首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
DNA replication initiation proteins (Reps) are subjected to degradation by cellular proteases. We investigated how the formation of nucleoprotein complex, involving Rep and a protease, affects Rep degradation. All known Escherichia coli AAA+ cytosolic proteases and the replication initiation protein TrfA of the broad-host-range plasmid RK2 were used. Our results revealed that DNA influences the degradation process and that the observed effects are opposite and protease specific. In the case of ClpXP and ClpYQ proteases, DNA abolishes proteolysis, while in the case of ClpAP and Lon proteases it stimulates the process. ClpX and ClpY cannot interact with DNA-bound TrfA, while the ClpAP and Lon activities are enhanced by the formation of nucleoprotein complexes involving both the protease and TrfA. Lon has to interact with TrfA before contacting DNA, or this interaction can occur with TrfA already bound to DNA. The TrfA degradation by Lon can be carried out only on DNA. The absence of Lon results with higher stability of TrfA in the cell.  相似文献   

2.
The Escherichia coli molecular chaperone protein ClpB is a member of the highly conserved Hsp100/Clp protein family. Previous studies have shown that the ClpB protein is needed for bacterial thermotolerance. Purified ClpB protein has been shown to reactivate chemically and heat-denatured proteins. In this work we demonstrate that the combined action of ClpB and the DnaK, DnaJ, and GrpE chaperones leads to the activation of DNA replication of the broad-host-range plasmid RK2. In contrast, ClpB is not needed for the activation of the oriC-dependent replication of E. coli. Using purified protein components we show that the ClpB/DnaK/DnaJ/GrpE synergistic action activates the plasmid RK2 replication initiation protein TrfA by converting inactive dimers to an active monomer form. In contrast, Hsp78/Ssc1/Mdj1/Mge1, the corresponding protein system from yeast mitochondria, cannot activate the TrfA replication protein. Our results demonstrate for the first time that the ClpB/DnaK/DnaJ/GrpE system is involved in protein monomerization and in the activation of a DNA replication factor.  相似文献   

3.
Antibiotic selection drives adaptation of antibiotic resistance plasmids to new bacterial hosts, but the molecular mechanisms are still poorly understood. We previously showed that a broad‐host‐range plasmid was poorly maintained in Shewanella oneidensis, but rapidly adapted through mutations in the replication initiation gene trfA1. Here we examined if these mutations reduced the fitness cost of TrfA1, and whether this was due to changes in interaction with the host's DNA helicase DnaB. The strains expressing evolved TrfA1 variants showed a higher growth rate than those expressing ancestral TrfA1. The evolved TrfA1 variants showed a lower affinity to the helicase than ancestral TrfA1 and were no longer able to activate the helicase at the oriV without host DnaA. Moreover, persistence of the ancestral plasmid was increased upon overexpression of DnaB. Finally, the evolved TrfA1 variants generated higher plasmid copy numbers than ancestral TrfA1. The findings suggest that ancestral plasmid instability can at least partly be explained by titration of DnaB by TrfA1. Thus under antibiotic selection resistance plasmids can adapt to a novel bacterial host through partial loss of function mutations that simultaneously increase plasmid copy number and decrease unfavorably high affinity to one of the hosts' essential proteins.  相似文献   

4.
RepA protein is the DNA replication initiator of the Pseudomonas plasmid pPS10. RepA dimers bind to an inversely repeated operator sequence in repA promoter, thus repressing its own synthesis, whereas monomers bind to four directly repeated sequences (iterons) to initiate DNA replication. We had proposed previously that RepA is composed of two winged-helix (WH) domains, a structural unit also present in eukaryotic and archaeal initiators. To bind to the whole iteron sequence through both domains, RepA should couple monomerization to a conformational change in the N-terminal WH, which includes a leucine zipper-like sequence motif. We show for the first time that, by itself, binding to iteron DNA in vitro dissociates RepA dimers into monomers and alters RepA conformation, suggesting an allosteric effect. Furthermore, we also show that similar changes in RepA are promoted by mutations that substitute two Leu residues of the putative leucine zipper by Ala, destabilizing the hydrophobic core of the first WH. We propose that this mutant (RepA-2L2A) resembles a transient folding intermediate in the pathway leading to active monomers. These findings, together with the known activation of other Rep-type proteins by chaperones, are relevant to understand the molecular basis of plasmid DNA replication initiation.  相似文献   

5.
RepA is the DNA replication initiator protein of the Pseudomonas plasmid pPS10. RepA has a dual function: as a dimer, it binds to an inversely-repeated sequence acting as a repressor of its own synthesis; as a monomer, RepA binds to four directly-repeated sequences to constitute a specialized nucleoprotein complex responsible for the initiation of DNA replication. We have previously shown that a Leucine Zipper-like motif (LZ) at the N-terminus of RepA is responsible for protein dimerization. In this paper we characterize the existence in RepA of two protein globular domains C-terminal to the LZ. We propose that dissociation of RepA dimers into monomers results in a conformational change from a compact arrangement of both domains, competent for binding to the operator, to an extended species that is suited for iteron binding. This model establishes the structural basis for the activation of DNA replication initiators in plasmids from Gram-negative bacteria.  相似文献   

6.
7.
8.
9.
10.
11.
An essential feature of replication initiation proteins is their ability to bind to DNA. In this work, we describe a new domain that contributes to a replication initiator sequence-specific interaction with DNA. Applying biochemical assays and structure prediction methods coupled with DNA–protein crosslinking, mass spectrometry, and construction and analysis of mutant proteins, we identified that the replication initiator of the broad host range plasmid RK2, in addition to two winged helix domains, contains a third DNA-binding domain. The phylogenetic analysis revealed that the composition of this unique domain is typical within the described TrfA-like protein family. Both in vitro and in vivo experiments involving the constructed TrfA mutant proteins showed that the newly identified domain is essential for the formation of the protein complex with DNA, contributes to the avidity for interaction with DNA, and the replication activity of the initiator. The analysis of mutant proteins, each containing a single substitution, showed that each of the three domains composing TrfA is essential for the formation of the protein complex with DNA. Furthermore, the new domain, along with the winged helix domains, contributes to the sequence specificity of replication initiator interaction within the plasmid replication origin.  相似文献   

12.
The separation of DNA replication origin licensing and activation in the cell cycle is essential for genome stability across generations in eukaryotic cells. Pre‐replicative complexes (pre‐RCs) license origins by loading Mcm2‐7 complexes in inactive form around DNA. During origin firing in S phase, replisomes assemble around the activated Mcm2‐7 DNA helicase. Budding yeast pre‐RCs have previously been reconstituted in vitro with purified proteins. Here, we show that reconstituted pre‐RCs support replication of plasmid DNA in yeast cell extracts in a reaction that exhibits hallmarks of cellular replication initiation. Plasmid replication in vitro results in the generation of covalently closed circular daughter molecules, indicating that the system recapitulates the initiation, elongation, and termination stages of DNA replication. Unexpectedly, yeast origin DNA is not strictly required for DNA replication in vitro, as heterologous DNA sequences could support replication of plasmid molecules. Our findings support the notion that epigenetic mechanisms are important for determining replication origin sites in budding yeast, highlighting mechanistic principles of replication origin specification that are common among eukaryotes.  相似文献   

13.
Discerning the interactions between initiator protein and the origin of replication should provide insights into the mechanism of DNA replication initiation. In the gamma origin of plasmid R6K, the Rep protein, pi, is distinctive in that it can bind the seven 22-bp iterons in two forms; pi monomers activate replication, whereas pi dimers act as inhibitors. In this work, we used wild type and variants of the pi protein with altered monomer/dimer ratios to study iteron/pi interactions. High resolution contact mapping was conducted using multiple techniques (missing base contact probing, methylation protection, base modification, and hydroxyl radical footprinting), and the electrophoretic separation of nucleoprotein complexes allowed us to discriminate between contact patterns produced by pi monomers and dimers. We also isolated iteron mutants that affected the binding of pi monomers (only) or both monomers and dimers. The mutational studies and footprinting analyses revealed that, when binding DNA, pi monomers interact with nucleotides spanning the entire length of the iteron. In contrast, pi dimers interact with only the left half of the iteron; however, the retained interactions are strikingly similar to those seen with monomers. These results support a model in which Rep protein dimerization disturbs one of two DNA binding domains important for monomer/iteron interaction; the dimer/iteron interaction utilizes only one DNA binding domain.  相似文献   

14.
High‐throughput technologies have led to the generation of complex wiring diagrams as a post‐sequencing paradigm for depicting the interactions between vast and diverse cellular species. While these diagrams are useful for analyzing biological systems on a large scale, a detailed understanding of the molecular mechanisms that underlie the observed network connections is critical for the further development of systems and synthetic biology. Here, we use queueing theory to investigate how ‘waiting lines’ can lead to correlations between protein ‘customers’ that are coupled solely through a downstream set of enzymatic ‘servers’. Using the E. coli ClpXP degradation machine as a model processing system, we observe significant cross‐talk between two networks that are indirectly coupled through a common set of processors. We further illustrate the implications of enzymatic queueing using a synthetic biology application, in which two independent synthetic networks demonstrate synchronized behavior when common ClpXP machinery is overburdened. Our results demonstrate that such post‐translational processes can lead to dynamic connections in cellular networks and may provide a mechanistic understanding of existing but currently inexplicable links.  相似文献   

15.
The replication initiator protein, π, plays an essential role in the initiation of plasmid R6K replication. Both monomers and dimers of π bind to iterons in the γ origin of plasmid R6K, yet monomers facilitate open complex formation, while dimers, the predominant form in the cell, do not. Consequently, π monomers activate replication, while π dimers inhibit replication. Recently, it was shown that the monomeric form of π binds multiple tandem iterons in a strongly cooperative fashion, which might explain how monomers outcompete dimers for replication initiation when plasmid copy number and π supply are low. Here, we examine cooperative binding of π dimers and explore the role that these interactions may have in the inactivation of γ origin. To examine π dimer/iteron interactions in the absence of competing π monomer/iteron interactions using wild-type π, constructs were made with key base changes to each iteron that eliminate π monomer binding yet have no impact on π dimer binding. Our results indicate that, in the absence of π monomers, π dimers bind with greater cooperativity to alternate iterons than to adjacent iterons, thus preferentially leaving intervening iterons unbound and the origin unsaturated. We discuss new insights into plasmid replication control by π dimers.  相似文献   

16.
Summary An in vitro system for replication of mini-F plasmid DNA was constructed. This system consists of an ammonium sulfate fraction II (Fuller et al. 1981) from Escherichia coli extract, exogeneously added purified E protein encoded by mini-F plasmid, and mini-F DNA in a closed circular form. Experiments with this system showed that the 217 bp DNA region which contains the A+T rich cluster and the four 19 bp direct repeats responsible for incB incompatibility is essential for mini-F DNA replication.  相似文献   

17.
The TrfA proteins, encoded by the broad host range plasmid RK2, are required for replication of this plasmid in a variety of Gram-negative bacteria. Two TrfA proteins, 33 and 44 kDa in molecular mass (designated TrfA-33 and TrfA-44, respectively), are expressed from the trfA gene of RK2 through the use of two alternative in-frame start codons within the same open reading frame. The two proteins have been purified from Escherichia coli to near homogeneity as a mixture of wild-type TrfA-44/33, as TrfA-33 alone and as a functional variant form of TrfA-44, designated TrfA-44(98L), which contains a leucine in place of the TrfA-33 methionine start codon. Cross-linking experiments demonstrated that TrfA-33 can multimerize in solution. By using gel mobility shift and DNase I footprinting techniques the binding properties of TrfA-33, TrfA-44(98L), and TrfA-44/33 to the origin of replication of plasmid RK2 were analyzed. All three protein preparations were able to bind very specifically to the cluster of five direct repeats (iterons) contained in the minimal origin of replication. Each protein preparation produced a ladder of TrfA/minimal oriV complexes of decreasing electrophoretic mobility. The DNase I protection pattern on the five iterons was identical for all three protein preparations and extended from the beginning of the first iteron to 5 base pairs upstream of the fifth iteron. Studies on the affinity of the proteins for DNA fragments containing one, two, or all five iterons of the origin revealed a strong preference of TrfA protein for DNA containing at least two iterons. To study the stability of TrfA.DNA complexes, association and dissociation rates of TrfA-33 and DNA fragments with one, two, or five iterons were measured. This analysis showed that unlike complexes involving two or five iterons the TrfA/one iteron complexes were highly unstable, suggesting some form of cooperativity between proteins or iterons in the formation of stable complexes and/or the requirement of specific sequences bordering the iterons at the RK2 origin of replication for the stabilization of TrfA/DNA complexes.  相似文献   

18.
ClpXP, an AAA+ protease, plays key roles in protein‐quality control and many regulatory processes in bacteria. The N‐terminal domain of the ClpX component of ClpXP is involved in recognition of many protein substrates, either directly or by binding the SspB adaptor protein, which delivers specific classes of substrates for degradation. Despite very limited sequence homology between the E. coli and C. crescentus SspB orthologs, each of these adaptors can deliver substrates to the ClpXP enzyme from the other bacterial species. We show that the ClpX N domain recognizes different sequence determinants in the ClpX‐binding (XB) peptides of C. crescentus SspBα and E. coli SspB. The C. crescentus XB determinants span 10 residues and involve interactions with multiple side chains, whereas the E. coli XB determinants span half as many residues with only a few important side chain contacts. These results demonstrate that the N domain of ClpX functions as a highly versatile platform for peptide recognition, allowing the emergence during evolution of alternative adaptor‐binding specificities. Our results also reveal highly conserved residues in the XB peptides of both E. coli SspB and C. crescentus SspBα that play no detectable role in ClpX‐binding or substrate delivery.  相似文献   

19.
In eubacterial organisms, the oriC‐independent primosome plays an essential role in replication restart after the dissociation of the replication DNA‐protein complex by DNA damage. PriC is a key protein component in the replication restart primosome. Our recent study suggested that PriC is divided into two domains: an N‐terminal and a C‐terminal domain. In the present study, we determined the solution structure of the N‐terminal domain, whose structure and function have remained unknown until now. The revealed structure was composed of three helices and one extended loop. We also observed chemical shift changes in the heteronuclear NMR spectrum and oligomerization in the presence of ssDNA. These abilities may contribute to the PriC‐ssDNA complex, which is important for the replication restart primosome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号