, transition to the cell division phase was preceded by a 4-fold increase in ODC activity and a 10- and a 20-fold increase, respectively, in the putrescine and spermidine levels. Spermine, however, could not be detected in C. reinhardtii cells. Exogenous polyamines caused a decrease in ODC activity. Addition of spermine, but not of spermidine or putrescine, abolished the transition to the cell division phase when applied 7 to 8 h after beginning of the light (growth) phase. Most of the cells had already doubled their cell mass after this growth period. The spermine-induced cell cycle arrest could be overcome by subsequent addition of spermidine or putrescine. The conclusion that spermine affects cell division via a decreased spermidine level was corroborated by the findings that spermine caused a decrease in the putrescine and spermidine levels and that cell divisions also could be prevented by inhibitors of S-adenosyl-methionine decarboxylase and spermidine synthase, respectively, added 8 h after beginning of the growth period. Because protein synthesis was not decreased by addition of spermine under our experimental conditions, we conclude that spermidine affects the transition to the cell division phase directly rather than via protein biosynthesis.  相似文献   

3.
Ornithine decarboxylase (ODC) is feedback regulated by polyamines. ODC antizyme mediates this process by forming a complex with ODC and enhancing its degradation. It has been reported that polyamines induce ODC antizyme and inhibit ODC activity. Since exogenous polyamines can be converted to each other after they are taken up into cells, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone) (DEGBG), to block the synthesis of spermidine and spermine from putrescine and investigated the specific roles of individual polyamines in the regulation of ODC in intestinal epithelial crypt (IEC-6) cells. We found that putrescine, spermidine, and spermine inhibited ODC activity stimulated by serum to 85, 46, and 0% of control, respectively, in the presence of DEGBG. ODC activity increased in DEGBG-treated cells, despite high intracellular putrescine levels. Although exogenous spermidine and spermine reduced ODC activity of DEGBG-treated cells close to control levels, spermine was more effective than spermidine. Exogenous putrescine was much less effective in inducing antizyme than spermidine or spermine. High putrescine levels in DEGBG-treated cells did not induce ODC antizyme when intracellular spermidine and spermine levels were low. The decay of ODC activity and reduction of ODC protein levels were not accompanied by induction of antizyme in the presence of DEGBG. Our results indicate that spermine is the most, and putrescine the least, effective polyamine in regulating ODC activity, and upregulation of antizyme is not required for the degradation of ODC protein.  相似文献   

4.
5.
The increase in spermidine N-acetyltransferase activity in rat liver produced by carbon tetrachloride was completely prevented by simultaneous treatment with inhibitors of protein and nucleic acid synthesis suggesting that the increase results from the synthesis of new protein rather than the release of the enzyme from a cryptic inactive form. Treatment with cycloheximide 2 h after carbon tetrachloride also completely blocked the rise in spermidine N-acetyltransferase seen 4 h later. Such treatment completely prevented the fall in spermidine and rise in putrescine in the liver 6 h after carbon tetrachloride confirming the importance of the induction of spermidine N-acetyltransferase in the conversion of spermidine into putrescine. When cycloheximide was administered to rats in which spermidine N-acetyltransferase activity had been stimulated by prior treatment with carbon tetrachloride or thioacetamide, the activity was lost rapidly showing that the enzyme protein has a rapid rate of turnover. The half-life for the enzyme in thioacetamide-treated rats was 40 min, whereas the half-life for ornithine decarboxylase (which is well known to turn over very rapidly) was 27 min. In carbon tetrachloride-treated rats the rate or protein degradation was reduced and the half-life of spermidine N-acetyltransferase was 155 min and that for ornithine decarboxylase was 65 min. It appears that three of the enzymes involved in the synthesis and interconversion of putrescine and spermidine namely, ornithine decarboxylase, S-adenosylmethionine decarboxylase and spermidine N-acetyltransferase have rapid rates of turnover and that polyamine levels are regulated by changes in the amount of these enzymes.  相似文献   

6.
The effects of exogenous ornithine, arginine and polyamines added to media leading to root, callus or bud initiation of Datura innoxia Mill. leaf explants growing in vitro were examined. Ornithine and arginine decarboxylase activities (ODC, EC 4.1.1.17; ADC, EC 4.1.1.19) as well as endogenous polyamine levels were also determined during the course of in vivo differentiation of the leaves and their subsequent in vitro dedifferentiation under rooting, callusing, or budding conditions. Decarboxylase activities were determined by measuring the 14CO2 released and the polyamines were quantified after dansylation by thin-layer chromatography. In vivo, ODC and ADC activities decreased from shoots to young to old leaves. In vitro, synergistic effects between ornithine and indole-3-acetic acid on rhizogenesis were detected, while arginine was not effective. Exogenous putrescine also acted synergistically with auxin by promoting root growth. A close relationship was found between rhizogenesis, ODC activity and increase in endogenous putrescine and spermidine levels. ODC increased during the induction and time course of cell dedifferentiation and seemed to support these events, while ADC seemed to support only the later events involving redifferentiation.  相似文献   

7.
Uptake of exogenous polyamines by the unicellular green alga Chlamydomonas reinhardtii and their effects on polyamine metabolism were investigated. Our data show that, in contrast to mammalian cells, Chlamydomonas reinhardtii does not contain short-living, high-affinity polyamine transporters whose cellular level is dependent on the polyamine concentration. However, exogenous polyamines affect polyamine metabolism in Chlamydomonas cells. Exogenous putrescine caused a slow increase of both putrescine and spermidine and, vice versa, exogenous spermidine also led to an increase of the intracellular levels of both spermidine and putrescine. No intracellular spermine was detected under any conditions. Exogenous spermine was taken up by the cells and caused a decrease in their putrescine and spermidine levels. As in other organisms, exogenous polyamines led to a decrease in the activity of ornithine decarboxylase, a key enzyme of polyamine synthesis. In contrast to mammalian cells, this polyamine-induced decrease in ornithine decarboxylase activity is not mediated by a polyamine-dependent degradation or inactivation, but exclusively due to a decreased synthesis of ornithine decarboxylase. Translation of ornithine decarboxylase mRNA, but not overall protein biosynthesis is slowed by increased polyamine levels.  相似文献   

8.
The role of ornithine decarboxylase (ODC) in polyamine metabolism has long been established, but the exact source of ornithine has always been unclear. The arginase enzymes are capable of producing ornithine for the production of polyamines and may hold important regulatory functions in the maintenance of this pathway. Utilizing our unique set of arginase single and double knockout mice, we analyzed polyamine levels in the livers, brains, kidneys, and small intestines of the mice at 2 wk of age, the latest timepoint at which all of them are still alive, to determine whether tissue polyamine levels were altered in response to a disruption of arginase I (AI) and II (AII) enzymatic activity. Whereas putrescine was minimally increased in the liver and kidneys from the AII knockout mice, spermidine and spermine were maintained. ODC activity was not greatly altered in the knockout animals and did not correlate with the fluctuations in putrescine. mRNA levels of ornithine aminotransferase (OAT), antizyme 1 (AZ1), and spermidine/spermine-N1-acetyltransferase (SSAT) were also measured and only minor alterations were seen, most notably an increase in OAT expression seen in the liver of AI knockout and double knockout mice. It appears that putrescine catabolism may be affected in the liver when AI is disrupted and ornithine levels are highly reduced. These results suggest that endogenous arginase-derived ornithine may not directly contribute to polyamine homeostasis in mice. Alternate sources such as diet may provide sufficient polyamines for maintenance in mammalian tissues. ornithine; putrescine; spermidine; spermine; decarboxylase  相似文献   

9.
《Journal of Asia》2022,25(1):101835
The domesticated silkworm Bombyx mori is an economically important insect that produces large quantities of silk during its 5th instar larval stage. Polyamines are important regulators of growth and have been shown to affect silk production, however their role in larval development is not completely understood. L-ornithine decarboxylase (ODC), a key regulatory enzyme in the polyamine biosynthetic pathway catalyzes the conversion of ornithine to putrescine, which is further broken down to spermidine and spermine. In this study, we set out to understand the role of ODC on the growth and development of silkworm larvae. We fed 5th instar larvae with α-difluoromethylornithine (DFMO), an ODC inhibitor and studied its impact on larval silk glands. Feeding DFMO did not alter the expression of L-ODC but led to a significant reduction in putrescine and spermidine levels. Furthermore, reduced cellular levels of polyamine led to increased oxidative stress and decreased cell viability. Subsequently, this resulted in several developmental defects at the pupal and moth stages. These findings highlight the importance of ODC in the growth and development of B. mori larvae.  相似文献   

10.
Changes in ornithine decarboxylase (ODC) activity and in polyamine contents of the rat thyroid were studied under various experimental conditions. Methylthiouracil (MTU) treatment produced several-fold increases in the thyroid ODC activity and in the content of putrescine, spermidine and spermine within a week. While serum thyrotropin (TSH) levels increased gradually up to 3 weeks, the content of both putrescine and spermidine tended to reach a plateau after 2 weeks of the goitrogen treatment; spermine content continued to increase progressively for 3 weeks. Discontinuance of MTU at 7 days resulted in a rapid decline in the elevated thyroid ODC activity, followed by a diminution of putrescine, spermidine and RNA contents. Thyroidal putrescine, spermidine and RNA responded more sensitively to both introduction and withdrawal of TSH stimulation than thyroidal spermine and DNA. Excess iodide, having no effect on the basal level of thyroid ODC, suppressed the MTU-induced increase in this enzyme activity without affecting circulating TSH, thyroxine (T4) and triiodothyronine (T3) levels. There was a significant negative correlation between the ODC activity and intrathyroidal concentration of iodine in MTU-pretreated rats. Theophylline increased the thyroid weight and ODC activity when given to rats fed with a subeffective dose of MTU. Analyses of serum TSH, T4, T3 and of thyroidal iodine revealed that TSH-induced thyroid ODC activity was suppressed by increased circulating thyroid hormones and/or intrathyroidal iodine. Furthermore, it was suggested that thyroid hormones and excess iodide acted directly on the thyroid to alter polyamine biosynthesis, possibly by changing the responsiveness of the gland to TSH.  相似文献   

11.
An acute treatment of mice with clenbuterol, a beta-adrenergic agonist, produced a marked increase of polyamines levels in heart, particularly during the early phase of administration of the drug. A single dose of 1.5 mg/kg caused as much as a 10 fold induction in activity of ornithine decarboxylase (ODC) and 3 to 4 fold increase in levels of putrescine, spermidine and spermine in mouse heart. Maximum changes were observed 3 to 4 hours post-administration of clenbuterol. This treatment did not produce any change in S-adenosylmethionine decarboxylase activity. The induction of cardiac ODC by clenbuterol was also dose dependent with a peak at about 5 micromol/kg. Co-administration of difluoromethylornithine, an irreversible inhibitor of ODC, or propranolol, a nonspecific beta-antagonist, with clenbuterol completely prevented the induction of ODC activity as well as the increase in polyamine levels in heart. However, pretreatment with alprenolol or metoprolol, the specific beta1 and beta2-antagonists, respectively, produced only partial prevention. The cardiac ODC from controls as well as clenbuterol treated mice exhibited similar affinity (Km) for its substrate, ornithine, while maximum enzyme activity (Vmax) was about 14 fold higher in clenbuterol treated mouse heart than in the control. Clenbuterol produced no change in the level of specific ODC mRNA or the protein, but the enzyme from the drug-treated mouse heart was considerably more stable than the control. Pretreatment of mice with either cycloheximide or actinomycin D followed by administration of clenbuterol could not prevent the induction in ODC activity suggesting that de novo biosynthesis of the enzyme protein or ODC mRNA was not responsible for induction of ODC activity. Post-translational changes in ODC may be responsible for an early increase of ODC activity due to clenbuterol treatment.  相似文献   

12.
The role of intracellular free polyamine (putrescine and spermidine) pools in multiple resistance to aminoglycoside antibiotics was investigated among in vitro selected kanamycin-resistant Escherichia coli J53 mutants expressing diminished oligopeptide-binding protein (OppA) levels and/or defective ornithine decarboxylase (ODC) activity. The results suggest that diminished OppA content, but not defective ODC activity expression, increased the relative concentration of free spermidine as compared to the wild type strain. Moreover, by adding exogenous polyamines or polyamine synthesis inhibitors to cultures with different mutant strains, a direct relationship between the intracellular OppA levels and resistance to kanamycin was revealed. Collectively these results further suggest a complex relation among OppA expression, aminoglycoside resistance and polyamine metabolism.  相似文献   

13.
14.
It was reported recently that overexpression of human ornithine decarboxylase (ODC) cDNA in transgenic rice plants resulted in increased steady-state concentration of polyamines, i.e., enough biosynthetic control is invested at this step to enable adjustment of polyamine levels. To investigate critically whether constitutive overexpression of ODC is sufficient to control steady-state polyamine levels, we expressed an ODC cDNA from Datura stramonium in transgenic tobacco plants. Transgenic progeny of self-fertilised primary transformants exhibited increases in ODC activity of 25-fold in leaves and 5-fold in flower buds. However, the increase in putrescine levels was only 1.5- to 2.1-fold in leaves and 1.1- to 1.3-fold in flower buds. Emphatically, no changes to spermidine or spermine steady-state levels or to soluble or insoluble hydroxycinnamic acid-conjugated polyamines were observed. Ornithine feeding to cell suspension cultures derived from the transgenic plants indicated that putrescine accumulation was limited in part by ornithine availability. These results demonstrate that a large increase in the capacity of the tobacco plants to decarboxylate ornithine does not result in a comparable increase in the level of free or conjugated polyamines. Plant polyamine homeostatic mechanisms efficiently accommodate increased ODC activity, suggesting that polyamine biosynthetic control is invested at multiple interdependent steps.  相似文献   

15.
The role of polyamines in myoblast proliferation was studied by treating cells of Yaffe's L6 line of rat myoblasts with inhibitors of polyamine synthesis. Both an irreversible inhibitor of ornithine decarboxylase--difluoromethyl-ornithine (DFMO)--and a competitive inhibitor of S-adenosyl-methionine decarboxylase--methylglyoxal-bis(guanylhydrazone) (MGBG)--depressed spermidine levels and inhibited myoblast proliferation. Spermine levels were not significantly depressed by either inhibitor and putrescine levels were decreased only by DFMO. Putrescine and spermidine, but not magnesium, prevented inhibition of myoblast proliferation by DFMO and MGBG; determination of 14C-DFMO uptake in the presence and absence of these compounds demonstrated that they did not reduce the rate or extent of inhibitor uptake and thus prevent its inhibition of ornithine decarboxylase. Thus it seems likely that these inhibitors reduce cell proliferation by inhibiting polyamine formation. Addition of spermidine to the cells led to a substantial reduction in the activity of S-adenosyl-methionine-decarboxylase, suggesting that the enzyme is subject to negative regulation by the products of the polyamine biosynthetic pathway. Unexpectedly, addition of spermidine also increased intracellular putrescine levels; this apparently resulted from conversion of spermidine to putrescine. Addition of putrescine or spermidine in the absence of serum did not increase the rate of myoblast proliferation although it did elevate intracellular polyamine levels as expected. We conclude that some threshold level of one or more polyamines (probably spermidine) is necessary but not sufficient for initiation and maintenance of myoblast proliferation in culture.  相似文献   

16.
The main free amines identified during growth and development of rice seedlings were agmatine, putrescine, spermidine, diaminopropane and tyramine. Amine composition differed according to tissue and stages of development. Conjugated amines were only found in roots. We present evidence that arginine decarboxylase (ADC) regulates putrescine during the development of rice seedlings. When ADC action was blocked by DFMA (-DL-difluoromethylarginine, a specific irreversible inhibitor of ADC), polyamine titers and seedling development were diminished; when agmatine or putrescine was added, normal polyamine titers and growth were restored. The effects of DFMA were concentration dependent. DFMO (-DL-difluoromethylornithine, a specific irreversible inhibitor of ornithine decarboxylase or ODC) promoted growth and development at concentrations below 2 mM. This effect was probably related to its unexplained, but consistently observed slight enhancement of rice ADC. When the increase in the concentration of spermidine was prevented by CHA (cyclohexylammonium sulfate), the number of roots increased and the increase in length of leaves and roots was strongly inhibited. The addition of exogenous spermidine at the time of treatment with CHA reversed the inhibition by CHA.Abbreviations ADC arginine decarboxylase - ODC ornithine decarboxylase - DFMA -DL-difluoromethylarginine - DFMO -DL-difluoromethylornithine - CHA cyclohexylammonium sulfate  相似文献   

17.
18.
3-Isobutylmethylxanthine (IBMX), a potent phosphodiesterase inhibitor, causes accumulation of putrescine of same magnitude in rat pancreas and liver. IBMX produces increases of acetyl CoA: polyamine N'-acetyltransferase (PAT) and of ornithine decarboxylase (ODC) activities in both organs. However ODC activity is 300 times higher in liver than in pancreas. In the latter organ, there is a transient increase of N1-acetylspermidine, followed by a decrease of spermidine, alpha-Difluoromethylornithine (DFMO), a potent ODC inhibitor, impairs the accumulation of putrescine in liver but not in pancreas. These results suggest that in pancreas the accumulated putrescine is essentially formed from spermidine, via N1-acetylation and oxidation, while in liver it is formed from decarboxylation of ornithine. A possible involvement of cAMP in the stimulation of the polyamine interconversion pathway is discussed.  相似文献   

19.
Growth of Tetrahymena thermophila in a synthetic nutrient medium with or without the essential amino acid L-arginine was studied in the presence or absence of the arginine metabolites L-citrulline and L-ornithine and the polyamines putrescine, spermidine, and spermine. The effects of the growth conditions on the stimulations of the enzymes of the arginine metabolic and polyamine biosynthetic pathway, arginine deiminase (ADI), citrulline hydrolase (CH), ornithine decarboxylase (ODC), and ornithine-oxo-acid aminotransferase were determined. Tetrahymena cells were unable to grow in the absence of L-arginine and the amino-acid utilization was greatly impaired. None of the metabolites or polyamines was able to substitute for arginine. In the presence of arginine, Tetrahymena cultures grew well and citrulline and ornithine did not alter the growth behaviour in any way. In the presence of putrescine, the lag period was decreased from 3 h to 2 h. Spermidine and spermine acted similar to putrescine but less pronounced. The stimulation of the activity of ADI, the key enzyme of arginine degradation, was absolutely dependent upon the presence of arginine in the medium: in the absence of arginine, the low ADI activity which was present in the cells before inoculation was decreased to zero levels within 30 min. In the presence of arginine, the stimulation of ADI was not altered by citrulline and ornithine but putrescine, spermidine, and spermine decreased ADI-stimulation to half of the control values. The stimulation of CH activity in the presence of arginine was not altered by any added metabolite or polyamine. In the media without arginine, stimulation of CH was greatly reduced, in the presence of ornithine more than in its absence, and even more in the presence of putrescine and spermidine. Stimulation of ODC activity in the presence of arginine was not affected by citrulline and ornithine but in the presence of polyamines it was rapidly decreased to unstimulated levels after an initial ca. 10-fold increase. The "hyperstimulation" of ODC in the absence of free arginine was reduced to normal in the presence of citrulline, the stimulation was decreased even below normal levels in the presence of ornithine and polyamines decreased ODC activity to zero levels. O delta T activity was stimulated more in the presence of arginine than in its absence. In both cases the stimulation was enhanced in the presence of polyamines and only in the absence of arginine--by ornithine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
In the testosterone-induced hypertrophic and antifolate (N10-propargyl,5,6-dideazafolic acid, CB 3717)-induced hyperplastic mouse kidney models, a marked increase of two diamine levels — putrescine and cadaverine — occurred which paralled induced ornithine decarboxylase (ODC) activity. Under these conditions the augmentation of spermidine levels was much smaller, while spermine levels were affected differentially — increased by testosterone and decreased by CB 3717; this resulted in an increase of spermidine/spermine ratio in hyperplastic, but not hypertrophic kidney. α-Difluoromethylornithine (DFMO) prevented testosterone- or CB 3717-induced increment of both diamine levels. Spermidine and spermine depletion in response to DFMO was significant in hyperplastic kidney only. DFMO also significantly affected the other biochemical markers of hyperplasia, namely lowered CB 3717-induced cell proliferation rate and increased S-adenosylmethionie decarboxylase (AdoMetDC) activity. In contrast, testosterone-induced hypertrophy was not influenced by DFMO, as judged by the lack of its effect on S-adenosylmethionine synthetase and cystathionine synthase activity. These results indicate that the increase of putrescine levels does not mediate testosterone-induced renal hypertrophy and possibly also antifolate-induced hyperplasia. The involvement of spermidine in mediation of renal hyperplasia is highly possible, while that of spermine is excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号