首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A member of the family of hematopoietic cytokines, human prolactin (hPRL) serves a dual role both as an endocrine hormone and as an autocrine/paracrine cytokine or growth factor. During investigation of the solution structural properties of hPRL, we have noted a surprising pH dependence of its structural stability over a range from approximately pH 6.0 to pH 8.0. An analysis of backbone atom NMR chemical shift changes and backbone amide hydrogen-deuterium exchange rates due to titration of the solution pH over this same range, along with calculations of protein surface electrostatic potential, suggests the possible involvement of a localized cluster of three His residues (27, 30, and 180), which comprise a portion of the high-affinity receptor-binding epitope. Surface plasmon resonance analysis of the interaction between hPRL and the extracellular domain (ECD) of the hPRL receptor reveals a selective 500-fold change in the dissociation rate between pH 8.3 and pH 5.8. In comparison, the interaction of hGH with the same receptor ECD did not demonstrate any significant dependence on pH. We also present an initial investigation of the pH dependence of hPRL function in rat Nb2 cell proliferation assays and a STAT5 luciferase gene reporter assay in the T47D human breast cancer cell line, whose results are consistent with our biophysical studies. The potential implications of this variation in hPRL's structural stability and receptor-binding kinetics over this physiologic range of pH are discussed.  相似文献   

2.
The structural and functional properties of human prolactin (hPRL), a 23 kDa protein hormone and cytokine, are pH-dependent. The dissociation rate constant for binding to the extracellular domain of the hPRL receptor increases nearly 500-fold over the relatively narrow and physiologic range from pH 8 to 6. As the apparent midpoint for this transition occurs around pH 6.5, we have looked toward histidine residues as a potential biophysical origin of the behavior. hPRL has a surprising number of nine histidines, nearly all of which are present on the protein surface. Using NMR spectroscopy, we have monitored site-specific proton binding to eight of these nine residues and derived equilibrium dissociation constants. During this analysis, a thermodynamic interaction between a localized triplet of three histidines (H27, H30, and H180) became apparent, which was subsequently confirmed by site-directed mutagenesis. After consideration of multiple potential models, we present statistical support for the existence of two negative cooperativity constants, one linking protonation of residues H30 and H180 with a magnitude of approximately 0.1 and the other weaker interaction between residues H27 and H30. Additionally, mutation of any of these three histidines to alanine stabilizes the folded protein relative to the chemically denatured state. A detailed understanding of these complex protonation reactions will aid in elucidating the biophysical mechanism of pH-dependent regulation of hPRL's structural and functional properties.  相似文献   

3.
Park C  Schultz LW  Raines RT 《Biochemistry》2001,40(16):4949-4956
His12 and His119 are critical for catalysis of RNA cleavage by ribonuclease A (RNase A). Substitution of either residue with an alanine decreases the value of k(cat)/K(M) by more than 10(4)-fold. His12 and His119 are proximal to the scissile phosphoryl group of an RNA substrate in enzyme-substrate complexes. Here, the role of these active site histidines in RNA binding was investigated by monitoring the effect of mutagenesis and pH on the stability of enzyme-nucleic acid complexes. X-ray diffraction analysis of the H12A and H119A variants at a resolution of 1.7 and 1.8 A, respectively, shows that the amino acid substitutions do not perturb the overall structure of the variants. Isothermal titration calorimetric studies on the complexation of wild-type RNase A and the variants with 3'-UMP at pH 6.0 show that His12 and His119 contribute 1.4 and 1.1 kcal/mol to complex stability, respectively. Determination of the stability of the complex of wild-type RNase A and 6-carboxyfluorescein approximately d(AUAA) at varying pHs by fluorescence anisotropy shows that the stability increases by 2.4 kcal/mol as the pH decreases from 8.0 to 4.0. At pH 4.0, replacing His12 with an alanine residue decreases the stability of the complex with 6-carboxyfluorescein approximately d(AUAA) by 2.3 kcal/mol. Together, these structural and thermodynamic data provide the first thorough analysis of the contribution of histidine residues to nucleic acid binding.  相似文献   

4.
The pH dependence of stability of staphylococcal nuclease was studied with two independent equilibrium thermodynamic approaches. First, by measurement of stability in the pH range 9 to 3.5 by fluorescence-monitored denaturation with urea (Delta), GdnHCl (Delta), and heat (Delta). Second, by numerical integration of H(+) titration curves (Delta) measured potentiometrically under native (100 mM KCl) and unfolding (6.0 M GdnHCl) conditions. The pH dependence of stability described by Delta, Delta, and Delta was comparable but significantly different from the one described by Delta. The decrease in Delta between pH 9 and pH 4 was 4 kcal/mol greater than the decrease in Delta, Delta, and Delta in the same pH range. In 6 M GdnHCl, all the ionizable groups titrated with the pK(a) values of model compounds. Therefore, Delta represents the free energy difference between the native state (N) and an ensemble of unstructured, or expanded, and highly screened conformations. In contrast, the shallower pH dependence of stability described by Delta and by Delta between pH 9 and 5 was consistent with the titration of histidines with depressed, nativelike pK(a) values in the denatured state (D). These depressed pK(a) values likely reflect long-range electrostatic interactions with the other 29 basic groups and are a consequence of the compact character of the D state. The steep change in Delta and Delta at pH < 5 suggests that near pH 5 the structural and thermodynamic character of the D state shifts toward a state in which acidic residues titrate with normal pK(a) values, presumably because the electrostatic interactions with basic residues are lost, maybe as a consequence of an expansion.  相似文献   

5.
Human prolactin (hPRL), a member of the family of hematopoietic cytokines, functions as both an endocrine hormone and autocrine/paracrine growth factor. We have previously demonstrated that recognition of the hPRL·receptor depends strongly on solution acidity over the physiologic range from pH 6 to pH 8. The hPRL·receptor binding interface contains four histidines whose protonation is hypothesized to regulate pH-dependent receptor recognition. Here, we systematically dissect its molecular origin by characterizing the consequences of His to Ala mutations on pH-dependent receptor binding kinetics, site-specific histidine protonation, and high resolution structures of the intermolecular interface. Thermodynamic modeling of the pH dependence to receptor binding affinity reveals large changes in site-specific protonation constants for a majority of interface histidines upon complexation. Removal of individual His imidazoles reduces these perturbations in protonation constants, which is most likely explained by the introduction of solvent-filled, buried cavities in the crystallographic structures without inducing significant conformational rearrangements.  相似文献   

6.
We have established 13 hybridoma cell lines which secrete mouse IgG1 monoclonal antibodies (McAbs) to human growth hormone (hGH). Binding affinity and binding specificity of McAbs were analyzed by competitive radioimmunoassay. Among these McAbs, CL. B1 showed a high affinity of 9.8 x 10(8) l/mol, and all McAbs so far tested showed very weak cross-reactivity or none at all with human prolactin (hPRL) and human chorionic somatomammotropin (hCS; human placental lactogen). Analysis of binding sites of McAbs using hGH variant and fragments in both ELISA and RIA demonstrated that McAbs could be classified into two groups. All the McAbs obtained in this study bound to plasmin-digested fragment S2 (hGH 1-134 and 141-191) and fragment alpha 3 (hGH 1-134 and 147-191). However, five (such as 1D2) out of 13 McAbs bound to fragment F1 (hGH 1-134) and others (such as CL. B1) did not. The McAb CL. B1 in the latter group showed low affinity with 20 K hGH (residue 32-46 deleted in native 22 K hGH) in contrast to high affinity with hGH (22 K). This suggests that the former McAbs recognize an epitope located at the N-terminal two-third part of hGH. In contrast, the McAbs of the latter group are likely to recognize three-dimensional structure of native 22 K hGH.  相似文献   

7.
The equilibrium denaturation of human growth hormone (hGH) derived from heterologous gene expression in Escherichia coli was studied. Denaturation was measured by ultraviolet absorbance, intrinsic fluorescence, far ultraviolet circular dichroism, and size exclusion chromatography. The denaturation transitions obtained from each method of detection were coincident, indicating a two-state denaturation mechanism. The denaturation transitions were independent of the concentration of protein. The Gibbs free energy of unfolding is 14.5 +/- 1 kcal/mol. Human growth hormone contains two disulfide bridges between residues 53-165 (large loop) and 182-189 (small loop). The small loop was selectively reduced and cysteines alkylated with iodoacetic acid or iodoacetamide. The tetra-S-carbamidomethylated and tetra-S-carboxymethylated derivatives were also prepared. All S-alkylated hGH forms were indistinguishable from the native conformations in the absence of denaturant by far ultraviolet circular dichroism. The circular dichroism-detected equilibrium denaturation of each derivative was determined and the Gibbs free energy of unfolding of the tetra-S-modified forms was 5.3 +/- 0.5 kcal/mol and of the di-S-alkylated derivatives was 11.2 +/- 0.8 kcal/mol. These results for hGH are different than previously obtained results for bovine, ovine, and rat growth hormones. Stable equilibrium intermediates have been identified for these non-human species of growth hormone. The stable intermediates observed in the denaturation of reduced, alkylated hGH or nonhunam growth hormones are similar and characterized as compact, helical, lacking native-like tertiary structure, and having a tendency to aggregate. The apparent absence of intermediates in the folding of oxidized hGH is due to the relative instability of intermediates compared with their native structures. The hGH conformation is at least 5 kcal/mol more stable than the growth hormones from other species. Reduction and alkylation of the disulfide bridges of hGH diminish the stability differences between the native and intermediate states, such that the denaturation behavior is similar to the nonhuman growth hormones with well-populated intermediates. Most proteins do not demonstrate equilibrium folding intermediates presumably because intermediates are only marginally stable in conditions that disrupt the native state. The folding results with hGH and alkylated hGH substantiate this.  相似文献   

8.
In primates, placental lactogen (PL) is a pituitary hormone with fundamental roles during pregnancy involving fetal growth, metabolism, and stimulating lactation in the mother. Human placental lactogen (hPL) is highly conserved with human growth hormone (hGH) and both hormones bind to the hPRLR extracellular domain (ECD), the first step in receptor homodimerization, in a Zn2+-dependent manner. A modified surface plasmon resonance method was developed to measure the kinetics for hPL and hGH binding to the hPRLR ECD, with and without Zn2+ and showed that hPL has about a tenfold higher affinity for the hPRLR ECD1 than hGH. The crystal structure of the free state of hPL has been determined to 2.0 A resolution showing the molecule possesses an overall structure similar to other long chain four-helix bundle cytokines. Comparison of the free hPL structure with the 1:1 complex structure of hGH bound to the hPRLR ECD1 suggests that two surface loops undergo conformational changes >10 A upon binding. An 18 residue Ala-scan was used to characterize the binding energy epitope for the site 1 interface of hPL. Individual alanine substitutions at five positions reduced binding affinity by a DeltaDeltaG > or = 3 kcal mol(-1). A comparison of the hPL site 1 epitope with that previously determined for hGH indicates contributions of individual residues track reasonably well between hPL and hGH. In particular, residues involved in the zinc-binding site and Lys172 constitute the principal binding determinants for both hormones. However, several residues that are identical between hPL and hGH contribute quite differently to the binding of the hPRLR ECD1. Additionally, the overall magnitudes of the DeltaDeltaG changes observed from the Ala-scan of hPL were markedly larger than those determined in the comparative scan of hGH to the hPRLR ECD1. The structural and biophysical data presented here show that subtle changes in the structural context of an interaction can lead to significantly different effects at the individual residue level.  相似文献   

9.
Selecting high-affinity binding proteins by monovalent phage display   总被引:20,自引:0,他引:20  
H B Lowman  S H Bass  N Simpson  J A Wells 《Biochemistry》1991,30(45):10832-10838
Variants of human growth hormone (hGH) with increased affinity and specificity for the hGH receptor were isolated using an improved phage display system. Nearly one million random mutants of hGH were generated at 12 sites previously shown to modulate binding to the hGH receptor or human prolactin (hPRL) receptor. The mutant hormones were displayed in a monovalent fashion from filamentous phage particles as fusions to the gene III product of M13 packaged within each particle. After three to six cycles of enrichment for hGH-phage particles that bound to hGH receptor beads, we isolated hGH mutants that exhibited consensus binding sequences for the hGH receptor. Residues previously identified as important for hGH receptor binding by alanine-scanning mutagenesis were more highly conserved by this selection method. However, other residues nearby were not optimal, and by mutating them, hormone variants having greater affinity and selectivity for the hGH receptor were isolated. This approach should be useful for those who wish to modify and understand the energetics of protein-ligand interfaces.  相似文献   

10.
11.
The aim of this study was to gain a better understanding of the contribution of hydrogen bonds by tyrosine -OH groups to protein stability. The amino acid sequences of RNases Sa and Sa3 are 69 % identical and each contains eight Tyr residues with seven at equivalent structural positions. We have measured the stability of the 16 tyrosine to phenylalanine mutants. For two equivalent mutants, the stability increases by 0.3 kcal/mol (RNase Sa Y30F) and 0.5 kcal/mol (RNase Sa3 Y33F) (1 kcal=4.184 kJ). For all of the other mutants, the stability decreases with the greatest decrease being 3.6 kcal/mol for RNase Sa Y52F. Seven of the 16 tyrosine residues form intramolecular hydrogen bonds and the average decrease in stability for these is 2.0(+/-1.0) kcal/mol. For the nine tyrosine residues that do not form intramolecular hydrogen bonds, the average decrease in stability is 0.4(+/-0.6) kcal/mol. Thus, most tyrosine -OH groups contribute favorably to protein stability even if they do not form intramolecular hydrogen bonds. Generally, the stability changes for equivalent positions in the two proteins are remarkably similar. Crystal structures were determined for two of the tyrosine to phenylalanine mutants of RNase Sa: Y80F (1.2 A), and Y86F (1.7 A). The structures are very similar to that of wild-type RNase Sa, and the hydrogen bonding partners of the tyrosine residues always form intermolecular hydrogen bonds to water in the mutants. These results provide further evidence that the hydrogen bonding and van der Waals interactions of polar groups in the tightly packed interior of folded proteins are more favorable than similar interactions with water in the unfolded protein, and that polar group burial makes a substantial contribution to protein stability.  相似文献   

12.
We have predicted the free energy of unfolding for the pH-dependent helix-coil transition of the activation helix of GART using continuum electrostatic calculations and structural modeling. We have assigned the contributions of each element of secondary structure and of each ionizable residue, within and in the vicinity of the activation helix, to the stability of several fragments of GART that participate in the formation of the catalytic site. We demonstrate that the interaction of His121-His132 contributes 2.2 kcal/mol to the ionization free energy between pH 0 and approximately 6. We also show that the ionization state of a network of five histidines, His108, His119, His121, His132 and His137, and two aspartic acids Asp141 and Asp144, contributes approximately 12 kcal/mol to the stability of the catalytic site of GART, out of a total stability of 16 kcal/mol of the whole enzyme. These interactions are important for the formation of the catalytic site of GART.  相似文献   

13.
Conformational stability and mechanism of folding of ribonuclease T1   总被引:5,自引:0,他引:5  
Urea and thermal unfolding curves for ribonuclease T1 (RNase T1) were determined by measuring several different physical properties. In all cases, steep, single-step unfolding curves were observed. When these results were analyzed by assuming a two-state folding mechanism, the plots of fraction unfolded protein versus denaturant were coincident. The dependence of the free energy of unfolding, delta G (in kcal/mol), on urea concentration is given by delta G = 5.6 - 1.21 (urea). The parameters characterizing the thermodynamics of unfolding are: midpoint of the thermal unfolding curve, Tm = 48.1 degrees C, enthalpy change at Tm, delta Hm = 97 kcal/mol, and heat capacity change, delta Cp = 1650 cal/mol deg. A single kinetic phase was observed for both the folding and unfolding of RNase T1 in the transition and post-transition regions. However, two slow kinetic phases were observed during folding in the pre-transition region. These two slow phases account for about 90% of the observed amplitude, indicating that a faster kinetic phase is also present. The slow phases probably result from cis-trans isomerization at the 2 proline residues that have a cis configuration in folded RNase T1. These results suggest that RNase T1 folds by a highly cooperative mechanism with no structural intermediates once the proline residues have assumed their correct isomeric configuration. At 25 degrees C, the folded conformation is more stable than the unfolded conformations by 5.6 kcal/mol at pH 7 and by 8.9 kcal/mol at pH 5, which is the pH of maximum stability. At pH 7, the thermodynamic data indicate that the maximum conformational stability of 8.3 kcal/mol will occur at -6 degrees C.  相似文献   

14.
The clinical utilization of Uricase against gout is limited due to the immunogenicity. In the present article, we identified the antigenic determinants of Uricase and reduced their immunogenicity via in-silico mutagenesis. Multiple sequence alignment and motif analysis were carried out to identify the conserved residues in evolutionary process. Emini surface accessibility, Parker hydrophilicity, and Karplus & Schulz flexibility methods were employed to predict the linear B-cell epitopes of both Ag-Uricase and Bf-Uricase. Deimmunization approach identified T-cell epitopes and the hot spot residues. Reduced antigenic probability was obtained in case of T159W, D169C, N264W and Y203D mutations for Ag-Uricase, while S139 V, K215W, G216 F and I172 P mutations for Bf-Uricase. The binding affinity values of uric acid towards the catalytic pocket of Ag-Uricase and Bf-Uricase models were found to be -48.71 kcal/mol and -40.93 kcal/mol, respectively. This energy is further stabilized in the mutant model by -6.36 kcal/mol and -1.45 kcal/mol for Ag-Uricase and Bf-Uricase, respectively. About 100 ns molecular dynamics simulation was performed to evaluate the conformational stability of both native and mutated Uricase. Insights obtained from this study provide guidelines for experimental design of Uricase muteins with reduced antigenicity.  相似文献   

15.
It is difficult to increase protein stability by adding hydrogen bonds or burying nonpolar surface. The results described here show that reversing the charge on a side chain on the surface of a protein is a useful way of increasing stability. Ribonuclease T1 is an acidic protein with a pI approximately 3.5 and a net charge of approximately -6 at pH 7. The side chain of Asp49 is hyperexposed, not hydrogen bonded, and 8 A from the nearest charged group. The stability of Asp49Ala is 0.5 kcal/mol greater than wild-type at pH 7 and 0.4 kcal/mol less at pH 2.5. The stability of Asp49His is 1.1 kcal/mol greater than wild-type at pH 6, where the histidine 49 side chain (pKa = 7.2) is positively charged. Similar results were obtained with ribonuclease Sa where Asp25Lys is 0.9 kcal/mol and Glu74Lys is 1.1 kcal/mol more stable than the wild-type enzyme. These results suggest that protein stability can be increased by improving the coulombic interactions among charged groups on the protein surface. In addition, the stability of RNase T1 decreases as more hydrophobic aromatic residues are substituted for Ala49, indicating a reverse hydrophobic effect.  相似文献   

16.
A technique is described to study the effect of acetylation of individual lysine residues in peptide hormones on the affinity for their receptors, and is illustrated for the case of human growth hormone (hGH) binding to somatogenic receptors. The hGH was partially acetylated with high specific activity [3H]-acetic anhydride and the product ([3H]-Ac-hGH) was incubated with solubilised affinity-purified somatogenic receptors (from male rat liver) in the presence and absence of excess unlabelled hGH. The receptor-bound and unbound labelled hormone were separated by gel filtration and subjected to HPLC tryptic peptide mapping after the addition of cold carrier Ac-hGH. Peaks of [3H] radioactivity were assigned to peptides corresponding to the acetylation of specific lysine residues in the hGH sequence by amino acid analysis and sequencing. Comparison of the relative intensities of corresponding [3H] peaks in the peptide maps of added receptor, bound and unbound [3H]-Ac-hGH, enabled the relative receptor-binding potencies of different acetylated hGH species to be determined. Acetylation of lysine 168 or 172 in hGH greatly decreases its receptor-binding affinity, acetylation of lysine 115 probably causes a minor decrease, whereas acetylation of lysines 38, 70, and the N-terminal amino group have no appreciable effect. Acetylation of lysine 140 causes a significant increase in receptor-binding affinity.  相似文献   

17.
A high-affinity variant of human growth hormone (hGH(v)) contains 15 mutations within site 1 and binds to the hGH receptor (hGHR) approximately 400-fold tighter than does wild-type (wt) hGH (hGH(wt)). We used shotgun scanning combinatorial mutagenesis to dissect the energetic contributions of individual residues within the hGH(v) binding epitope and placed them in context with previously determined structural information. In all, the effects of alanine substitutions were determined for 35 hGH(v) residues that are directly contained in or closely border the binding interface. We found that the distribution of binding energy in the functional epitope of hGH(v) differs significantly from that of hGH(wt). The residues that contributed the majority of the binding energy in the wt interaction (the so-called binding "hot spot") remain important, but their contributions are attenuated in the hGH(v) interaction, and additional binding energy is acquired from residues on the periphery of the original hotspot. Many interactions that inhibited the binding of hGH(wt) are replaced by interactions that make positive contributions to the binding of hGH(v). These changes produce an expanded and diffused hot spot in which improved affinity results from numerous small contributions distributed broadly over the interface. The mutagenesis results are consistent with previous structural studies, which revealed widespread structural differences between the wt and variant hormone-receptor interfaces. Thus, it appears that the improved binding affinity of hGH(v) site 1 was not achieved through minor adjustments to the wt interface, but rather, results from a wholesale reconfiguration of many of the original binding elements.  相似文献   

18.
Competitive antagonists of the human prolactin (hPRL) receptor are a novel class of molecules of potential therapeutic interest in the context of cancer. We recently developed the pure antagonist Del1-9-G129R-hPRL by deleting the nine N-terminal residues of G129R-hPRL, a first generation partial antagonist. We determined the crystallographic structure of Del1-9-G129R-hPRL, which revealed no major change compared with wild type hPRL, indicating that its pure antagonistic properties are intrinsically due to the mutations. To decipher the molecular bases of pure antagonism, we compared the biological, physicochemical, and structural properties of numerous hPRL variants harboring N-terminal or Gly(129) mutations, alone or combined. The pure versus partial antagonistic properties of the multiple hPRL variants could not be correlated to differences in their affinities toward the hPRL receptor, especially at site 2 as determined by surface plasmon resonance. On the contrary, residual agonism of the hPRL variants was found to be inversely correlated to their thermodynamic stability, which was altered by all the Gly(129) mutations but not by those involving the N terminus. We therefore propose that residual agonism can be abolished either by further disrupting hormone site 2-receptor contacts by N-terminal deletion, as in Del1-9-G129R-hPRL, or by stabilizing hPRL and constraining its intrinsic flexibility, as in G129V-hPRL.  相似文献   

19.
J Sancho  L Serrano  A R Fersht 《Biochemistry》1992,31(8):2253-2258
A single histidine residue has been placed at either the N-terminus or the C-terminus of each of the two alpha-helices of barnase. The pKa of that histidine residue in each of the four mutants has been determined by 1H NMR. The pKas of the two residues at the C-terminus are, on average, 0.5 unit higher, and those of the residues at the N-terminus are 0.8 unit lower, than the pKa of histidines in unfolded barnase at low ionic strength. The conformational stability of the mutant proteins at different values of pH has been measured by urea denaturation. C-Terminal histidine mutants are approximately 0.6 kcal mol-1 more stable when the introduced histidine is protonated, both at low and high ionic strength. N-Terminal mutants with a protonated histidine residue are approximately 1.1 kcal mol-1 less stable at low ionic strength and 0.5 kcal mol-1 less stable at high ionic strength (1 M NaCl). The low-field 1H NMR spectra of the mutant proteins at low pH suggest that the C-terminal histidines form hydrogen bonds with the protein while the N-terminal histidines do not form the same. The perturbations of pKa and stability result from a combination of different electrostatic environments and hydrogen-bonding patterns at either ends of helices. The value of 0.6 kcal mol-1 represents a lower limit to the favorable electrostatic interaction between the alpha-helix dipole and a protonated histidine residue at the C-terminal end of the helix.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The apparent isoelectric points (pI) in isoelectric focusing (IF) of human pituitary and amniotic fluid prolactin (hPRL), both non-iodinated and iodinated, were determined. Unresolved mixtures of pituitary hPRL isohormones E and F, and of at least five isohormones found in amniotic fluid, and plasma hPRL exhibit an average pI value of 6.5 - 6.7. Transient state pH values observed or previously reported for hPRL components range from pH 5.9 to 6.8 after correction to standard conditions. At pH 8.1, the major isohormone, hPRL-F, carriers a charge of 2.2 net protons per molecule. The net charge differences among isohormones E, F and G are compatible with acquisition or loss of single charged groups per 20,000 molecular weight. This net charge is similar to that of the least prolactin-bioactive major isohormone of human growth hormone (hGH-B), while the hGH with a bioactivity comparable to that of hPRL exhibits a net charge of 3.4 valence units. The "large" isohormones J and H increased net charges, by a factor of 2-3, in direct proportion to their size increments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号