首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Aims

The carnivorous plant Venus flytrap (Dionaea muscipula) produces a rosette of leaves: each leaf is divided into a lower part called the lamina and an upper part, the trap, with sensory trigger hairs on the adaxial surface. The trap catches prey by very rapid closure, within a fraction of a second of the trigger hairs being touched twice. Generation of action potentials plays an important role in closure. Because electrical signals are involved in reduction of the photosynthetic rate in different plant species, we hypothesized that trap closure and subsequent movement of prey in the trap will result in transient downregulation of photosynthesis, thus representing the energetic costs of carnivory associated with an active trapping mechanism, which has not been previously described.

Methods

Traps were enclosed in a gas exchange cuvette and the trigger hairs irritated with thin wire, thus simulating insect capture and retention. Respiration rate was measured in darkness (RD). In the light, net photosynthetic rate (AN), stomatal conductance (gs) and intercellular CO2 concentration (ci) were measured, combined with chlorophyll fluorescence imaging. Responses were monitored in the lamina and trap separately.

Key Results

Irritation of trigger hairs resulted in decreased AN and increased RD, not only immediately after trap closure but also during the subsequent period when prey retention was simulated in the closed trap. Stomatal conductance remained stable, indicating no stomatal limitation of AN, so ci increased. At the same time, the effective quantum yield of photosystem II (ΦPSII) decreased transiently. The response was confined mainly to the digestive zone of the trap and was not observed in the lamina. Stopping mechanical irritation resulted in recovery of AN, RD and ΦPSII.

Conclusions

We put forward the first experimental evidence for energetic demands and carbon costs during insect trapping and retention in carnivorous plants, providing a new insight into the cost/benefit model of carnivory.  相似文献   

2.

Background and Aims

Ibicella lutea and Proboscidea parviflora are two American semi-desert species of glandular sticky plants that are suspected of carnivory as they can catch small insects. The same characteristics might also hold for two semi-desert plants with glandular sticky leaves from Israel, namely Cleome droserifolia and Hyoscyamus desertorum. The presence of proteases on foliar hairs, either secreted by the plant or commensals, detected using a simple test, has long been considered proof of carnivory. However, this test does not prove whether nutrients are really absorbed from insects by the plant. To determine the extent to which these four species are potentially carnivorous, hair secretion of phosphatases and uptake of N, P, K and Mg from fruit flies as model prey were studied in these species and in Roridula gorgonias and Drosophyllum lusitanicum for comparison. All species examined possess morphological and anatomical adaptations (hairs or emergences secreting sticky substances) to catch and kill small insects.

Methods

The presence of phosphatases on foliar hairs was tested using the enzyme-labelled fluorescence method. Dead fruit flies were applied to glandular sticky leaves of experimental plants and, after 10–15 d, mineral nutrient content in their spent carcasses was compared with initial values in intact flies after mineralization.

Key Results

Phosphatase activity was totally absent on Hyoscyamus foliar hairs, a certain level of activity was usually found in Ibicella, Proboscidea and Cleome, and a strong response was found in Drosophyllum. Roridula exhibited only epidermal activity. However, only Roridula and Drosophyllum took up nutrients (N, P, K and Mg) from applied fruit flies.

Conclusions

Digestion of prey and absorption of their nutrients are the major features of carnivory in plants. Accordingly, Roridula and Drosophyllum appeared to be fully carnivorous; by contrast, all other species examined are non-carnivorous as they did not meet the above criteria.Key words: Roridula gorgonias, Drosophyllum lusitanicum, Proboscidea parviflora, Ibicella lutea, Cleome droserifolia, Hyoscyamus desertorum, phosphatase, phosphomonoesters, fruit flies, N, P, K, Mg uptake from prey  相似文献   

3.

Aims and Background

While the temperature response of soil respiration (RS) has been well studied, the partitioning of heterotrophic respiration (RH) by soil microbes from autotrophic respiration (RA) by roots, known to have distinct temperature sensitivities, has been problematic. Further complexity stems from the presence of roots affecting RH, the rhizosphere priming effect. In this study the short-term temperature responses of RA and RH in relation to rhizosphere priming are investigated.

Methods

Temperature responses of RA, RH and rhizosphere priming were assessed in microcosms of Poa cita using a natural abundance δ13C discrimination approach.

Results

The temperature response of RS was found to be regulated primarily by RA, which accounted for 70 % of total soil respiration. Heterotrophic respiration was less sensitive to temperature in the presence of plant roots, resulting in negative priming effects with increasing temperature.

Conclusions

The results emphasize the importance of roots in regulating the temperature response of RS, and a framework is presented for further investigation into temperature effects on heterotrophic respiration and rhizosphere priming, which could be applied to other soil and vegetation types to improve models of soil carbon turnover.  相似文献   

4.

Abstact

Background

Gamma amino butyric acid (GABA), the principal inhibitory neurotransmitter in the cerebral cortex, maintains the inhibitory tones that counter balances neuronal excitation. When this balance is perturbed, seizures may ensue.

Methods

In the present study, alterations of the general GABA, GABAA and GABAB receptors in the cerebral cortex of the epileptic rat and the therapeutic application of Bacopa monnieri were investigated.

Results

Scatchard analysis of [3H]GABA, [3H]bicuculline and [3H]baclofen in the cerebral cortex of the epileptic rat showed significant decrease in Bmax (P < 0.001) compared to control. Real Time PCR amplification of GABA receptor subunits such as GABAAά1, GABA, GABA, GABAB and GAD where down regulated (P < 0.001) in epileptic rats. GABAAά5 subunit and Cyclic AMP responsible element binding protein were up regulated. Confocal imaging study confirmed the decreased GABA receptors in epileptic rats. Epileptic rats have deficit in radial arm and Y maze performance.

Conclusions

Bacopa monnieri and Bacoside-A treatment reverses epilepsy associated changes to near control suggesting that decreased GABA receptors in the cerebral cortex have an important role in epileptic occurrence; Bacopa monnieri and Bacoside-A have therapeutic application in epilepsy management.  相似文献   

5.

Background and Aims

Floral polymorphism is frequently attributed to pollinator-mediated selection. Multiple studies, however, have revealed the importance of non-pollinating visitors in floral evolution. Using the polymorphic annual daisy Ursinia calenduliflora, this study investigated the importance of different insect visitors, and their effects on fitness, in the maintenance of floral polymorphism.

Methods

The spatial structure of a discrete floral polymorphism was characterized based on the presence/absence of anthocyanin floret spots in U. calenduliflora. A 3-year observational study was then conducted in polymorphic populations to investigate differences in visitation rates of dominant visitors to floral morphs. Experiments were performed to explore the floral preference of male and female Megapalpus capensis (the dominant insect visitor) and their effectiveness as pollinators. Next, floral damage by antagonistic florivores and the reproductive success of the two floral morphs were surveyed in multiple populations and years.

Key Results

Floral polymorphism in U. calenduliflora was structured spatially, as were insect visitation patterns. Megapalpus capensis males were the dominant visitors and exhibited strong preference for the spotted morph in natural and experimental observations. While this may indicate potential fitness benefits for the spotted morph, female fitness did not differ between floral morphs. However, as M. capensis males are very efficient at exporting U. calenduliflora pollen, their preference may likely increase the reproductive fitness of the spotted morph through male fitness components. The spotted morph, however, also suffered significantly greater costs due to ovule predation by florivores than the spotless morph.

Conclusions

The results suggest that pollinators and florivores may potentially exert antagonistic selection that could contribute to the maintenance of floral polymorphism across the range of U. calenduliflora. The relative strength of selection imposed by each agent is potentially determined by insect community composition and abundance at each site, highlighting the importance of community context in the evolution of floral phenotypes.  相似文献   

6.

Background and Aims

Water and nitrogen (N) are two limiting resources for biomass production of terrestrial vegetation. Water losses in transpiration (E) can be decreased by reducing leaf stomatal conductance (gs) at the expense of lowering CO2 uptake (A), resulting in increased water-use efficiency. However, with more N available, higher allocation of N to photosynthetic proteins improves A so that N-use efficiency is reduced when gs declines. Hence, a trade-off is expected between these two resource-use efficiencies. In this study it is hypothesized that when foliar concentration (N) varies on time scales much longer than gs, an explicit complementary relationship between the marginal water- and N-use efficiency emerges. Furthermore, a shift in this relationship is anticipated with increasing atmospheric CO2 concentration (ca).

Methods

Optimization theory is employed to quantify interactions between resource-use efficiencies under elevated ca and soil N amendments. The analyses are based on marginal water- and N-use efficiencies, λ = (∂A/∂gs)/(∂E/∂gs) and η = ∂A/∂N, respectively. The relationship between the two efficiencies and related variation in intercellular CO2 concentration (ci) were examined using A/ci curves and foliar N measured on Pinus taeda needles collected at various canopy locations at the Duke Forest Free Air CO2 Enrichment experiment (North Carolina, USA).

Key Results

Optimality theory allowed the definition of a novel, explicit relationship between two intrinsic leaf-scale properties where η is complementary to the square-root of λ. The data support the model predictions that elevated ca increased η and λ, and at given ca and needle age-class, the two quantities varied among needles in an approximately complementary manner.

Conclusions

The derived analytical expressions can be employed in scaling-up carbon, water and N fluxes from leaf to ecosystem, but also to derive transpiration estimates from those of η, and assist in predicting how increasing ca influences ecosystem water use.  相似文献   

7.

Background and Aims

Cost–benefit models predict that carnivory can increase the rate of photosynthesis (AN) by leaves of carnivorous plants as a result of increased nitrogen absorption from prey. However, the cost of carnivory includes decreased AN and increased respiration rates (RD) of trapping organs. The principal aim of the present study was to assess the costs and benefits of carnivory in the pitcher plant Nepenthes talangensis, leaves of which are composed of a lamina and a pitcher trap, in response to feeding with beetle larvae.

Methods

Pitchers of Nepenthes grown at 200 µmol m−2 s−1 photosynthetically active radiation (PAR) were fed with insect larvae for 2 months, and the effects on the photosynthetic processes were then assessed by simultaneous measurements of gas exchange and chlorophyll fluorescence of laminae and pitchers, which were correlated with nitrogen, carbon and total chlorophyll concentrations.

Key Results

AN and maximum (Fv/Fm) and effective quantum yield of photosystem II (ΦPSII) were greater in the fed than unfed laminae but not in the fed compared with unfed pitchers. Respiration rate was not significantly affected in fed compared with unfed plants. The unfed plants had greater non-photochemical quenching (NPQ) of chlorophyll fluorescence. Higher NPQ in unfed lamina did not compensate for their lower ΦPSII, resulting in lower photochemical quenching (QP) and thus higher excitation pressure on PSII. Biomass and nitrogen and chlorophyll concentration also increased as a result of feeding. The cost of carnivory was shown by lower AN and ΦPSII in pitchers than in laminae, but RD depended on whether it was expressed on a dry weight or a surface area basis. Correlation between nitrogen and AN in the pitchers was not found. Cost–benefit analysis showed a large beneficial effect on photosynthesis from feeding as light intensity increased from 200 to 1000 µmol m−2 s−1 PAR after which it did not increase further. All fed plants began to flower.

Conclusion

Feeding pitchers with insect larvae increases AN of leaf laminae, due to higher nutrient acquisition, with strong correlation with nitrogen concentration, but AN of pitchers does not increase, despite increased nitrogen concentration in their tissue. Increased AN improves growth and reproduction and is likely to increase the competitive advantage of carnivorous over non-carnivorous plants in nutrient-poor habitats.Key words: carnivorous plants, chlorophyll fluorescence, Nepenthes talangensis, nitrogen, pitcher plant, photosynthetic rate, photosystem II, respiration rate  相似文献   

8.

Background and Aims Nepenthes

(Nepenthaceae, approx. 120 species) are carnivorous pitcher plants with a centre of diversity comprising the Philippines, Borneo, Sumatra and Sulawesi. Nepenthes pitchers use three main mechanisms for capturing prey: epicuticular waxes inside the pitcher; a wettable peristome (a collar-shaped structure around the opening); and viscoelastic fluid. Previous studies have provided evidence suggesting that the first mechanism may be more suited to seasonal climates, whereas the latter two might be more suited to perhumid environments. In this study, this idea was tested using climate envelope modelling.

Methods

A total of 94 species, comprising 1978 populations, were grouped by prey capture mechanism (large peristome, small peristome, waxy, waxless, viscoelastic, non-viscoelastic, ‘wet’ syndrome and ‘dry’ syndrome). Nineteen bioclimatic variables were used to model habitat suitability at approx. 1 km resolution for each group, using Maxent, a presence-only species distribution modelling program.

Key Results

Prey capture groups putatively associated with perhumid conditions (large peristome, waxless, viscoelastic and ‘wet’ syndrome) had more restricted areas of probable habitat suitability than those associated putatively with less humid conditions (small peristome, waxy, non-viscoelastic and‘dry’ syndrome). Overall, the viscoelastic group showed the most restricted area of modelled suitable habitat.

Conclusions

The current study is the first to demonstrate that the prey capture mechanism in a carnivorous plant is constrained by climate. Nepenthes species employing peristome-based and viscoelastic fluid-based capture are largely restricted to perhumid regions; in contrast, the wax-based mechanism allows successful capture in both perhumid and more seasonal areas. Possible reasons for the maintenance of peristome-based and viscoelastic fluid-based capture mechanisms in Nepenthes are discussed in relation to the costs and benefits associated with a given prey capture strategy.  相似文献   

9.
Postma JA  Lynch JP 《Annals of botany》2011,107(5):829-841

Background and Aims

The formation of root cortical aerenchyma (RCA) reduces root respiration and nutrient content by converting living tissue to air volume. It was hypothesized that RCA increases soil resource acquisition by reducing the metabolic and phosphorus cost of soil exploration.

Methods

To test the quantitative logic of the hypothesis, SimRoot, a functional–structural plant model with emphasis on root architecture and nutrient acquisition, was employed. Sensitivity analyses for the effects of RCA on the initial 40 d of growth of maize (Zea mays) and common bean (Phaseolus vulgaris) were conducted in soils with varying degrees of phosphorus availability. With reference to future climates, the benefit of having RCA in high CO2 environments was simulated.

Key Results

The model shows that RCA may increase the growth of plants faced with suboptimal phosphorus availability up to 70 % for maize and 14 % for bean after 40 d of growth. Maximum increases were obtained at low phosphorus availability (3 µm). Remobilization of phosphorus from dying cells had a larger effect on plant growth than reduced root respiration. The benefit of both these functions was additive and increased over time. Larger benefits may be expected for mature plants. Sensitivity analysis for light-use efficiency showed that the benefit of having RCA is relatively stable, suggesting that elevated CO2 in future climates will not significantly effect the benefits of having RCA.

Conclusions

The results support the hypothesis that RCA is an adaptive trait for phosphorus acquisition by remobilizing phosphorus from the root cortex and reducing the metabolic costs of soil exploration. The benefit of having RCA in low-phosphorus soils is larger for maize than for bean, as maize is more sensitive to low phosphorus availability while it has a more ‘expensive’ root system. Genetic variation in RCA may be useful for breeding phosphorus-efficient crop cultivars, which is important for improving global food security.  相似文献   

10.

Background and Aims

Natural variation in fruit and seed set may be explained by factors that affect the composition of pollen grains on stigmas. Self-incompatible species require compatible outcross pollen grains to produce seeds. The siring success of outcross pollen grains, however, can be hindered if self (or other incompatible) pollen grains co-occur on stigmas. This study identifies factors that determine fruit set in Phlox hirsuta, a self-sterile endangered species that is prone to self-pollination, and its associated fitness costs.

Methods

Multiple linear regressions were used to identify factors that explain variation in percentage fruit set within three of the five known populations of this endangered species. Florivorous beetle density, petal colour, floral display size, local conspecific density and pre-dispersal seed predation were quantified and their effects on the ability of flowers to produce fruits were assessed.

Key Results

In all three populations, percentage fruit set decreased as florivorous beetle density increased and as floral display size increased. The effect of floral display size on fruit set, however, often depended on the density of nearby conspecific plants. High local conspecific densities offset – even reversed – the negative effects of floral display size on percentage fruit set. Seed predation by mammals decreased fruit set in one population.

Conclusions

The results indicate that seed production in P. hirsuta can be maximized by selectively augmenting populations in areas containing isolated large plants, by reducing the population sizes of florivorous beetles and by excluding mammals that consume unripe fruits.  相似文献   

11.

Background and Aims

Root architectural phenes enhancing topsoil foraging are important for phosphorus acquisition. In this study, the utility of a novel phene is described, basal root whorl number (BRWN), that has significant effects on topsoil foraging in common bean (Phaseolus vulgaris).

Methods

Whorls are defined as distinct tiers of basal roots that emerge in a tetrarch fashion along the base of the hypocotyl. Wild and domesticated bean taxa as well as two recombinant inbred line (RIL) populations were screened for BRWN and basal root number (BRN). A set of six RILs contrasting for BRWN was evaluated for performance under low phosphorus availability in the greenhouse and in the field. In the greenhouse, plants were grown in a sand–soil media with low or high phosphorus availability. In the field, plants were grown in an Oxisol in Mozambique under low and moderate phosphorus availability.

Key Results

Wild bean accessions tended to have a BRWN of one or two, whereas cultivated accessions had BRWN reaching four and sometimes five. BRWN and BRN did not vary with phosphorus availability, i.e. BRWN was not a plastic trait in these genotypes. Greater BRWN was beneficial for phosphorus acquisition in low phosphorus soil. Genotypes with three whorls had almost twice the shoot biomass, greater root length and greater leaf area than related genotypes with two whorls. In low phosphorus soil, shoot phosphorus content was strongly correlated with BRWN (R2 = 0·64 in the greenhouse and R2 = 0·88 in the field). Genotypes with three whorls had shallower root systems with a greater range of basal root growth angles (from 10 to 45 ° from horizontal) than genotypes with two whorls (angles ranged from 60 to 85 ° from horizontal).

Conclusions

The results indicate that BRWN is associated with increased phosphorus acquisition and that this trait may have value for selection of genotypes with better performance in low phosphorus soils.  相似文献   

12.

Background and Aims

Growth imbalances between individual fruits are common in indeterminate plants such as cucumber (Cucumis sativus). In this species, these imbalances can be related to differences in two growth characteristics, fruit growth duration until reaching a given size and fruit abortion. Both are related to distribution, and environmental factors as well as canopy architecture play a key role in their differentiation. Furthermore, events leading to a fruit reaching its harvestable size before or simultaneously with a prior fruit can be observed. Functional–structural plant models (FSPMs) allow for interactions between environmental factors, canopy architecture and physiological processes. Here, we tested hypotheses which account for these interactions by introducing dominance and abortion thresholds for the partitioning of assimilates between growing fruits.

Methods

Using the L-System formalism, an FSPM was developed which combined a model for architectural development, a biochemical model of photosynthesis and a model for assimilate partitioning, the last including a fruit growth model based on a size-related potential growth rate (RP). Starting from a distribution proportional to RP, the model was extended by including abortion and dominance. Abortion was related to source strength and dominance to sink strength. Both thresholds were varied to test their influence on fruit growth characteristics. Simulations were conducted for a dense row and a sparse isometric canopy.

Key Results

The simple partitioning models failed to simulate individual fruit growth realistically. The introduction of abortion and dominance thresholds gave the best results. Simulations of fruit growth durations and abortion rates were in line with measurements, and events in which a fruit was harvestable earlier than an older fruit were reproduced.

Conclusions

Dominance and abortion events need to be considered when simulating typical fruit growth traits. By integrating environmental factors, the FSPM can be a valuable tool to analyse and improve existing knowledge about the dynamics of assimilates partitioning.  相似文献   

13.

Background and Aims

Apple (Malus) fruit peduncles are highly modified stems with limited secondary growth because fruit ripening lasts only one season. They must reliably connect rather heavy fruits to the branch and cope with increasing fruit weight, which induces dynamic stresses under oscillating wind loads. This study focuses on tissue modification of these small, exposed structures during fruit development.

Methods

A combination of microscopic, static and dynamic mechanical tests, as well as Raman spectroscopy, was used to study structure–function relationships in peduncles of one cultivar and 12 wild species, representatively chosen from all sections of the genus Malus. Tissue differentiation and ontogenetic changes in mechanical properties of Malus peduncles were observed throughout one growing season and after successive removal of tissues.

Key Results

Unlike in regular stems, the vascular cambium produces mainly phloem during secondary growth. Hence, in addition to a reduced xylem, all species developed a centrally arranged sclerenchyma ring composed of fibres and brachysclereids. Based on differences in cell-wall thickness, and proportions and arrangement of sclereids, two types of peduncle construction could be distinguished. Fibres provide an increased maximum tensile strength and contribute most to the overall axial rigidity of the peduncles. Sclereids contribute insignificantly to peduncle strength; however, despite being shown to have a lower elastic modulus than fibres, they are the most effective tissue in stiffening peduncles against bending.

Conclusions

The experimental data revealed that sclereids originating from cortical parenchyma act as ‘accessory’ cells to enhance proportions of sclerenchyma during secondary growth in peduncles. The mechanism can be interpreted as an adaptation to continuously increasing fruit loads. Under oscillating longitudinal stresses, sclereids may be regarded as regulating elements between maintenance of stiffness and viscous damping, the latter property being attributed to the cortical parenchyma.  相似文献   

14.

Background and Aims

The evolution of seeds together with the mechanisms related to their dispersal into the environment represented a turning point in the evolution of plants. Seeds are produced by gymnosperms and angiosperms but only the latter have an ovary to be transformed into a fruit. Yet some gymnosperms produce fleshy structures attractive to animals, thus behaving like fruits from a functional point of view. The aim of this work is to increase our knowledge of possible mechanisms common to the development of both gymnosperm and angiosperm fruits.

Methods

B-sister genes from two gymnosperms (Ginkgo biloba and Taxus baccata) were isolated and studied. The Ginkgo gene was also functionally characterized by ectopically expressing it in tobacco.

Key Results

In Ginkgo the fleshy structure derives from the outer seed integument and the B-sister gene is involved in its growth. In Taxus the fleshy structure is formed de novo as an outgrowth of the ovule peduncle, and the B-sister gene is not involved in this growth. In transgenic tobacco the Ginkgo gene has a positive role in tissue growth and confirms its importance in ovule/seed development.

Conclusions

This study suggests that B-sister genes have a main function in ovule/seed development and a subsidiary role in the formation of fleshy fruit-like structures when the latter have an ovular origin, as occurs in Ginkgo. Thus, the ‘fruit function’ of B-sister genes is quite old, already being present in Gymnosperms as ancient as Ginkgoales, and is also present in Angiosperms where a B-sister gene has been shown to be involved in the formation of the Arabidopsis fruit.  相似文献   

15.

Background and Aims

Plants are expected to maximize their net photosynthetic gains and efficiently use available resources, but the fundamental principles governing trade-offs in suites of traits related to resource-use optimization remain uncertain. This study investigated whether Acer saccharum (sugar maple) saplings could maximize their net photosynthetic gains through a combination of crown structure and foliar characteristics that let all leaves maximize their photosynthetic light-use efficiency (ɛ).

Methods

A functional–structural model, LIGNUM, was used to simulate individuals of different leaf area index (LAIind) together with a genetic algorithm to find distributions of leaf angle (LA) and leaf photosynthetic capacity (Amax) that maximized net carbon gain at the whole-plant level. Saplings grown in either the open or in a forest gap were simulated with Amax either unconstrained or constrained to an upper value consistent with reported values for Amax in A. saccharum.

Key Results

It was found that total net photosynthetic gain was highest when whole-plant PPFD absorption and leaf ɛ were simultaneously maximized. Maximization of ɛ required simultaneous adjustments in LA and Amax along gradients of PPFD in the plants. When Amax was constrained to a maximum, plants growing in the open maximized their PPFD absorption but not ɛ because PPFD incident on leaves was higher than the PPFD at which ɛmax was attainable. Average leaf ɛ in constrained plants nonetheless improved with increasing LAIind because of an increase in self-shading.

Conclusions

It is concluded that there are selective pressures for plants to simultaneously maximize both PPFD absorption at the scale of the whole individual and ɛ at the scale of leaves, which requires a highly integrated response between LA, Amax and LAIind. The results also suggest that to maximize ɛ plants have evolved mechanisms that co-ordinate the LA and Amax of individual leaves with PPFD availability.  相似文献   

16.
It has been widely accepted that the growth-related phytohormone auxin is the endogenous signal that initiates bending movements of plant organs. In 1875, Charles Darwin described how the bending movement of leaves in carnivorous sundew species formed an ‘outer stomach’ that allowed the plants to enclose and digest captured insect prey. About 100 years later, auxin was suggested to be the factor responsible for this movement. We report that prey capture induces both leaf bending and the accumulation of defence-related jasmonate phytohormones. In Drosera capensis fed with fruitflies, within 3 h after prey capture and simultaneous with leaf movement, we detected an increase in jasmonic acid and its isoleucine conjugate. This accumulation was spatially restricted to the bending segment of the leaves. The application of jasmonates alone was sufficient to trigger leaf bending. Only living fruitflies or the body fluids of crushed fruitflies induced leaf curvature; neither dead flies nor mechanical treatment had any effect. Our findings strongly suggest that the formation of the ‘outer stomach’ in Drosera is a chemonastic movement that is triggered by accumulation of endogenous jasmonates. These results suggest that in carnivorous sundew plants the jasmonate cascade might have been adapted to facilitate carnivory rather than to defend against herbivores.  相似文献   

17.

Background

Domestication modifies the genomic variation of species. Quantifying this variation provides insights into the domestication process, facilitates the management of resources used by breeders and germplasm centers, and enables the design of experiments to associate traits with genes. We described and analyzed the genetic diversity of 1,008 tomato accessions including Solanum lycopersicum var. lycopersicum (SLL), S. lycopersicum var. cerasiforme (SLC), and S. pimpinellifolium (SP) that were genotyped using 7,720 SNPs. Additionally, we explored the allelic frequency of six loci affecting fruit weight and shape to infer patterns of selection.

Results

Our results revealed a pattern of variation that strongly supported a two-step domestication process, occasional hybridization in the wild, and differentiation through human selection. These interpretations were consistent with the observed allele frequencies for the six loci affecting fruit weight and shape. Fruit weight was strongly selected in SLC in the Andean region of Ecuador and Northern Peru prior to the domestication of tomato in Mesoamerica. Alleles affecting fruit shape were differentially selected among SLL genetic subgroups. Our results also clarified the biological status of SLC. True SLC was phylogenetically positioned between SP and SLL and its fruit morphology was diverse. SLC and “cherry tomato” are not synonymous terms. The morphologically-based term “cherry tomato” included some SLC, contemporary varieties, as well as many admixtures between SP and SLL. Contemporary SLL showed a moderate increase in nucleotide diversity, when compared with vintage groups.

Conclusions

This study presents a broad and detailed representation of the genomic variation in tomato. Tomato domestication seems to have followed a two step-process; a first domestication in South America and a second step in Mesoamerica. The distribution of fruit weight and shape alleles supports that domestication of SLC occurred in the Andean region. Our results also clarify the biological status of SLC as true phylogenetic group within tomato. We detect Ecuadorian and Peruvian accessions that may represent a pool of unexplored variation that could be of interest for crop improvement.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1444-1) contains supplementary material, which is available to authorized users.  相似文献   

18.

Background and Aims

Understanding the synthesis of ascorbic acid (l-AsA) in green tissues in model species has advanced considerably; here we focus on its production and accumulation in fruit. In particular, our aim is to understand the links between organs which may be sources of l-AsA (leaves) and those which accumulate it (fruits). The work presented here tests the idea that changes in leaf and fruit number influence the accumulation of l-AsA. The aim was to understand the importance of leaf tissue in the production of l-AsA and to determine how this might provide routes for the manipulation of fruit tissue l-AsA.

Methods

The experiments used Ribes nigrum (blackcurrant), predominantly in field experiments, where the source–sink relationship was manipulated to alter potential leaf l-AsA production and fruit growth and accumulation of l-AsA. These manipulations included reductions in reproductive capacity, by raceme removal, and the availability of assimilates by leaf removal and branch phloem girdling. Natural variation in fruit growth and fruit abscission is also described as this influences subsequent experimental design and the interpretation of l-AsA data.

Key Results

Results show that fruit l-AsA concentration is conserved but total yield of l-AsA per plant is dependent on a number of innate factors many of which relate to raceme attributes. Leaf removal and phloem girdling reduced fruit weight, and a combination of both reduced fruit yields further. It appears that around 50 % of assimilates utilized for fruit growth came from apical leaves, while between 20 and 30 % came from raceme leaves, with the remainder from ‘storage’.

Conclusions

Despite being able to manipulate leaf area and therefore assimilate availability and stored carbohydrates, along with fruit yields, rarely were effects on fruit l-AsA concentration seen, indicating fruit l-AsA production in Ribes was not directly coupled to assimilate supply. There was no supporting evidence that l-AsA production occurred predominantly in green leaf tissue followed by its transfer to developing fruits. It is concluded that l-AsA production occurs predominantly in the fruit of Ribes nigrum.  相似文献   

19.
20.

Background and Aims

Xylem flows into most fruits decline as the fruit develop, with important effects on mineral and carbohydrate accumulation. It has been hypothesized that an increase in xylem hydraulic resistance (RT) contributes to this process. This study examined changes in RT that occur during development of the berry of kiwifruit (Actinidia deliciosa), identified the region within the fruit where changes were occurring, and tested whether a decrease in irradiance during fruit development caused an increase in RT, potentially contributing to decreased mineral accumulation in shaded fruit.

Methods

RT was measured using pressure chamber and flow meter methods, the two methods were compared, and the flow meter was also used to partition RT between the pedicel, receptacle and proximal and distal portions of the berry. Dye was used as a tracer for xylem function. Artificial shading was used to test the effect of light on RT, dye entry and mineral accumulation.

Key Results

RT decreased during the early phase of rapid fruit growth, but increased again as the fruit transitioned to a final period of slower growth. The most significant changes in resistance occurred in the receptacle, which initially contributed 20 % to RT, increasing to 90 % later in development. Dye also ceased moving beyond the receptacle from 70 d after anthesis. The two methods for measuring RT agreed in terms of the direction and timing of developmental changes in RT, but pressure chamber measurements were consistently higher than flow meter estimates of RT, prompting questions regarding which method is most appropriate for measuring fruit RT. Shading had no effect on berry growth but increased RT and decreased dye movement and calcium concentration.

Conclusions

Increased RT in the receptacle zone coincides with slowing fresh weight growth, reduced transpiration and rapid starch accumulation by the fruit. Developmental changes in RT may be connected to changes in phloem functioning and the maintenance of water potential gradients between the stem and the fruit. The effect of shade on RT extends earlier reports that shading can affect fruit vascular differentiation, xylem flows and mineral accumulation independently of effects on transpiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号