首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In genomic selection (GS), genome-wide SNP markers are used to generate genomic estimated breeding values for selection candidates. The application of GS in shellfish looks promising and has the potential to help in dealing with one of the main issues currently affecting Pacific oyster production worldwide, which is the ‘summer mortality syndrome’. This causes periodic mass mortality in farms worldwide and has mainly been attributed to a specific variant of the ostreid herpesvirus (OsHV-1). In the current study, we evaluated the potential of genomic selection for host resistance to OsHV-1 in Pacific oysters, and compared it with pedigree-based approaches. An OsHV-1 disease challenge was performed using an immersion-based virus exposure treatment for oysters for 7 days. A total of 768 samples were genotyped using the medium-density SNP array for oysters. A GWAS was performed for the survival trait using a GBLUP approach in blupf 90 software. Heritability ranged from 0.25 ± 0.05 to 0.37 ± 0.05 (mean ± SE) based on pedigree and genomic information respectively. Genomic prediction was more accurate than pedigree prediction, and SNP density reduction had little impact on prediction accuracy until marker densities dropped below approximately 500 SNPs. This demonstrates the potential for GS in Pacific oyster breeding programmes, and importantly, demonstrates that a low number of SNPs might suffice to obtain accurate genomic estimated breeding values, thus potentially making the implementation of GS more cost effective.  相似文献   

2.
Genomic Selection (GS) is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its efficacy for breeding inbred lines of rice. We performed a genome-wide association study (GWAS) in conjunction with five-fold GS cross-validation on a population of 363 elite breeding lines from the International Rice Research Institute''s (IRRI) irrigated rice breeding program and herein report the GS results. The population was genotyped with 73,147 markers using genotyping-by-sequencing. The training population, statistical method used to build the GS model, number of markers, and trait were varied to determine their effect on prediction accuracy. For all three traits, genomic prediction models outperformed prediction based on pedigree records alone. Prediction accuracies ranged from 0.31 and 0.34 for grain yield and plant height to 0.63 for flowering time. Analyses using subsets of the full marker set suggest that using one marker every 0.2 cM is sufficient for genomic selection in this collection of rice breeding materials. RR-BLUP was the best performing statistical method for grain yield where no large effect QTL were detected by GWAS, while for flowering time, where a single very large effect QTL was detected, the non-GS multiple linear regression method outperformed GS models. For plant height, in which four mid-sized QTL were identified by GWAS, random forest produced the most consistently accurate GS models. Our results suggest that GS, informed by GWAS interpretations of genetic architecture and population structure, could become an effective tool for increasing the efficiency of rice breeding as the costs of genotyping continue to decline.  相似文献   

3.
Accuracy of genomic selection in European maize elite breeding populations   总被引:1,自引:0,他引:1  
Genomic selection is a promising breeding strategy for rapid improvement of complex traits. The objective of our study was to investigate the prediction accuracy of genomic breeding values through cross validation. The study was based on experimental data of six segregating populations from a half-diallel mating design with 788 testcross progenies from an elite maize breeding program. The plants were intensively phenotyped in multi-location field trials and fingerprinted with 960 SNP markers. We used random regression best linear unbiased prediction in combination with fivefold cross validation. The prediction accuracy across populations was higher for grain moisture (0.90) than for grain yield (0.58). The accuracy of genomic selection realized for grain yield corresponds to the precision of phenotyping at unreplicated field trials in 3–4 locations. As for maize up to three generations are feasible per year, selection gain per unit time is high and, consequently, genomic selection holds great promise for maize breeding programs.  相似文献   

4.

Background

The theory of genomic selection is based on the prediction of the effects of genetic markers in linkage disequilibrium with quantitative trait loci. However, genomic selection also relies on relationships between individuals to accurately predict genetic value. This study aimed to examine the importance of information on relatives versus that of unrelated or more distantly related individuals on the estimation of genomic breeding values.

Methods

Simulated and real data were used to examine the effects of various degrees of relationship on the accuracy of genomic selection. Genomic Best Linear Unbiased Prediction (gBLUP) was compared to two pedigree based BLUP methods, one with a shallow one generation pedigree and the other with a deep ten generation pedigree. The accuracy of estimated breeding values for different groups of selection candidates that had varying degrees of relationships to a reference data set of 1750 animals was investigated.

Results

The gBLUP method predicted breeding values more accurately than BLUP. The most accurate breeding values were estimated using gBLUP for closely related animals. Similarly, the pedigree based BLUP methods were also accurate for closely related animals, however when the pedigree based BLUP methods were used to predict unrelated animals, the accuracy was close to zero. In contrast, gBLUP breeding values, for animals that had no pedigree relationship with animals in the reference data set, allowed substantial accuracy.

Conclusions

An animal''s relationship to the reference data set is an important factor for the accuracy of genomic predictions. Animals that share a close relationship to the reference data set had the highest accuracy from genomic predictions. However a baseline accuracy that is driven by the reference data set size and the overall population effective population size enables gBLUP to estimate a breeding value for unrelated animals within a population (breed), using information previously ignored by pedigree based BLUP methods.  相似文献   

5.
Crop improvement is a long-term, expensive institutional endeavor. Genomic selection (GS), which uses single nucleotide polymorphism (SNP) information to estimate genomic breeding values, has proven efficient to increasing genetic gain by accelerating the breeding process in animal breeding programs. As for crop improvement, with few exceptions, GS applicability remains in the evaluation of algorithm performance. In this study, we examined factors related to GS applicability in line development stage for grain yield using a hard red winter wheat (Triticum aestivum L.) doubled-haploid population. The performance of GS was evaluated in two consecutive years to predict grain yield. In general, the semi-parametric reproducing kernel Hilbert space prediction algorithm outperformed parametric genomic best linear unbiased prediction. For both parametric and semi-parametric algorithms, an upward bias in predictability was apparent in within-year cross-validation, suggesting the prerequisite of cross-year validation for a more reliable prediction. Adjusting the training population’s phenotype for genotype by environment effect had a positive impact on GS model’s predictive ability. Possibly due to marker redundancy, a selected subset of SNPs at an absolute pairwise correlation coefficient threshold value of 0.4 produced comparable results and reduced the computational burden of considering the full SNP set. Finally, in the context of an ongoing breeding and selection effort, the present study has provided a measure of confidence based on the deviation of line selection from GS results, supporting the implementation of GS in wheat variety development.  相似文献   

6.
Nowadays, genome-wide association studies (GWAS) and genomic selection (GS) methods which use genome-wide marker data for phenotype prediction are of much potential interest in plant breeding. However, to our knowledge, no studies have been performed yet on the predictive ability of these methods for structured traits when using training populations with high levels of genetic diversity. Such an example of a highly heterozygous, perennial species is grapevine. The present study compares the accuracy of models based on GWAS or GS alone, or in combination, for predicting simple or complex traits, linked or not with population structure. In order to explore the relevance of these methods in this context, we performed simulations using approx 90,000 SNPs on a population of 3,000 individuals structured into three groups and corresponding to published diversity grapevine data. To estimate the parameters of the prediction models, we defined four training populations of 1,000 individuals, corresponding to these three groups and a core collection. Finally, to estimate the accuracy of the models, we also simulated four breeding populations of 200 individuals. Although prediction accuracy was low when breeding populations were too distant from the training populations, high accuracy levels were obtained using the sole core-collection as training population. The highest prediction accuracy was obtained (up to 0.9) using the combined GWAS-GS model. We thus recommend using the combined prediction model and a core-collection as training population for grapevine breeding or for other important economic crops with the same characteristics.  相似文献   

7.
The general applicability of genomic selection (GS) to plant breeding and principles guiding its use have been established by simulation and empirical cross-validation studies. More recently, studies have demonstrated genetic gains over multiple cycles of selection in a variety of crop species. In this study, we provide additional evidence for the effectiveness of GS in an actual breeding program by demonstrating significant gains of 186.1 kg ha?1 and ??1.85 ppm for grain yield and deoxynivalenol, respectively, two unfavorably correlated quantitative traits, across 3 cycles of selection in a spring six-row barley breeding population. With its general effectiveness established, the next step is to increase the accuracy of predictions used in GS and thereby increase genetic gains. For this, we first showed that updating the training population (TP) with phenotyped lines from recent breeding cycles, specifically selected lines, had an overall positive effect on prediction accuracy. Additionally, we investigated four recently proposed algorithms that seek to optimize the composition of a TP. Overall, the optimization algorithms improved prediction accuracy when compared to a randomly selected TP subset of the same size, but which algorithm performed best was dependent on the trait being predicted and other factors discussed within. This retrospective investigation highlights the importance of maintaining and optimizing the TP when using GS in applied breeding to maximize prediction accuracy, thereby maximizing gain from selection and resource utilization efficiency.  相似文献   

8.

Key message

Compared with independent validation, cross-validation simultaneously sampling genotypes and environments provided similar estimates of accuracy for genomic selection, but inflated estimates for marker-assisted selection.

Abstract

Estimates of prediction accuracy of marker-assisted (MAS) and genomic selection (GS) require validations. The main goal of our study was to compare the prediction accuracies of MAS and GS validated in an independent sample with results obtained from fivefold cross-validation using genomic and phenotypic data for Fusarium head blight resistance in wheat. In addition, the applicability of the reliability criterion, a concept originally developed in the context of classic animal breeding and GS, was explored for MAS. We observed that prediction accuracies of MAS were overestimated by 127% using cross-validation sampling genotype and environments in contrast to independent validation. In contrast, prediction accuracies of GS determined in independent samples are similar to those estimated with cross-validation sampling genotype and environments. This can be explained by small population differentiation between the training and validation sets in our study. For European wheat breeding, which is so far characterized by a slow temporal dynamic in allele frequencies, this assumption seems to be realistic. Thus, GS models used to improve European wheat populations are expected to possess a long-lasting validity. Since quantitative trait loci information can be exploited more precisely if the predicted genotype is more related to the training population, the reliability criterion is also a valuable tool to judge the level of prediction accuracy of individual genotypes in MAS.
  相似文献   

9.
One of the most important applications of genomic selection in maize breeding is to predict and identify the best untested lines from biparental populations, when the training and validation sets are derived from the same cross. Nineteen tropical maize biparental populations evaluated in multienvironment trials were used in this study to assess prediction accuracy of different quantitative traits using low-density (~200 markers) and genotyping-by-sequencing (GBS) single-nucleotide polymorphisms (SNPs), respectively. An extension of the Genomic Best Linear Unbiased Predictor that incorporates genotype × environment (GE) interaction was used to predict genotypic values; cross-validation methods were applied to quantify prediction accuracy. Our results showed that: (1) low-density SNPs (~200 markers) were largely sufficient to get good prediction in biparental maize populations for simple traits with moderate-to-high heritability, but GBS outperformed low-density SNPs for complex traits and simple traits evaluated under stress conditions with low-to-moderate heritability; (2) heritability and genetic architecture of target traits affected prediction performance, prediction accuracy of complex traits (grain yield) were consistently lower than those of simple traits (anthesis date and plant height) and prediction accuracy under stress conditions was consistently lower and more variable than under well-watered conditions for all the target traits because of their poor heritability under stress conditions; and (3) the prediction accuracy of GE models was found to be superior to that of non-GE models for complex traits and marginal for simple traits.  相似文献   

10.
Genomic selection in forest tree breeding   总被引:2,自引:0,他引:2  
Genomic selection (GS) involves selection decisions based on genomic breeding values estimated as the sum of the effects of genome-wide markers capturing most quantitative trait loci (QTL) for the target trait(s). GS is revolutionizing breeding practice in domestic animals. The same approach and concepts can be readily applied to forest tree breeding where long generation times and late expressing complex traits are also a challenge. GS in forest trees would have additional advantages: large training populations can be easily assembled and accurately phenotyped for several traits, and the extent of linkage disequilibrium (LD) can be high in elite populations with small effective population size (N e) frequently used in advanced forest tree breeding programs. Deterministic equations were used to assess the impact of LD (modeled by N e and intermarker distance), the size of the training set, trait heritability, and the number of QTL on the predicted accuracy of GS. Results indicate that GS has the potential to radically improve the efficiency of tree breeding. The benchmark accuracy of conventional BLUP selection is reached by GS even at a marker density ~2 markers/cM when N e ≤ 30, while up to 20 markers/cM are necessary for larger N e. Shortening the breeding cycle by 50% with GS provides an increase ≥100% in selection efficiency. With the rapid technological advances and declining costs of genotyping, our cautiously optimistic outlook is that GS has great potential to accelerate tree breeding. However, further simulation studies and proof-of-concept experiments of GS are needed before recommending it for operational implementation.  相似文献   

11.
Estimating marker effects based on routinely generated phenotypic data of breeding programs is a cost-effective strategy to implement genomic selection. Truncation selection in breeding populations, however, could have a strong impact on the accuracy to predict genomic breeding values. The main objective of our study was to investigate the influence of phenotypic selection on the accuracy and bias of genomic selection. We used experimental data of 788 testcross progenies from an elite maize breeding program. The testcross progenies were evaluated in unreplicated field trials in ten environments and fingerprinted with 857 SNP markers. Random regression best linear unbiased prediction method was used in combination with fivefold cross-validation based on genotypic sampling. We observed a substantial loss in the accuracy to predict genomic breeding values in unidirectional selected populations. In contrast, estimating marker effects based on bidirectional selected populations led to only a marginal decrease in the prediction accuracy of genomic breeding values. We concluded that bidirectional selection is a valuable approach to efficiently implement genomic selection in applied plant breeding programs.  相似文献   

12.

Background

It is commonly assumed that prediction of genome-wide breeding values in genomic selection is achieved by capitalizing on linkage disequilibrium between markers and QTL but also on genetic relationships. Here, we investigated the reliability of predicting genome-wide breeding values based on population-wide linkage disequilibrium information, based on identity-by-descent relationships within the known pedigree, and to what extent linkage disequilibrium information improves predictions based on identity-by-descent genomic relationship information.

Methods

The study was performed on milk, fat, and protein yield, using genotype data on 35 706 SNP and deregressed proofs of 1086 Italian Brown Swiss bulls. Genome-wide breeding values were predicted using a genomic identity-by-state relationship matrix and a genomic identity-by-descent relationship matrix (averaged over all marker loci). The identity-by-descent matrix was calculated by linkage analysis using one to five generations of pedigree data.

Results

We showed that genome-wide breeding values prediction based only on identity-by-descent genomic relationships within the known pedigree was as or more reliable than that based on identity-by-state, which implicitly also accounts for genomic relationships that occurred before the known pedigree. Furthermore, combining the two matrices did not improve the prediction compared to using identity-by-descent alone. Including different numbers of generations in the pedigree showed that most of the information in genome-wide breeding values prediction comes from animals with known common ancestors less than four generations back in the pedigree.

Conclusions

Our results show that, in pedigreed breeding populations, the accuracy of genome-wide breeding values obtained by identity-by-descent relationships was not improved by identity-by-state information. Although, in principle, genomic selection based on identity-by-state does not require pedigree data, it does use the available pedigree structure. Our findings may explain why the prediction equations derived for one breed may not predict accurate genome-wide breeding values when applied to other breeds, since family structures differ among breeds.  相似文献   

13.
The genomic breeding value accuracy of scarcely recorded traits is low because of the limited number of phenotypic observations. One solution to increase the breeding value accuracy is to use predictor traits. This study investigated the impact of recording additional phenotypic observations for predictor traits on reference and evaluated animals on the genomic breeding value accuracy for a scarcely recorded trait. The scarcely recorded trait was dry matter intake (DMI, n = 869) and the predictor traits were fat–protein-corrected milk (FPCM, n = 1520) and live weight (LW, n = 1309). All phenotyped animals were genotyped and originated from research farms in Ireland, the United Kingdom and the Netherlands. Multi-trait REML was used to simultaneously estimate variance components and breeding values for DMI using available predictors. In addition, analyses using only pedigree relationships were performed. Breeding value accuracy was assessed through cross-validation (CV) and prediction error variance (PEV). CV groups (n = 7) were defined by splitting animals across genetic lines and management groups within country. With no additional traits recorded for the evaluated animals, both CV- and PEV-based accuracies for DMI were substantially higher for genomic than for pedigree analyses (CV: max. 0.26 for pedigree and 0.33 for genomic analyses; PEV: max. 0.45 and 0.52, respectively). With additional traits available, the differences between pedigree and genomic accuracies diminished. With additional recording for FPCM, pedigree accuracies increased from 0.26 to 0.47 for CV and from 0.45 to 0.48 for PEV. Genomic accuracies increased from 0.33 to 0.50 for CV and from 0.52 to 0.53 for PEV. With additional recording for LW instead of FPCM, pedigree accuracies increased to 0.54 for CV and to 0.61 for PEV. Genomic accuracies increased to 0.57 for CV and to 0.60 for PEV. With both FPCM and LW available for evaluated animals, accuracy was highest (0.62 for CV and 0.61 for PEV in pedigree, and 0.63 for CV and 0.61 for PEV in genomic analyses). Recording predictor traits for only the reference population did not increase DMI breeding value accuracy. Recording predictor traits for both reference and evaluated animals significantly increased DMI breeding value accuracy and removed the bias observed when only reference animals had records. The benefit of using genomic instead of pedigree relationships was reduced when more predictor traits were used. Using predictor traits may be an inexpensive way to significantly increase the accuracy and remove the bias of (genomic) breeding values of scarcely recorded traits such as feed intake.  相似文献   

14.
Summary The French INRA wheat (Triticum aestivum L. em Thell.) breeding program is based on multilocation trials to produce high-yielding, adapted lines for a wide range of environments. Differential genotypic responses to variable environment conditions limit the accuracy of yield estimations. Factor regression was used to partition the genotype-environment (GE) interaction into four biologically interpretable terms. Yield data were analyzed from 34 wheat genotypes grown in four environments using 12 auxiliary agronomic traits as genotypic and environmental covariates. Most of the GE interaction (91%) was explained by the combination of only three traits: 1,000-kernel weight, lodging susceptibility and spike length. These traits are easily measured in breeding programs, therefore factor regression model can provide a convenient and useful prediction method of yield.  相似文献   

15.

Key message

A new genomic model that incorporates genotype?×?environment interaction gave increased prediction accuracy of untested hybrid response for traits such as percent starch content, percent dry matter content and silage yield of maize hybrids.

Abstract

The prediction of hybrid performance (HP) is very important in agricultural breeding programs. In plant breeding, multi-environment trials play an important role in the selection of important traits, such as stability across environments, grain yield and pest resistance. Environmental conditions modulate gene expression causing genotype?×?environment interaction (G?×?E), such that the estimated genetic correlations of the performance of individual lines across environments summarize the joint action of genes and environmental conditions. This article proposes a genomic statistical model that incorporates G?×?E for general and specific combining ability for predicting the performance of hybrids in environments. The proposed model can also be applied to any other hybrid species with distinct parental pools. In this study, we evaluated the predictive ability of two HP prediction models using a cross-validation approach applied in extensive maize hybrid data, comprising 2724 hybrids derived from 507 dent lines and 24 flint lines, which were evaluated for three traits in 58 environments over 12 years; analyses were performed for each year. On average, genomic models that include the interaction of general and specific combining ability with environments have greater predictive ability than genomic models without interaction with environments (ranging from 12 to 22%, depending on the trait). We concluded that including G?×?E in the prediction of untested maize hybrids increases the accuracy of genomic models.
  相似文献   

16.

Key message

We developed a universally applicable planning tool for optimizing the allocation of resources for one cycle of genomic selection in a biparental population. The framework combines selection theory with constraint numerical optimization and considers genotype×? environment interactions.

Abstract

Genomic selection (GS) is increasingly implemented in plant breeding programs to increase selection gain but little is known how to optimally allocate the resources under a given budget. We investigated this problem with model calculations by combining quantitative genetic selection theory with constraint numerical optimization. We assumed one selection cycle where both the training and prediction sets comprised double haploid (DH) lines from the same biparental population. Grain yield for testcrosses of maize DH lines was used as a model trait but all parameters can be adjusted in a freely available software implementation. An extension of the expected selection accuracy given by Daetwyler et al. (2008) was developed to correctly balance between the number of environments for phenotyping the training set and its population size in the presence of genotype?×?environment interactions. Under small budget, genotyping costs mainly determine whether GS is superior over phenotypic selection. With increasing budget, flexibility in resource allocation increases greatly but selection gain leveled off quickly requiring balancing the number of populations with the budget spent for each population. The use of an index combining phenotypic and GS predicted values in the training set was especially beneficial under limited resources and large genotype × environment interactions. Once a sufficiently high selection accuracy is achieved in the prediction set, further selection gain can be achieved most efficiently by massively expanding its size. Thus, with increasing budget, reducing the costs for producing a DH line becomes increasingly crucial for successfully exploiting the benefits of GS.  相似文献   

17.

Key message

Rice breeding programs based on pedigree schemes can use a genomic model trained with data from their working collection to predict performances of progenies produced through rapid generation advancement.

Abstract

So far, most potential applications of genomic prediction in plant improvement have been explored using cross validation approaches. This is the first empirical study to evaluate the accuracy of genomic prediction of the performances of progenies in a typical rice breeding program. Using a cross validation approach, we first analyzed the effects of marker selection and statistical methods on the accuracy of prediction of three different heritability traits in a reference population (RP) of 284 inbred accessions. Next, we investigated the size and the degree of relatedness with the progeny population (PP) of sub-sets of the RP that maximize the accuracy of prediction of phenotype across generations, i.e., for 97 F5–F7 lines derived from biparental crosses between 31 accessions of the RP. The extent of linkage disequilibrium was high (r 2 = 0.2 at 0.80 Mb in RP and at 1.1 Mb in PP). Consequently, average marker density above one per 22 kb did not improve the accuracy of predictions in the RP. The accuracy of progeny prediction varied greatly depending on the composition of the training set, the trait, LD and minor allele frequency. The highest accuracy achieved for each trait exceeded 0.50 and was only slightly below the accuracy achieved by cross validation in the RP. Our results thus show that relatively high accuracy (0.41–0.54) can be achieved using only a rather small share of the RP, most related to the PP, as the training set. The practical implications of these results for rice breeding programs are discussed.
  相似文献   

18.

Background

Genomic selection (GS) using estimated breeding values (GS-EBV) based on dense marker data is a promising approach for genetic improvement. A simulation study was undertaken to illustrate the opportunities offered by GS for designing breeding programs. It consisted of a selection program for a sex-limited trait in layer chickens, which was developed by deterministic predictions under different scenarios. Later, one of the possible schemes was implemented in a real population of layer chicken.

Methods

In the simulation, the aim was to double the response to selection per year by reducing the generation interval by 50 %, while maintaining the same rate of inbreeding per year. We found that GS with retraining could achieve the set objectives while requiring 75 % fewer reared birds and 82 % fewer phenotyped birds per year. A multi-trait GS scenario was subsequently implemented in a real population of brown egg laying hens. The population was split into two sub-lines, one was submitted to conventional phenotypic selection, and one was selected based on genomic prediction. At the end of the 3-year experiment, the two sub-lines were compared for multiple performance traits that are relevant for commercial egg production.

Results

Birds that were selected based on genomic prediction outperformed those that were submitted to conventional selection for most of the 16 traits that were included in the index used for selection. However, although the two programs were designed to achieve the same rate of inbreeding per year, the realized inbreeding per year assessed from pedigree was higher in the genomic selected line than in the conventionally selected line.

Conclusions

The results demonstrate that GS is a promising alternative to conventional breeding for genetic improvement of layer chickens.  相似文献   

19.
Genome-based prediction of testcross values in maize   总被引:1,自引:0,他引:1  
This is the first large-scale experimental study on genome-based prediction of testcross values in an advanced cycle breeding population of maize. The study comprised testcross progenies of 1,380 doubled haploid lines of maize derived from 36 crosses and phenotyped for grain yield and grain dry matter content in seven locations. The lines were genotyped with 1,152 single nucleotide polymorphism markers. Pedigree data were available for three generations. We used best linear unbiased prediction and stratified cross-validation to evaluate the performance of prediction models differing in the modeling of relatedness between inbred lines and in the calculation of genome-based coefficients of similarity. The choice of similarity coefficient did not affect prediction accuracies. Models including genomic information yielded significantly higher prediction accuracies than the model based on pedigree information alone. Average prediction accuracies based on genomic data were high even for a complex trait like grain yield (0.72–0.74) when the cross-validation scheme allowed for a high degree of relatedness between the estimation and the test set. When predictions were performed across distantly related families, prediction accuracies decreased significantly (0.47–0.48). Prediction accuracies decreased with decreasing sample size but were still high when the population size was halved (0.67–0.69). The results from this study are encouraging with respect to genome-based prediction of the genetic value of untested lines in advanced cycle breeding populations and the implementation of genomic selection in the breeding process.  相似文献   

20.

Key message

Genomic prediction for seedling and adult plant resistance to wheat rusts was compared to prediction using few markers as fixed effects in a least-squares approach and pedigree-based prediction.

Abstract

The unceasing plant-pathogen arms race and ephemeral nature of some rust resistance genes have been challenging for wheat (Triticum aestivum L.) breeding programs and farmers. Hence, it is important to devise strategies for effective evaluation and exploitation of quantitative rust resistance. One promising approach that could accelerate gain from selection for rust resistance is ‘genomic selection’ which utilizes dense genome-wide markers to estimate the breeding values (BVs) for quantitative traits. Our objective was to compare three genomic prediction models including genomic best linear unbiased prediction (GBLUP), GBLUP A that was GBLUP with selected loci as fixed effects and reproducing kernel Hilbert spaces-markers (RKHS-M) with least-squares (LS) approach, RKHS-pedigree (RKHS-P), and RKHS markers and pedigree (RKHS-MP) to determine the BVs for seedling and/or adult plant resistance (APR) to leaf rust (LR), stem rust (SR), and stripe rust (YR). The 333 lines in the 45th IBWSN and the 313 lines in the 46th IBWSN were genotyped using genotyping-by-sequencing and phenotyped in replicated trials. The mean prediction accuracies ranged from 0.31–0.74 for LR seedling, 0.12–0.56 for LR APR, 0.31–0.65 for SR APR, 0.70–0.78 for YR seedling, and 0.34–0.71 for YR APR. For most datasets, the RKHS-MP model gave the highest accuracies, while LS gave the lowest. GBLUP, GBLUP A, RKHS-M, and RKHS-P models gave similar accuracies. Using genome-wide marker-based models resulted in an average of 42% increase in accuracy over LS. We conclude that GS is a promising approach for improvement of quantitative rust resistance and can be implemented in the breeding pipeline.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号