首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Phosphoinositide-dependent kinase-1 (PDK1) mediates activation of many AGC kinases by docking onto a phosphorylated hydrophobic motif located C-terminal of the catalytic domain in the AGC kinase. The interaction shifts PDK1 into a conformation with increased catalytic activity and leads to autophosphorylation of PDK1. We demonstrate here that addition of a hydrophobic motif peptide increases the catalytic activity of PDK1 orthologues from Homo sapiens, Aplysia californica, Arabidopsis thaliana, Schizosaccharomyces pombe (ksg1), and Saccharomyces cerevisiae (Pkh1 and Pkh2) 2- to 12-fold. Furthermore, the hydrophobic motif peptide increases autophosphorylation of PDK1 from Homo sapiens, S. pombe, and S. cerevisiae (Phk2). Our results suggest that PDK1 interaction and activation by the hydrophobic motif of AGC kinases is a central mechanism in PDK1 function, which is conserved during eukaryotic evolution.  相似文献   

2.
Dystrophia myotonica protein kinase (DMPK) is a serine/threonine kinase composed of a kinase domain and a coiled‐coil domain involved in the multimerization. The crystal structure of the kinase domain of DMPK bound to the inhibitor bisindolylmaleimide VIII (BIM‐8) revealed a dimeric enzyme associated by a conserved dimerization domain. The affinity of dimerisation suggested that the kinase domain alone is insufficient for dimerisation in vivo and that the coiled‐coil domains are required for stable dimer formation. The kinase domain is in an active conformation, with a fully‐ordered and correctly positioned αC helix, and catalytic residues in a conformation competent for catalysis. The conserved hydrophobic motif at the C‐terminal extension of the kinase domain is bound to the N‐terminal lobe of the kinase domain, despite being unphosphorylated. Differences in the arrangement of the C‐terminal extension compared to the closely related Rho‐associated kinases include an altered PXXP motif, a different conformation and binding arrangement for the turn motif, and a different location for the conserved NFD motif. The BIM‐8 inhibitor occupies the ATP site and has similar binding mode as observed in PDK1.  相似文献   

3.
BACKGROUND: Protein kinase B (PKB), and the p70 and p90 ribosomal S6 kinases (p70 S6 kinase and p90 Rsk, respectively), are activated by phosphorylation of two residues, one in the 'T-loop' of the kinase domain and, the other, in the hydrophobic motif carboxy terminal to the kinase domain. The 3-phosphoinositide-dependent protein kinase 1 (PDK1) activates many AGC kinases in vitro by phosphorylating the T-loop residue, but whether PDK1 also phosphorylates the hydrophobic motif and whether all other AGC kinases are substrates for PDK1 is unknown. RESULTS: Mouse embryonic stem (ES) cells in which both copies of the PDK1 gene were disrupted were viable. In PDK1(-/-) ES cells, PKB, p70 S6 kinase and p90 Rsk were not activated by stimuli that induced strong activation in PDK1(+/+) cells. Other AGC kinases - namely, protein kinase A (PKA), the mitogen- and stress-activated protein kinase 1 (MSK1) and the AMP-activated protein kinase (AMPK) - had normal activity or were activated normally in PDK1(-/-) cells. The insulin-like growth factor 1 (IGF1) induced PKB phosphorylation at its hydrophobic motif, but not at its T-loop residue, in PDK1(-/-) cells. IGF1 did not induce phosphorylation of p70 S6 kinase at its hydrophobic motif in PDK1(-/-) cells. CONCLUSIONS: PDK1 mediates activation of PKB, p70 S6 kinase and p90 Rsk in vivo, but is not rate-limiting for activation of PKA, MSK1 and AMPK. Another kinase phosphorylates PKB at its hydrophobic motif in PDK1(-/-) cells. PDK1 phosphorylates the hydrophobic motif of p70 S6 kinase either directly or by activation of another kinase.  相似文献   

4.
3-Phosphoinositide-dependent protein kinase-1 (PDK1) phosphorylates the T-loop of several AGC (cAMP-dependent, cGMP-dependent, protein kinase C) family protein kinases, resulting in their activation. Previous structural studies have revealed that the alpha C-helix, located in the small lobe of the kinase domain of PDK1, is a key regulatory element, as it links a substrate interacting site termed the hydrophobic motif (HM) pocket with the phosphorylated Ser-241 in the T-loop. In this study we have demonstrated by mutational analysis that interactions between the phosphorylated Ser-241 and the alpha C-helix are not required for PDK1 activity or substrate binding through the HM-pocket but are necessary for PDK1 to be activated or stabilized by a peptide that binds to this site. The structure of an inactive T-loop mutant of PDK1, in which Ser-241 is changed to Ala, was also determined. This structure, together with surface plasmon resonance binding studies, demonstrates that the PDK1(S241A)-inactive mutant possesses an intact HM-pocket as well as an ordered alpha C-helix. These findings reveal that the integrity of the alpha C-helix and HM-pocket in PDK1 is not regulated by T-loop phosphorylation.  相似文献   

5.
3-phosphoinositide dependent protein kinase-1 (PDK1) plays a key role in regulating signalling pathways by activating AGC kinases such as PKB/Akt and S6K. Here we describe the 2.0 A crystal structure of the PDK1 kinase domain in complex with ATP. The structure defines the hydrophobic pocket termed the "PIF-pocket", which plays a key role in mediating the interaction and phosphorylation of certain substrates such as S6K1. Phosphorylation of S6K1 at its C-terminal PIF-pocket-interacting motif promotes the binding of S6K1 with PDK1. In the PDK1 structure, this pocket is occupied by a crystallographic contact with another molecule of PDK1. Interestingly, close to the PIF-pocket in PDK1, there is an ordered sulfate ion, interacting tightly with four surrounding side chains. The roles of these residues were investigated through a combination of site-directed mutagenesis and kinetic studies, the results of which confirm that this region of PDK1 represents a phosphate-dependent docking site. We discuss the possibility that an analogous phosphate-binding regulatory motif may participate in the activation of other AGC kinases. Furthermore, the structure of PDK1 provides a scaffold for the design of specific PDK1 inhibitors.  相似文献   

6.
The group of AGC protein kinases includes more than 60 protein kinases in the human genome, classified into 14 families: PDK1, AKT/PKB, SGK, PKA, PKG, PKC, PKN/PRK, RSK, NDR, MAST, YANK, DMPK, GRK and SGK494. This group is also widely represented in other eukaryotes, including causative organisms of human infectious diseases. AGC kinases are involved in diverse cellular functions and are potential targets for the treatment of human diseases such as cancer, diabetes, obesity, neurological disorders, inflammation and viral infections. Small molecule inhibitors of AGC kinases may also have potential as novel therapeutic approaches against infectious organisms. Fundamental in the regulation of many AGC kinases is a regulatory site termed the “PIF-pocket” that serves as a docking site for substrates of PDK1. This site is also essential to the mechanism of activation of AGC kinases by phosphorylation and is involved in the allosteric regulation of N-terminal domains of several AGC kinases, such as PKN/PRKs and atypical PKCs. In addition, the C-terminal tail and its interaction with the PIF-pocket are involved in the dimerization of the DMPK family of kinases and may explain the molecular mechanism of allosteric activation of GRKs by GPCR substrates. In this review, we briefly introduce the AGC kinases and their known roles in physiology and disease and the discovery of the PIF-pocket as a regulatory site in AGC kinases. Finally, we summarize the current status and future therapeutic potential of small molecules directed to the PIF-pocket; these molecules can allosterically activate or inhibit the kinase as well as act as substrate-selective inhibitors. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).  相似文献   

7.
In receptor‐mediated transport pathways in mammalian cells, clathrin‐coated vesicle (CCV) µ‐adaptins are the main binding partners for the tyrosine sorting/internalization motif (YXXØ). We have analyzed the function of the µA‐adaptin, one of the five µ‐adaptins from Arabidopsis thaliana, by pull‐down assays and plasmon resonance measurements using its receptor‐binding domain (RBD) fused to a histidine tag. We show that this adaptin is able to bind the consensus tyrosine motif YXXØ from the pea vacuolar sorting receptor (VSR)‐PS1, as well as from the mammalian trans‐Golgi network (TGN)38 protein. Moreover, the tyrosine residue was revealed to be crucial for binding of the complete cytoplasmic tail of VSR‐PS1 to the plant µA‐adaptin. The trans‐Golgi localization of the µA‐adaptin strongly suggests its involvement in Golgi‐ to vacuole‐trafficking events.  相似文献   

8.
Members of the AGC subfamily of protein kinases including protein kinase B, p70 S6 kinase, and protein kinase C (PKC) isoforms are activated and/or stabilized by phosphorylation of two residues, one that resides in the T-loop of the kinase domain and the other that is located C-terminal to the kinase domain in a region known as the hydrophobic motif. Atypical PKC isoforms, such as PKCzeta, and the PKC-related kinases, like PRK2, are also activated by phosphorylation of their T-loop site but, instead of possessing a phosphorylatable Ser/Thr in their hydrophobic motif, contain an acidic residue. The 3-phosphoinositide-dependent protein kinase (PDK1) activates many members of the AGC subfamily of kinases in vitro, including PKCzeta and PRK2 by phosphorylating the T-loop residue. In the present study we demonstrate that the hydrophobic motifs of PKCzeta and PKCiota, as well as PRK1 and PRK2, interact with the kinase domain of PDK1. Mutation of the conserved residues of the hydrophobic motif of full-length PKCzeta, full-length PRK2, or PRK2 lacking its N-terminal regulatory domain abolishes or significantly reduces the ability of these kinases to interact with PDK1 and to become phosphorylated at their T-loop sites in vivo. Furthermore, overexpression of the hydrophobic motif of PRK2 in cells prevents the T-loop phosphorylation and thus inhibits the activation of PRK2 and PKCzeta. These findings indicate that the hydrophobic motif of PRK2 and PKCzeta acts as a "docking site" enabling the recruitment of PDK1 to these substrates. This is essential for their phosphorylation by PDK1 in cells.  相似文献   

9.
刘革修 《生命科学》2005,17(5):387-391
PDK1可调节AGC激酶家族中一些重要蛋白激酶。这些激酶包括蛋白激酶B(PKB/Akt)、p70核小体S6激酶(p70 ribosomal S6 kinase,S6K)、血清和糖皮质激素诱导激酶(SGK)和蛋白激酶C(PKC)等,它们在细胞代谢、生长、增殖和存活等生理过程中具有重要作用。因此,了解PDK1生物学特性可能对其调节的AGC激酶持续活化的癌症治疗具有一定推动作用。本文对PDK1的结构、遗传和生化特点进行了综述。  相似文献   

10.
The members of the AGC kinase family frequently exhibit three conserved phosphorylation sites: the activation loop, the hydrophobic motif (HM), and the zipper (Z)/turn-motif (TM) phosphorylation site. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates the activation loop of numerous AGC kinases, including the protein kinase C-related protein kinases (PRKs). Here we studied the docking interaction between PDK1 and PRK2 and analyzed the mechanisms that regulate this interaction. In vivo labeling of recombinant PRK2 by 32Pi revealed phosphorylation at two sites, the activation loop and the Z/TM in the C-terminal extension. We provide evidence that phosphorylation of the Z/TM site of PRK2 inhibits its interaction with PDK1. Our studies further provide a mechanistic model to explain different steps in the docking interaction and regulation. Interestingly, we found that the mechanism that negatively regulates the docking interaction of PRK2 to the upstream kinase PDK1 is directly linked to the activation mechanism of PRK2 itself. Finally, our results indicate that the mechanisms underlying the regulation of the interaction between PRK2 and PDK1 are specific for PRK2 and do not apply for other AGC kinases.The regulation of protein function by phosphorylation and dephosphorylation is a key mechanism of intracellular signaling pathways in eukaryotic organisms. Protein phosphorylation is catalyzed by protein kinases, which are themselves often regulated by phosphorylation (1). The specificity of protein kinases is essential for their cellular functions. In some groups of protein kinases, the specificity is achieved by means of “docking interactions.” Protein kinase docking interactions involve a recognition site on the kinase or a flanking domain that is different from the active site. The most notable example, MAP kinases, uses a docking interaction to specifically recognize substrates, upstream kinases, and phosphatases. Despite the large amount of data on protein kinase docking interactions, e.g. in the MAP kinase field, there is very little information on how these essential interactions are regulated (24).3-Phosphoinositide-dependent protein kinase 1 (PDK1)3 belongs to the AGC family of protein kinases and is the activation loop kinase for several other AGC kinases (5). A key feature of the AGC kinase family members except PDK1 is the presence of a C-terminal extension (CT) to the catalytic core that contains a conserved hydrophobic motif (HM) harboring a phosphorylation site. In many AGC kinases, the HM mediates a docking interaction with PDK1. For example, p90 ribosomal S6 kinase (RSK), p70 S6 kinase (S6K) and serum- and glucocorticoid-induced protein kinase (SGK) interact with PDK1 upon phosphorylation of the HM site (69). The phosphorylated HM binds to a HM-binding pocket in the catalytic core of PDK1 that was originally termed the PIF-binding pocket (6, 10).Besides its role in the docking of substrates to PDK1, the HM/PIF-binding pocket was also identified as a ubiquitous and key regulatory site in likely all AGC kinases (7, 11). Thus, in AGC kinases studied up to now, the HM/PIF-binding pocket serves as an intramolecular docking site for the phosphorylated HM. In summary, the HM has a dual function in AGC kinase activation, (i) mediating the intermolecular interaction with PDK1 and (ii) acting as an intramolecular allosteric activator that stabilizes the active conformation of the kinase domain via binding to the HM/PIF-binding pocket.The CT of AGC kinases additionally contains a second regulatory phosphorylation site traditionally termed the “turn motif” (TM), and more recently the zipper (Z) site. The Z/TM phosphate interacts with a binding site within the kinase domain, acting like a zipper which serves to support the intramolecular binding of the phosphorylated HM to the HM/PIF-binding pocket (12). Hence, AGC kinases are synergistically activated by phosphorylation at the activation loop, the HM, and the Z/TM sites.Protein kinase C-related protein kinases (PRKs) (13) (also named PAK for protease-activated kinase (1416) and PKN for protein kinase N (17)) represent a subfamily of AGC kinases. So far, three PRK isoforms were identified, PRK1, PRK2, and PKN3, which are effectors of the small GTP-binding protein Rho. PRKs, as well as the Rho-associated kinases (ROCKs), are considered to be the protein kinases that mediate the phosphorylation events downstream of Rho activation and both can be inhibited by the highly specific protein kinase inhibitor Y27632 (18). The most notable role described for PRK2 is the control of entry into mitosis and exit from cytokinesis (19). In addition, PRK2 phosphorylates the hepatitis C virus (HCV) RNA polymerase (20). In support of a function in HCV RNA replication, PRK2 inhibitors like Y27632 suppress HCV replication (21).The N-terminal region of PRK2 possesses three Rho effector (HR1) domains (13), a pseudosubstrate region that is thought to have an autoinhibitory function (22) and a C2-like domain, which is a potential binding site for lipid activators. The C-terminal region of PRK2 harbors the HM that mediates the docking interaction with the HM/PIF-binding pocket in its upstream kinase PDK1 (10, 23). Interestingly, PRKs and also atypical protein kinase Cs (PKCs, PKCζ, and PKCι/λ), contain an acidic residue instead of a phosphorylatable amino acid at the site equivalent to the HM phosphorylation site in other AGC kinases. Therefore, the molecular events that regulate the interaction of PRK2 and PKCζ with PDK1 must be different from the mechanism characterized for S6K, SGK, and RSK.In the present work we extended and refined the model of docking interaction between PRK2 and PDK1 and characterized C-terminal regions of PRK2 that participate in the regulation of this interaction. The work sheds light on the common as well as specific mechanisms that operate in the regulation of PDK1 docking interaction with its different substrates.  相似文献   

11.
《Biophysical journal》2021,120(24):5657-5673
Leukocyte migration is controlled by a leading-edge chemosensory pathway that generates the regulatory lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3), a growth signal, thereby driving leading-edge expansion up attractant gradients toward sites of infection, inflammation, or tissue damage. PIP3 also serves as an important growth signal in growing cells and oncogenesis. The kinases PDK1, AKT1 or PKB, and PKCα are key components of a plasma-membrane-based PIP3 and Ca2+ signaling circuit that regulates these processes. PDK1 and AKT1 are recruited to the membrane by PIP3, whereas PKCα is recruited to the membrane by Ca2+. All three of these master kinases phosphoregulate an array of protein targets. For example, PDK1 activates AKT1, PKCα, and other AGC kinases by phosphorylation at key sites. PDK1 is believed to form PDK1-AKT1 and PDK1-PKCα heterodimers stabilized by a PDK1-interacting fragment (PIF) interaction between the PDK1 PIF pocket and the PIF motif of the AGC binding partner. Here, we present the first, to our knowledge, single-molecule studies of full-length PDK1 and AKT1 on target membrane surfaces, as well as their interaction with full-length PKCα. These studies directly detect membrane-bound PDK1-AKT1 and PDK1-PKCα heterodimers stabilized by PIF interactions formed at physiological ligand concentrations. PKCα exhibits eightfold higher PDK1 affinity than AKT1 and can competitively displace AKT1 from PDK1-AKT1 heterodimers. Ensemble activity measurements under matched conditions reveal that PDK1 activates AKT1 via a cis mechanism by phosphorylating an AKT1 molecule in the same PDK1-AKT1 heterodimer, whereas PKCα acts as a competitive inhibitor of this phosphoactivation reaction by displacing AKT1 from PDK1. Overall, the findings provide insights into the binding and regulatory interactions of the three master kinases on their target membrane and suggest that a recently described tumor suppressor activity of PKC isoforms may arise from its ability to downregulate PDK1-AKT1 phosphoactivation in the PIP3-PDK1-AKT1-mTOR pathway linked to cell growth and oncogenesis.  相似文献   

12.
The growth factor/insulin-stimulated AGC kinases share an activation mechanism based on three phosphorylation sites. Of these, only the role of the activation loop phosphate in the kinase domain and the hydrophobic motif (HM) phosphate in a C-terminal tail region are well characterized. We investigated the role of the third, so-called turn motif phosphate, also located in the tail, in the AGC kinases PKB, S6K, RSK, MSK, PRK and PKC. We report cooperative action of the HM phosphate and the turn motif phosphate, because it binds a phosphoSer/Thr-binding site above the glycine-rich loop within the kinase domain, promoting zipper-like association of the tail with the kinase domain, serving to stabilize the HM in its kinase-activating binding site. We present a molecular model for allosteric activation of AGC kinases by the turn motif phosphate via HM-mediated stabilization of the alphaC helix. In S6K and MSK, the turn motif phosphate thereby also protects the HM from dephosphorylation. Our results suggest that the mechanism described is a key feature in activation of upto 26 human AGC kinases.  相似文献   

13.
The substrates of most protein kinases remain unknown because of the difficulty tracing signaling pathways and identifying sites of protein phosphorylation. Here we describe a method useful in detecting subclasses of protein kinase substrates. Although the method is broadly applicable to any protein kinase for which a substrate consensus motif has been identified, we illustrate here the use of antibodies broadly reactive against phosphorylated Ser/Thr-motifs typical of AGC kinase substrates. Phosphopeptide libraries with fixed residues corresponding to consensus motifs RXRXXT*/S* (Akt motif) and S*XR (protein kinase C motif) were used as antigens to generate antibodies that recognize many different phosphoproteins containing the fixed motif. Because most AGC kinase members are phosphorylated and activated by phosphoinositide-dependent protein kinase-1 (PDK1), we used PDK1-/- ES cells to profile potential AGC kinase substrates downstream of PDK1. To identify phosphoproteins detected using the Akt substrate antibody, we characterized the antibody binding specificity to generate a specificity matrix useful in predicting antibody reactivity. Using this approach we predicted and then identified a 30-kDa phosphoprotein detected by both Akt and protein kinase C substrate antibodies as S6 ribosomal protein. Phosphospecific motif antibodies offer a new approach to protein kinase substrate identification that combines immunoreactivity data with protein data base searches based upon antibody specificity.  相似文献   

14.
The growth factor-activated AGC protein kinases RSK, S6K, PKB, MSK and SGK are activated by serine/threonine phosphorylation in the activation loop and in the hydrophobic motif, C-terminal to the kinase domain. In some of these kinases, phosphorylation of the hydrophobic motif creates a specific docking site that recruits and activates PDK1, which then phosphorylates the activation loop. Here, we discover a pocket in the kinase domain of PDK1 that recognizes the phosphoserine/phosphothreonine in the hydrophobic motif by identifying two oppositely positioned arginine and lysine residues that bind the phosphate. Moreover, we demonstrate that RSK2, S6K1, PKBalpha, MSK1 and SGK1 contain a similar phosphate-binding pocket, which they use for intramolecular interaction with their own phosphorylated hydrophobic motif. Molecular modelling and experimental data provide evidence for a common activation mechanism in which the phosphorylated hydrophobic motif and activation loop act on the alphaC-helix of the kinase structure to induce synergistic stimulation of catalytic activity. Sequence conservation suggests that this mechanism is a key feature in activation of >40 human AGC kinases.  相似文献   

15.
The regulation of renin gene expression, the rate‐limiting enzyme of the system, is thought to be fundamental to the total system. Previously, we mapped six putative cis‐elements in the promoter region of the human renin gene with nuclear proteins from human chorionic cells and human renal cortex by DNase I protection assay (footprint A–F). Each footprint contains Ets motif like site (A), HOXñPBX recognition sequence (B), unknown sequence as DNA binding consensus (C), CRE (D), COUP‐TFII (ARP‐1) motif like site (E), and AGE3 like site (F). Footprint D has been characterized by means of functional studies as the genuine human renin gene CRE interacting with CREB in cooperation with the site of footprint B. To obtain further clues to the specific expression in the promoter region, these putative cis‐elements were conducted to a consensus‐specific binding assay to compare renin‐producing and non‐renin‐producing cells by EMSA and electromobility super‐shift assay. Different sequence‐specific DNA/protein binding was obtained among the different cell lines with footprint B site, with COUP‐TFII (ARP‐1) motif like site and possibly with footprint F site. The results implicate these putative cis‐elements and each corresponding trans‐factor in the specific expression of the human renin gene in the promoter region. Further functional characterization of these elements would provide important data for a better understanding of human renin gene expression. © 2004 Wiley‐Liss, Inc.  相似文献   

16.
Protein kinases belonging to the AGC group modulate many diverse cellular processes in all eukaryotes. One important way to regulate AGC kinases is through phosphorylation by the upstream kinase PDK1. PDK1 localization and activity usually depend on interactions with phospholipids, which are mediated by a conserved lipid-binding pleckstrin homology (PH) domain. We recently analyzed putative PDK1 sequences from 17 photosynthetic organisms, finding that PDK1s from vascular and nonvascular species seem to be distinguished by the presence or absence of a PH domain, respectively. The only other reported PDK1 lacking a PH domain is from yeast (Saccharomyces cerevisiae). These observations raise questions about how plant PDK1s and their lipid-binding capabilities have evolved in relation to other eukaryotes, and what this means for PDK1 function. Here we use 100 PDK1 sequences from diverse organisms to discuss possible evolutionary aspects of plant PDK1 structure and lipid binding.  相似文献   

17.
18.
A novel series of benzoazepin-2-ones were designed and synthesized targeting the PIF pocket of AGC protein kinases, among which a series of thioether-linked benzoazepin-2-ones were discovered to bind to the PIF pocket of 3-phosphoinositide-dependent kinase-1 (PDK1), and to displace the PIF peptide with an EC50 values in the lower micromolar range. The structure–activity relationships (SARs) of the linker region, tail region, and distal region were explored to further optimize these novel binders which target the PIF pocket of PDK1. When tested in an in vitro PDK1 enzymatic assay using a peptide substrate, the benzodiazepin-2-ones increased the activity of the enzyme in a concentration-dependent fashion, indicating these compounds act as PDK1 allosteric activators. These new compounds may be further developed as therapeutic agents for the treatment of diseases where the PDK1-mediated AGC protein kinases are dysregulated.  相似文献   

19.
The TOR (target of rapamycin), an atypical protein kinase, is evolutionarily conserved from yeast to man. Pharmacological studies using rapamycin to inhibit TOR and yeast genetic studies have provided key insights on the function of TOR in growth regulation. One of the first bona fide cellular targets of TOR was the mammalian protein kinase p70 S6K (p70 S6 kinase), a member of a family of kinases called AGC (protein kinase A/protein kinase G/protein kinase C-family) kinases, which include PKA (cAMP-dependent protein kinase A), PKG (cGMP-dependent kinase) and PKC (protein kinase C). AGC kinases are also highly conserved and play a myriad of roles in cellular growth, proliferation and survival. The AGC kinases are regulated by a common scheme that involves phosphorylation of the kinase activation loop by PDK1 (phosphoinositide-dependent kinase 1), and phosphorylation at one or more sites at the C-terminal tail. The identification of two distinct TOR protein complexes, TORC1 (TOR complex 1) and TORC2, with different sensitivities to rapamycin, revealed that TOR, as part of either complex, can mediate phosphorylation at the C-terminal tail for optimal activation of a number of AGC kinases. Together, these studies elucidated that a fundamental function of TOR conserved throughout evolution may be to balance growth versus survival signals by regulating AGC kinases in response to nutrients and environmental conditions. This present review highlights this emerging function of TOR that is conserved from budding and fission yeast to mammals.  相似文献   

20.
Tang Y  McLeod M 《Genetics》2004,168(4):1843-1853
Phosphoinositide-dependent protein kinase 1 (PDK1) plays a central role in cellular signaling by phosphorylating members of the AGC family of kinases. This family includes protein kinase C (PKC), protein kinase B (PKB), p70/p90 ribosomal S6 kinases (RSK and S6K), and the catalytic subunit of cAMP-dependent protein kinase (PKA). Although PDK1 phosphorylates and activates PKC, PKB, and RSK in vivo, PDK1 regulation of PKA remains controversial. We isolated ksg1, the fission yeast ortholog of mammalian PDK1, as a suppressor of growth defects caused by loss of the stress-activated MAP kinase, Spc1. Here, we demonstrate that Ksg1 is required for activation of PKA. Cells containing the ksg1.12 thermolabile allele exhibit pleiotropic phenotypes, including the failure to arrest in G(1) and an inability to conjugate. The ksg1.12 allele strongly suppresses defects associated with unregulated PKA. Pka1, the catalytic subunit of cAMP-dependent protein kinase, is phosphorylated in vivo at Thr-356, which is located in the activation loop of the kinase and corresponds to Thr-197 in mammalian PKA. Phosphorylation of Thr-356 is required for in vivo activation of Pka1 and is dependent upon Ksg1. These data provide experimental evidence that PKA is a physiological substrate for PDK1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号