首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
14-3-3 proteins are important negative regulators of cell death pathways. Recent studies have revealed alterations in 14-3-3s in Parkinson''s disease (PD) and the ability of 14-3-3s to interact with α-synuclein (α-syn), a protein central to PD pathophysiology. In a transgenic α-syn mouse model, we found reduced expression of 14-3-3θ, -ɛ, and -γ. These same isoforms prevent α-syn inclusion formation in an H4 neuroglioma cell model. Using dopaminergic cell lines stably overexpressing each 14-3-3 isoform, we found that overexpression of 14-3-3θ, -ɛ, or -γ led to resistance to both rotenone and 1-methyl-4-phenylpyridinium, whereas other isoforms were not protective against both toxins. Inhibition of a single protective isoform, 14-3-3θ, by shRNA did not increase vulnerability to neurotoxic injury, but toxicity was enhanced by broad-based inhibition of 14-3-3 action with the peptide inhibitor difopein. Using a transgenic C. elegans model of PD, we confirmed the ability of both human 14-3-3θ and a C. elegans 14-3-3 homologue (ftt-2) to protect dopaminergic neurons from α-syn toxicity. Collectively, these data show a strong neuroprotective effect of enhanced 14-3-3 expression – particularly of the 14-3-3θ, -ɛ, and -γ isoforms – in multiple cellular and animal models of PD, and point to the potential value of these proteins in the development of neuroprotective therapies for human PD.  相似文献   

2.
Natural compounds are regarded as a rich source for potential anti-inflammatory and anti-carcinogenic agents. Increasing evidence indicates that histone phosphorylation at Ser10 is a marker for cell cycle progression during the mitosis and the induction of immediate pro-inflammatory genes during the interphase. In the present study, we have screened our in-house natural compounds to find out new chemical inhibitor(s) of histone H3 phosphorylation at Ser10. As a result, we observed that α-amyrin, oleanolic acid, marliolide, and 4′-O-β-d-glucosyl-5-O-methylvisamminol decreased the levels of histone H3 phosphorylation at Ser10 and c-Jun. In particular, we observed that 4′-O-β-d-glucosyl-5-O-methylvisamminol suppressed the direct interaction of histone H3 with 14-3-3ε, inhibited the aurora B kinase activity and delayed the mitotic cell cycle progression. We reports 4′-O-β-d-glucosyl-5-O-methylvisamminol as the first epigenetic natural chemical inhibitor that can abrogates the mitotic cell cycle progression and immediate pro-inflammatory gene expressions via suppression of histone H3 phosphorylation at Ser10 and its interaction with 14-3-3ε.  相似文献   

3.
4.
利用RT-PCR和RACE技术,从菠菜中首次获得了14-3-3蛋白基因的全长cDNA序列(GenBank登录号JX952165),命名为So14-3-3.该基因全长1 166 bp,开放阅读框801 bp,编码266个氨基酸.序列比对发现So143 3蛋白与其他植物14-3-3蛋白氨基酸序列一致性高达77.6%~84.7%.半定量RT-PCR表明,随NO3-胁迫处理时间的延长和浓度的增加,菠菜根和叶中So14-3-3基因的表达增强.实验构建了pGEX4T-So14-3-3原核表达载体,并通过IPTG诱导后获得分子量约为56 kD的蛋白.进一步的蛋白质印迹检测结果表明,随着NO3处理时间的延长和浓度的增加,So14-3-3蛋白表达也增加.该实验结果为进一步研究So14 3-3蛋白功能提供了基本的实验基础.  相似文献   

5.
6.

Background

Schistosoma japonicum, which remains a major public health problem in the Philippines and mainland China, is the only schistosome species for which zoonotic transmission is considered important. While bovines are suspected as the main zoonotic reservoir in parts of China, the relative contributions of various non-human mammals to S. japonicum transmission in the Philippines remain to be determined. We examined the population genetics of S. japonicum in the Philippines in order to elucidate transmission patterns across host species and geographic areas.

Methodology/Principal Findings

S. japonicum miracidia (hatched from eggs within fecal samples) from humans, dogs, pigs and rats, and cercariae shed from snail-intermediate hosts, were collected across two geographic areas of Samar Province. Individual isolates were then genotyped using seven multiplexed microsatellite loci. Wright''s FST values and phylogenetic trees calculated for parasite populations suggest a high frequency of parasite gene-flow across definitive host species, particularly between dogs and humans. Parasite genetic differentiation between areas was not evident at the definitive host level, possibly suggesting frequent import and export of infections between villages, although there was some evidence of geographic structuring at the snail–intermediate host level.

Conclusions/Significance

These results suggest very high levels of transmission across host species, and indicate that the role of dogs should be considered when planning control programs. Furthermore, a regional approach to treatment programs is recommended where human migration is extensive.  相似文献   

7.
The 14-3-3 proteins are a large family of approximately 30 kDa acidic proteins and acting in the regulation of many biological processes. In this study, a 14-3-3 zeta (Pi14-3-3z) gene from the Indian meal moth, Plodia interpunctella (Lepidoptera, Pyralidae) was isolated and characterized. The full-length cDNA of Pi14-3-3z is 1382 bp, including a 5'-untranslated region (UTR) of 141 bp, 3′-UTR of 497 bp and an open reading frame (ORF) of 744 bp encoding a polypeptide of 247 amino acids which contains a 14-3-3 homologues domain (PF00244). The deduced Pi14-3-3z protein sequence has 81%–100% identity with the homologues in comparison to with other individuals. qPCR analysis revealed that Pi14-3-3z was expressed at the four developmental stages and in all tissues tested. Based on the amino acid of 14-3-3z, phylogenetic analysis demonstrated a similar topology with the traditional classification, suggesting 14-3-3z protein has the potential value in phylogenetic inference.  相似文献   

8.

Background

Water buffalo and goats are natural hosts for S. japonicum in endemic areas of China. The susceptibility of these two hosts to schistosome infection is different, as water buffalo are less conducive to S. japonicum growth and development. To identify genes that may affect schistosome development and survival, we compared gene expression profiles of schistosomes derived from these two natural hosts using high-throughput microarray technology.

Results

The worm recovery rate was lower and the length and width of worms from water buffalo were smaller compared to those from goats following S. japonicum infection for 7 weeks. Besides obvious morphological difference between the schistosomes derived from the two hosts, differences were also observed by scanning and transmission electron microscopy. Microarray analysis showed differentially expressed gene patterns for parasites from the two hosts, which revealed that genes related to lipid and nucleotide metabolism, as well as protein folding, sorting, and degradation were upregulated, while others associated with signal transduction, endocrine function, development, immune function, endocytosis, and amino acid/carbohydrate/glycan metabolism were downregulated in schistosomes from water buffalo. KEGG pathway analysis deduced that the differentially expressed genes mainly involved lipid metabolism, the MAPK and ErbB signaling pathways, progesterone-mediated oocyte maturation, dorso-ventral axis formation, reproduction, and endocytosis, etc.

Conclusion

The microarray gene analysis in schistosomes derived from water buffalo and goats provide a useful platform to disclose differences determining S. japonicum host compatibility to better understand the interplay between natural hosts and parasites, and identify schistosome target genes associated with susceptibility to screen vaccine candidates.  相似文献   

9.
Phototropin receptor kinases play an important role in optimising plant growth in response to blue light. Much is known regarding their photochemical reactivity, yet little progress has been made to identify downstream signalling components. Here, we isolated several interacting proteins for Arabidopsis phototropin 1 (phot1) by yeast two-hybrid screening. These include members of the NPH3/RPT2 (NRL) protein family, proteins associated with vesicle trafficking, and the 14-3-3 lambda (λ) isoform from Arabidopsis. 14-3-3λ and phot1 were found to colocalise and interact in vivo. Moreover, 14-3-3 binding to phot1 was limited to non-epsilon 14-3-3 isoforms and was dependent on key sites of receptor autophosphorylation. No 14-3-3 binding was detected for Arabidopsis phot2, suggesting that 14-3-3 proteins are specific to phot1 signalling.

Structured summary

MINT-7146953: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with ARF7 (uniprotkb:Q9LFJ7) by two hybrid (MI:0018)MINT-7147335: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 phi (uniprotkb:P46077) by far Western blotting (MI:0047)MINT-7146854: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with RPT2 (uniprotkb:Q682S0) by two hybrid (MI:0018)MINT-7147215: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 lambda (uniprotkb:P48349) by anti tag coimmunoprecipitation (MI:0007)MINT-7147044, MINT-7147185, MINT-7147200, MINT-7147413: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 lambda (uniprotkb:P48349) by far Western blotting (MI:0047)MINT-7146983: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with 14-3-3 lambda (uniprotkb:P48349) by two hybrid (MI:0018)MINT-7146871: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with NPH3-like (uniprotkb:Q9S9Q9) by two hybrid (MI:0018)MINT-7146905: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with ARF2 (uniprotkb:Q9M1P5) by two hybrid (MI:0018)MINT-7147364: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 upsilon (uniprotkb:P42645) by far Western blotting (MI:0047)MINT-7147234: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 kappa (uniprotkb:P48348) by far Western blotting (MI:0047)  相似文献   

10.
Cyclin-dependent kinase 11 isoforms (CDK11) are members of the p34(cdc2) superfamily. They have been shown to play a role in RNA processing and apoptosis. In the present study, we investigate whether CDK11 interacts with 14-3-3 proteins. Our study shows that the putative 14-3-3 binding site (113-RHRSHS-118) within the N-terminal domain of CDK11(p110) is functional. Endogenous CDK11(p110) binds directly to 14-3-3 proteins and phosphorylation of the serine 118 within the RHRSHS motif seems to be required for the binding. Besides, CDK11(p110) is capable of interacting with several different isoforms of 14-3-3 proteins both in vitro and in vivo. The interaction of 14-3-3 gamma with CDK11(p110) occurs throughout the entire cell cycle and reaches maximum at the G2/M phase. Interestingly, 14-3-3 gamma shows strong interaction with N-terminal portion of caspase-cleaved CDK11(p110) (CDK11(p60)) product at 48 h after Fas treatment, which correlates with the maximal cleavage level of CDK11(p110) and the maximum activation level of CDK11 kinase activity during apoptosis. Collectively, these results suggest that CDK11 kinases could be regulated by interaction with 14-3-3 proteins during cell cycle and apoptosis.  相似文献   

11.
14-3-3s are abundant proteins that regulate essentially all aspects of cell biology, including cell cycle, motility, metabolism, and cell death. 14-3-3s work by docking to phosphorylated Ser/Thr residues on a large network of client proteins and modulating client protein function in a variety of ways. In recent years, aided by improvements in proteomics, the discovery of 14-3-3 client proteins has far outpaced our ability to understand the biological impact of individual 14-3-3 interactions. The rate-limiting step in this process is often the identification of the individual phospho-serines/threonines that mediate 14-3-3 binding, which are difficult to distinguish from other phospho-sites by sequence alone. Furthermore, trial-and-error molecular approaches to identify these phosphorylations are costly and can take months or years to identify even a single 14-3-3 docking site phosphorylation. To help overcome this challenge, we used machine learning to analyze predictive features of 14-3-3 binding sites. We found that accounting for intrinsic protein disorder and the unbiased mass spectrometry identification rate of a given phosphorylation significantly improves the identification of 14-3-3 docking site phosphorylations across the proteome. We incorporated these features, coupled with consensus sequence prediction, into a publicly available web app, called “14-3-3 site-finder”. We demonstrate the strength of this approach through its ability to identify 14-3-3 binding sites that do not conform to the loose consensus sequence of 14-3-3 docking phosphorylations, which we validate with 14-3-3 client proteins, including TNK1, CHEK1, MAPK7, and others. In addition, by using this approach, we identify a phosphorylation on A-kinase anchor protein-13 (AKAP13) at Ser2467 that dominantly controls its interaction with 14-3-3.  相似文献   

12.
Proteins of the 14-3-3 family are universal participate in multiple cellular processes. However, their exact role in the pathogenesis of prion diseases remains unclear. In this study, we proposed that human PrP was able to form molecular complex with 14-3-3β. The domains responsible for the interactions between PrP and 14-3-3β were mapped at the segments of amino acid (aa) residues 106–126 within PrP and aa 1–38 within 14-3-3β. Homology modeling revealed that the key aa residues for molecular interaction were D22 and D23 in 14-3-3β as well as K110 in PrP. Mutations in these aa residues inhibited the interaction between the two proteins in vitro. Our results also showed that recombinant PrP encouraged 14-3-3β dimer formation, whereas PrP106–126 peptide inhibited it. Recombinant 14-3-3β disaggregated the mature PrP106–126 fibrils in vitro. Moreover, the PrP–14-3-3 protein complexes were observed in the brain tissues of normal and scrapie agent 263 K infected hamsters. Colocalization of PrP and 14-3-3 was seen in the cytoplasm of human neuroblastoma cell line SH-SY5Y, as well as human cervical cancer cell line HeLa transiently expressing full-length human PrP. Our current data suggest the neuroprotection of PrPC and neuron damage caused by PrPSc may be associated with their functions of 14-3-3 dimerization regulation.  相似文献   

13.
Through protein-protein binding assays, we found that HCV core protein interacted with 14-3-3epsilon protein. Interestingly, the expression of HCV core protein induced apoptosis in 293T cells. The apoptosis induced by core expression is accompanied by translocation of Bax from cytosol to mitochondria, disruption of mitochondrial membrane potential, cytochrome c release, and activation of caspase-9 and caspase-3. Furthermore, over-expression of 14-3-3epsilon inhibited the core-induced apoptosis and Bax translocation to mitochondria. These results indicate that HCV core protein induces the Bax-mediated apoptosis by interacting with 14-3-3epsilon protein in 293T cells. As a mechanism of apoptosis induction by HCV core, we propose that the interaction of HCV core with 14-3-3epsilon causes the dissociation of Bax from the Bax/14-3-3epsilon complex in cytosol, and the free Bax protein provokes activation of the mitochondrial apoptotic pathway.  相似文献   

14.
Proteolytic enzymes of the caspase family, which reside as latent precursors in most nucleated metazoan cells, are core effectors of apoptosis. Of them, the executioner caspases- 3 and -7 exist within the cytosol as inactive dimers and are activated by a process called dimerization. Caspase inhibition is looked upon as a promising approach for treating multiple diseases. Though caspases have been extensively studied in the human system, their role in eukaryotic pathogens and parasites of human hosts has not drawn enough attention. In protein sequence analysis, caspases of blood flukes (Schistosoma spp) were revealed to have a low sequence identity with their counterparts in human and other mammalian hosts, which encouraged us to analyse interacting domains that participate in dimerization of caspases in the parasite and to reveal differences, if any, between the host-parasite systems. Significant differences in the molecular surface arrangement of the dimer interfaces reveal that in schistosomal caspases only eight out of forty dimer conformations are similar to human caspase structures. Thus, the parasite-specific dimer conformations (that are different from caspases of the host) may emerge as potential drug targets of therapeutic value against schistosomal infections. Three important factors namely, the size of amino acids, secondary structures and geometrical arrangement of interacting domains influence the pattern of caspase dimer formation, which, in turn, is manifested in varied structural conformations of caspases in the parasite and its human hosts.  相似文献   

15.
Exposed proteins of the Schistosoma japonicum tegument   总被引:1,自引:0,他引:1  
The ability of the mammalian blood fluke Schistosoma japonicum to survive in the inhospitable environment of the mammalian bloodstream can be attributed, at least in part, to its host-exposed outer surface, called the tegument. The tegument is a dynamic organ and is involved in nutrition, immune evasion and modulation, excretion, osmoregulation and signal transduction. Given its importance for parasite survival, proteins exposed to the host at the surface of the tegument are ideal targets for the development of vaccines and drugs. By biotinylating live adult worms and using a combination of OFFGEL electrophoresis and tandem mass spectrometry 54 proteins were identified as putatively host-exposed in S. japonicum. These included glucose transport proteins, an amino permease, a leucine aminopeptidase and a range of transporters, heat shock proteins and novel immune-active proteins. Members of the tetraspanin protein family and a homologue of Sm 29, a tegument membrane protein from Schistosoma mansoni, both effective vaccine antigens in S. mansoni, were also identified. The fate of labelled surface proteins was monitored over time using electron microscopy and revealed that biotinylated proteins were rapidly internalised from the surface of the tegument and trafficked into the cytoplasmic bridges that connect the distal cytoplasm of the tegument to the underlying cell bodies. The results reported herein dramatically increase the number of S. japonicum proteins known to be exposed to the host and, hence, those of interest as therapeutic targets. The ability of the parasite to rapidly internalise proteins at its surface has implications for the development of vaccines and may explain how these parasites are able to avoid the host immune system for long periods of time.  相似文献   

16.
A synthetic library of ca. 1013 single stranded oligodeoxynucleotides, each comprising a randomized 40mer sequence and homogeneous 10mer flanking regions, was screened for binding to recombinant human 14-3-3γ. A single aptamer, which showed similar affinities (KD ∼ 10−8 M) for six isoforms of the protein, has been shown to bind to undenatured 14-3-3 protein in the cerebral spinal fluid of scrapie infected sheep.  相似文献   

17.
The adaptor protein 14-3-3 binds to and stabilizes the tumor suppressor p53 and enhances its anti-tumour activity. In the regulatory C-terminal domain of p53 several 14-3-3 binding motifs have been identified. Here, we report the crystal structure of the extreme C-terminus (residues 385-393, p53pT387) of p53 in complex with 14-3-3σ at a resolution of 1.28 Å. p53pT387 is accommodated by 14-3-3 in a yet unrecognized fashion implying a rationale for 14-3-3 binding to the active p53 tetramer. The structure exhibits a potential binding site for small molecules that could stabilize the p53/14-3-3 protein complex suggesting the possibility for therapeutic intervention.

Structured summary

MINT-7711943: 14-3-3 sigma (uniprotkb:P31947) and p53 (uniprotkb:P04637) bind (MI:0407) by X-ray crystallography (MI:0114)MINT-7711931: 14-3-3 sigma (uniprotkb:P31947) and p53 (uniprotkb:P04637) bind (MI:0407) by isothermal titration calorimetry (MI:0065)  相似文献   

18.
The 14-3-3 protein family interacts with more than 2000 different proteins in mammals, as a result of its specific phospho-serine/phospho-threonine binding activity. Seven paralogs are strictly conserved in mammalian species. Here, we show that during adipogenic differentiation of 3T3-L1 preadipocytes, the level of each 14-3-3 protein paralog is regulated independently. For instance 14-3-3β, γ, and η protein levels are increased compared to untreated cells. In contrast, 14-3-3ε protein levels decreased after differentiation while others remained constant. In silico analysis of the promoter region of each gene showed differences that explain the results obtained at mRNA and protein levels.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号