首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carriers of the apolipoprotein A-I(Milano) (A-I(M)) variant present with severe reductions of plasma HDL levels, not associated with premature coronary heart disease (CHD). Sera from 14 A-I(M) carriers and matched controls were compared for their ability to promote ABCA1-driven cholesterol efflux from J774 macrophages and human fibroblasts. When both cell types are stimulated to express ABCA1, the efflux of cholesterol through this pathway is greater with A-I(M) than control sera (3.4 +/- 1.0% versus 2.3 +/- 1.0% in macrophages; 5.2 +/- 2.4% versus 1.9 +/- 0.1% in fibroblasts). A-I(M) and control sera are instead equally effective in removing cholesterol from unstimulated cells and from fibroblasts not expressing ABCA1. The A-I(M) sera contain normal amounts of apoA-I-containing prebeta-HDL and varying concentrations of a unique small HDL particle containing a single molecule of the A-I(M) dimer; chymase treatment of serum degrades both particles and abolishes ABCA1-mediated cholesterol efflux. The serum content of chymase-sensitive HDL correlates strongly and significantly with ABCA1-mediated cholesterol efflux (r = 0.542, p = 0.004). The enhanced capacity of A-I(M) serum for ABCA1 cholesterol efflux is thus explained by the combined occurrence in serum of normal amounts of apoA-I-containing prebeta-HDL, together with a unique protease-sensitive, small HDL particle containing the A-I(M) dimer, both effective in removing cell cholesterol via ABCA1.  相似文献   

2.
Paraoxonase-1 (PON1) is a high-density lipoprotein (HDL)-associated serum enzyme thought to make a major contribution to the antioxidant and anti-inflammatory capacities of HDLs. However, the role of PON1 in the modulation of cholesterol efflux is poorly understood. The aim of our study was to investigate the involvement of PON1 in the regulation of cholesterol efflux, especially the mechanism by which it modulates HDL-mediated cholesterol transport. The enrichment of HDL(3) with human PON1 enhanced, in a dose-dependent manner, cholesterol efflux from THP-1 macrophage-like cells and ABCA1-enriched J774 macrophages. Moreover, an additive effect was observed when ABCA1-enriched J774 macrophages were incubated with both PON1 and apo-AI. Interestingly, PON1 alone was able to mediate cholesterol efflux from J774 macrophages and to upregulate ABCA1 expression on J774 macrophages. Immunofluorescence measurement showed an increase in PON1 levels in the cytoplasm of J774 macrophages overexpressing ABCA1. PON1 used an apo-AI-like mechanism to modulate cholesterol efflux from rapid and slow efflux pools derived from the lipid raft and nonraft domains of the plasma membrane, respectively. This was supported by the fact that ABCA1 protein was incrementally expressed by J774 macrophages within the first few hours of incubation with cholesterol-loaded J774 macrophages and that cyclodextrin significantly inhibited the capacity of PON1 to modulate cholesterol efflux from macrophages. This finding suggested that PON1 plays an important role in the antiatherogenic properties of HDLs and may exert its protective function outside the lipoprotein environment.  相似文献   

3.
Defects in the gene encoding for the ATP binding cassette (ABC) transporter A1 (ABCA1) were shown to be one of the genetic causes for familial hypoalphalipoproteinemia (FHA). We investigated the role of ABCA1-mediated cholesterol efflux in Dutch subjects suffering from FHA. Eighty-eight subjects (mean HDL cholesterol levels 0.63 +/- 0.21 mmol/l) were enrolled. Fibroblasts were cultured and loaded with [3H]cholesterol. ABCA1 and non-ABCA1-mediated efflux was studied by using apolipoprotein A-I (apoA-I), HDL, and methyl-beta-cyclodextrin as acceptors. Efflux to apoA-I was decreased in four patients (4/88, 4.5%), and in all cases, a mutation in the ABCA1 gene was found. In the remaining 84 subjects, no correlation between efflux and apoA-I or HDL cholesterol was found. Efflux to both HDL and cyclodextrin, in contrast, did correlate with HDL cholesterol plasma levels (r = 0.34, P = 0.01; and r = 0.27, P = 0.008, respectively). The prevalence of defects in ABCA1-dependent cholesterol efflux in Dutch FHA patients is low. The significant correlation between plasma HDL cholesterol levels and methyl-beta-cyclodextrin-mediated efflux in the FHA patients with normal ABCA1 function suggests that non-ABCA1-mediated efflux might also be important for plasma HDL cholesterol levels in these individuals.  相似文献   

4.
In familial hypercholesterolemia (FH), low HDL cholesterol (HDL-C) levels are associated with functional alterations of HDL particles that reduce their capacity to mediate the reverse cholesterol transport (RCT) pathway. The objective of this study was to evaluate the consequences of LDL apheresis on the efficacy of the RCT pathway in FH patients. LDL apheresis markedly reduced abnormal accelerated cholesteryl ester transfer protein (CETP)-mediated cholesteryl ester (CE) transfer from HDL to LDL, thus reducing their CE content. Equally, we observed a major decrease (-53%; P < 0.0001) in pre-β1-HDL levels. The capacity of whole plasma to mediate free cholesterol efflux from human macrophages was reduced (-15%; P < 0.02) following LDL apheresis. Such reduction resulted from a marked decrease in the ABCA1-dependent efflux (-71%; P < 0.0001) in the scavenger receptor class B type I-dependent efflux (-21%; P < 0.0001) and in the ABCG1-dependent pathway (-15%; P < 0.04). However, HDL particles isolated from FH patients before and after LDL apheresis displayed a similar capacity to mediate cellular free cholesterol efflux or to deliver CE to hepatic cells. We demonstrate that rapid removal of circulating lipoprotein particles by LDL apheresis transitorily reduces RCT. However, LDL apheresis is without impact on the intrinsic ability of HDL particles to promote either cellular free cholesterol efflux from macrophages or to deliver CE to hepatic cells.  相似文献   

5.
The effects of androgens on cardiovascular disease (CVD) risk in men remain unclear. To better characterize the relationship between androgens and HDL, we investigated the effects of testosterone replacement on HDL protein composition and serum HDL-mediated cholesterol efflux in hypogonadal men. Twenty-three older hypogonadal men (ages 51-83, baseline testosterone < 280 ng/dl) were administered replacement testosterone therapy (1% transdermal gel) with or without the 5α-reductase inhibitor dutasteride. At baseline and after three months of treatment, we determined fasting lipid concentrations, HDL protein composition, and the cholesterol efflux capacity of serum HDL. Testosterone replacement did not affect HDL cholesterol (HDL-C) concentrations but conferred significant increases in HDL-associated paraoxonase 1 (PON1) and fibrinogen α chain (FGA) (P = 0.022 and P = 0.023, respectively) and a decrease in apolipoprotein A-IV (apoA-IV) (P = 0.016). Exogenous testosterone did not affect the cholesterol efflux capacity of serum HDL. No differences were observed between men who received testosterone alone and those who also received dutasteride. Testosterone replacement in older hypogonadal men alters the protein composition of HDL but does not significantly change serum HDL-mediated cholesterol efflux. These effects appear independent of testosterone conversion to dihydrotestosterone. Further research is needed to determine how changes in HDL protein content affect CVD risk in men.  相似文献   

6.
Cholesterol efflux capacity associates strongly and negatively with the incidence and prevalence of human CVD. We investigated the relationships of HDL’s size and protein cargo with its cholesterol efflux capacity using APOB-depleted serum and HDLs isolated from five inbred mouse strains with different susceptibilities to atherosclerosis. Like humans, mouse HDL carried >70 proteins linked to lipid metabolism, the acute-phase response, proteinase inhibition, and the immune system. HDL’s content of specific proteins strongly correlated with its size and cholesterol efflux capacity, suggesting that its protein cargo regulates its function. Cholesterol efflux capacity with macrophages strongly and positively correlated with retinol binding protein 4 (RBP4) and PLTP, but not APOA1. In contrast, ABCA1-specific cholesterol efflux correlated strongly with HDL’s content of APOA1, APOC3, and APOD, but not RBP4 and PLTP. Unexpectedly, APOE had a strong negative correlation with ABCA1-specific cholesterol efflux capacity. Moreover, the ABCA1-specific cholesterol efflux capacity of HDL isolated from APOE-deficient mice was significantly greater than that of HDL from wild-type mice. Our observations demonstrate that the HDL-associated APOE regulates HDL’s ABCA1-specific cholesterol efflux capacity. These findings may be clinically relevant because HDL’s APOE content associates with CVD risk and ABCA1 deficiency promotes unregulated cholesterol accumulation in human macrophages.  相似文献   

7.
The objective of the present study was to elucidate the beneficial properties of aqueous extracts of Marrubium vulgare (AEM) towards cardiovascular disease by protecting human-LDL against lipid peroxidation and promoting HDL-mediated cholesterol efflux. Human-LDL were oxidised by incubation with CuSO(4) in the presence of increased concentrations of AEM (0-100 microg/ml). LDL lipid peroxidation was evaluated by conjugated diene formation, vitamin E disappearance as well as LDL-electrophoretic mobility. HDL-mediated cholesterol efflux assay was carried out in human THP-1 macrophages. Incubation of LDL with AEM significantly prolonged the lag phase (P=0.014), lowered the progression rate of lipid peroxidation (P=0.004), reduced the disappearance of vitamin E and the electrophoretic mobility in a dose-dependent manner. Also, incubation of HDL with AEM significantly increased HDL-mediated cholesterol efflux from THP-1 macrophages implicating an independent ATP binding cassette A1 (ABCA1) pathways. Our findings suggest that M. vulgare provides a source of natural antioxidants, which inhibit LDL oxidation and enhance reverse cholesterol transport and thus can prevent cardiovascular diseases development. These antioxidant properties increase the anti-atherogenic potential of HDL.  相似文献   

8.
AimsHigh-density lipoprotein (HDL) contains multiple components that endow it with biological activities. Apolipoprotein A-I (apoA-I) and surface phospholipids contribute to these activities; however, structure-function relationships in HDL particles remain incompletely characterised.MethodsReconstituted HDLs (rHDLs) were prepared from apoA-I and soy phosphatidylcholine (PC) at molar ratios of 1:50, 1:100 and 1:150. Oxidative status of apoA-I was varied using controlled oxidation of Met112 residue. HDL-mediated inactivation of PC hydroperoxides (PCOOH) derived from mildly pre-oxidized low-density lipoprotein (LDL) was evaluated by HPLC with chemiluminescent detection in HDL + LDL mixtures and re-isolated LDL. Cellular cholesterol efflux was characterised in RAW264.7 macrophages.ResultsrHDL inactivated LDL-derived PCOOH in a dose- and time-dependent manner. The capacity of rHDL to both inactivate PCOOH and efflux cholesterol via ATP-binding cassette transporter A1 (ABCA1) increased with increasing apoA-I/PC ratio proportionally to the apoA-I content in rHDL. Controlled oxidation of apoA-I Met112 gradually decreased PCOOH-inactivating capacity of rHDL but increased ABCA1-mediated cellular cholesterol efflux.ConclusionsIncreasing apoA-I content in rHDL enhanced its antioxidative activity towards oxidized LDL and cholesterol efflux capacity via ABCA1, whereas oxidation of apoA-I Met112 decreased the antioxidative activity but increased the cholesterol efflux. These findings provide important considerations in the design of future HDL therapeutics.Non-standard abbreviations and acronyms: AAPH, 2,2′-azobis(-amidinopropane) dihydrochloride; ABCA1, ATP-binding cassette transporter A1; apoA-I, apolipoprotein A-I; BHT, butylated hydroxytoluene; CV, cardiovascular; EDTA, ethylenediaminetetraacetic acid; HDL-C, high-density lipoprotein cholesterol; LOOH, lipid hydroperoxides; Met(O), methionine sulfoxide; Met112, methionine 112 residue; Met86, methionine 86 residue; oxLDL, oxidized low-density lipoprotein; PBS, phosphate-buffered saline; PC, phosphatidylcholine; PL, phospholipid; PCOOH, phosphatidylcholine hydroperoxide; PLOOH, phospholipid hydroperoxide.  相似文献   

9.
Periodontitis, a consequence of persistent bacterial infection and chronic inflammation, has been suggested to predict coronary heart disease (CHD). The aim of this study was to investigate the impact of periodontitis on HDL structure and antiatherogenic function in cholesterol efflux in vitro. HDL was isolated from 30 patients (age 43.6 +/- 6.1 years, mean +/- SD) with periodontitis before and after (3.2 +/- 1.4 months) periodontal treatment. The capacity of HDL for cholesterol efflux from macrophages (RAW 264.7), HDL composition, and key proteins of HDL metabolism were determined. After periodontal treatment, phospholipid transfer protein (PLTP) activity was 6.2% (P<0.05) lower, and serum HDL cholesterol concentration, PLTP mass, and cholesteryl ester transfer protein activity were 10.7% (P<0.001), 7.1% (P=0.078), and 19.4% (P<0.001) higher, respectively. The mean HDL2/HDL3 ratio increased from 2.16 +/- 0.87 to 3.56 +/- 0.48 (P<0.05). HDL total phospholipid mass and sphingomyelin-phosphatidylcholine ratio were 7.4% (P<0.05) and 36.8% (P<0.001) higher, respectively. The HDL-mediated cholesterol efflux tended to be higher after periodontal treatment; interestingly, this increase was significant (P<0.05) among patients whose C-reactive protein decreased (53.7% reduction, P=0.015) and who were positive by PCR for Actinobacillus actinomycetemcomitans. These results suggest that periodontitis causes similar, but milder, changes in HDL metabolism than those that occur during the acute-phase response and that periodontitis may diminish the antiatherogenic potency of HDL, thus increasing the risk for CHD.  相似文献   

10.
Our objective was to evaluate the associations of individual apolipoprotein A-I (apoA-I)-containing HDL subpopulation levels with ABCA1- and scavenger receptor class B type I (SR-BI)-mediated cellular cholesterol efflux. HDL subpopulations were measured by nondenaturing two-dimensional gel electrophoresis from 105 male subjects selected with various levels of apoA-I in pre-beta-1, alpha-1, and alpha-3 HDL particles. ApoB-containing lipoprotein-depleted serum was incubated with [(3)H]cholesterol-labeled cells to measure efflux. The difference in efflux between control and ABCA1-upregulated J774 macrophages was taken as a measure of ABCA1-mediated efflux. SR-BI-mediated efflux was determined using cholesterol-labeled Fu5AH hepatoma cells. Fractional efflux values obtained from these two cell systems were correlated with the levels of individual HDL subpopulations. A multivariate analysis showed that two HDL subspecies correlated significantly with ABCA1-mediated efflux: small, lipid-poor pre-beta-1 particles (P=0.0022) and intermediate-sized alpha-2 particles (P=0.0477). With regard to SR-BI-mediated efflux, multivariate analysis revealed significant correlations with alpha-2 (P=0.0004), alpha-1 (P=0.0030), pre-beta-1 (P=0.0056), and alpha-3 (P=0.0127) HDL particles. These data demonstrate that the small, lipid-poor pre-beta-1 HDL has the strongest association with ABCA1-mediated cholesterol even in the presence of all other HDL subpopulations. Cholesterol efflux via the SR-BI pathway is associated with several HDL subpopulations with different apolipoprotein composition, lipid content, and size.  相似文献   

11.
Efflux of excess cellular cholesterol mediated by lipid-poor apolipoproteins occurs by an active mechanism distinct from passive diffusion and is controlled by the ATP-binding cassette transporter ABCA1. Here we examined whether ABCA1-mediated lipid efflux involves the selective removal of lipids associated with membrane rafts, plasma membrane domains enriched in cholesterol and sphingomyelin. ABCA1 was not associated with cholesterol and sphingolipid-rich membrane raft domains based on detergent solubility and lack of colocalization with marker proteins associated with raft domains. Lipid efflux to apoA-I was accounted for by decreases in cellular lipids not associated with cholesterol/sphingomyelin-rich membranes. Treating cells with filipin, to disrupt raft structure, or with sphingomyelinase, to digest plasma membrane sphingomyelin, did not impair apoA-I-mediated cholesterol or phosphatidylcholine efflux. In contrast, efflux of cholesterol to high density lipoproteins (HDL) or plasma was partially accounted for by depletion of cholesterol from membrane rafts. Additionally, HDL-mediated cholesterol efflux was partially inhibited by filipin and sphingomyelinase treatment. Apo-A-I-mediated cholesterol efflux was absent from fibroblasts with nonfunctional ABCA1 (Tangier disease cells), despite near normal amounts of cholesterol associated with raft domains and normal abilities of plasma and HDL to deplete cholesterol from these domains. Thus, the involvement of membrane rafts in cholesterol efflux applies to lipidated HDL particles but not to lipid-free apoA-I. We conclude that cholesterol and sphingomyelin-rich membrane rafts do not provide lipid for efflux promoted by apolipoproteins through the ABCA1-mediated lipid secretory pathway and that ABCA1 is not associated with these domains.  相似文献   

12.
Our previous study shows that caveolin-1 colocalizes and interacts with ATP-binding cassette transporter A1 (ABCA1), which is intimately involved in cellular cholesterol efflux. In this study, we further clarified the region of caveolin-1 that interacts with ABCA1. We also examined the interaction between mutant caveolin-1 and ABCA1 in HDL-mediated cholesterol efflux. We constructed a panel of mutant caveolin-1 proteins and co-transfected them into rat aortic endothelial and human embryonic kidney 293 (HEK293) cells. The co-immunoprecipitation shows that mutant oligomerization domain of caveolin-1, caveolin-1Δ62–100, is required for the interaction of caveolin-1 with ABCA1. Caveolin-1Δ62–100 did not colocalize with ABCA1 in the cholesterol-loaded cells after HDL incubation as observed by immunofluorescence confocal microscopy. Concomitantly, caveolin-1Δ62–100 suppressed HDL-mediated cholesterol efflux. The results suggest that the region of caveolin-1 between amino acids 62 and 100 is an oligomerization domain as well as an attachment site for ABCA1 interaction that regulates HDL-mediated cholesterol efflux.  相似文献   

13.
Alagille syndrome is associated with bile duct paucity resulting in liver disease. Patients can be divided into mildly and severely icteric groups, with both groups having altered lipoproteins. The incidence of ischemic heart disease is rare in severely cholestatic children despite increased total cholesterol and decreased high density lipoprotein cholesterol (HDL-C). The present studies examine the impact of altered lipid and lipoproteins on scavenger receptor class B type I (SR-BI)- and ABCA1-mediated efflux to serum from both groups. Efflux was compared with serum from 29 patients (15 with normal plasma cholesteryl ester, 14 with low cholesteryl ester). Efflux via SR-BI and ABCA1 was studied using cell systems having either low or high expression levels of these receptors. SR-BI efflux was lower (P = 0.04) with serum from severely icteric patients (3.9 +/- 1.4%) compared with serum from mildly icteric patients (5.1 +/- 1.4%) and was positively correlated with HDL-C and its apolipoproteins. SR-BI-mediated efflux was not correlated with any particular mature HDL but was negatively correlated with small lipid-poor prebeta-1 HDL. Consistent with severely icteric patients having high prebeta-1 HDL levels, the ABCA1 efflux was significantly higher with their serum (4.8 +/- 2.2%) compared with serum from mildly icteric patients (2.0 +/- 0.6%) and was positively correlated with prebeta-1 HDL. These studies demonstrated that prebeta-1 HDL is the preferred acceptor for ABCA1 efflux, whereas many particles mediate SR-BI efflux.  相似文献   

14.
The effects of in vivo modulation of HDL phospholipid (PL) on scavenger receptor class BI (SR-BI)- and ATP binding cassette transporter 1 (ABCA1)-mediated efflux were examined by overexpressing either endothelial lipase (EL) or phosphatidylserine phospholipase (PS-PLA1) in human apolipoprotein A-I (apoA-I) transgenic mice. Overexpression of EL led to large reductions in the serum PL/apoA-I ratio (-60%), total cholesterol (TC; -89%), and HDL cholesterol (-91%). Relative to the serum before overexpression of EL, the efflux potential of the serum via SR-BI decreased by 90% and ABCA1-mediated efflux increased by 63%. In contrast to overexpression of EL, overexpression of PS-PLA1 led to increases in the PL/apoA-I ratio (88%), TC (78%), HDL cholesterol (57%), and HDL size. The efflux potential of the serum increased by 60% via SR-BI and decreased by 57% via ABCA1. There were significant positive correlations between SR-BI-mediated efflux and a number of serum parameters, including PL/apoA-I ratio, PL, TC, free cholesterol (FC), and HDL cholesterol. In striking contrast, the same correlations were seen with ABCA1-mediated efflux, but the relationships were inverse. In summary, in vivo modulation of HDL PL content affects ABCA1- and SR-BI-mediated efflux in a reciprocal manner. These findings indicate that the type of lipase acting on HDL in vivo will determine which FC efflux pathway the HDL serves. Additionally, the extent of lipolysis will determine the efficiency of FC removal via this pathway.  相似文献   

15.
《Free radical research》2013,47(12):1462-1472
Abstract

In our in vitro study, we analyzed the effects of incubation of J774A.1 macrophages with reduced glutathione (GSH) and quercetin on the extent of cellular cholesterol efflux by high-density lipoprotein (HDL) or apolipoprotein A1 (apoA1). This combination was the most potent one among other exogenous and endogenous antioxidant combinations, since it significantly increased the extent of HDL-mediated cholesterol efflux from macrophages by 47% versus control cells, whereas quercetin (20 μM) or GSH (200 μM) alone increased it by only 37% or 17%, respectively. Similarly, apoA1-mediated cholesterol efflux was increased by 11% or 22% in quercetin or quercetin + GSH-treated cells, respectively, versus control cells. These stimulatory effects were noted only after 20 h of cell incubation. The combination of quercetin + GSH demonstrated high scavenging capacity of free radicals versus quercetin or GSH alone. In addition, quercetin + GSH significantly decreased macrophage oxidative stress as measured by the scavenging capacity of free radicals in the cells, the formation of reactive oxygen species, and the levels of cellular glutathione and lipid peroxides. There was no significant effect of quercetin + GSH on cellular HDL binding, on ATP-binding cassette A1 (ABCA1) activity, or on ABCG1 messenger RNA (mRNA) levels.

In contrast, mRNA levels for ABCA1 and peroxisome proliferator-activated receptor alpha (PPARα) were both significantly increased by 89% and 93%, respectively, in quercetin + GSH-treated cells versus control cells. Quercetin alone increased the mRNA levels for ABCA1 or PPARα by 42% or 77%, respectively, whereas GSH alone increased it by 22% or 28%, respectively. Mass spectra analysis revealed that oxidized quercetin reacts with GSH to form a new adduct product. We thus conclude that the stimulatory effects of quercetin + GSH on apoA1- or HDL-mediated macrophage cholesterol efflux are related to the ability of GSH to preserve quercetin in its reduced form.  相似文献   

16.
It has been suggested that ABCA1 interacts preferentially with lipid-poor apolipoprotein A-I (apoA-I). Here, we show that treatment of plasma with dimyristoyl phosphatidylcholine (DMPC) multilamellar vesicles generates prebeta(1)-apoA-I-containing lipoproteins (LpA-I)-like particles similar to those of native plasma. Isolated prebeta(1)-LpA-I-like particles inhibited the binding of (125)I-apoA-I to ABCA1 more efficiently than HDL(3) (IC(50) = 2.20 +/- 0.35 vs. 37.60 +/- 4.78 microg/ml). We next investigated the ability of DMPC-treated plasma to promote phospholipid and unesterified (free) cholesterol efflux from J774 macrophages stimulated or not with cAMP. At 2 mg DMPC/ml plasma, both phospholipid and free cholesterol efflux were increased ( approximately 50% and 40%, respectively) in cAMP-stimulated cells compared with unstimulated cells. Similarly, both phospholipid and free cholesterol efflux to either isolated native prebeta(1)-LpA-I and prebeta(1)-LpA-I-like particles were increased significantly in stimulated cells. Furthermore, glyburide significantly inhibited phospholipid and free cholesterol efflux to DMPC-treated plasma. Removal of apoA-I-containing lipoproteins from normolipidemic plasma drastically reduced free cholesterol efflux mediated by DMPC-treated plasma. Finally, treatment of Tangier disease plasma with DMPC affected the amount of neither prebeta(1)-LpA-I nor free cholesterol efflux. These results indicate that DMPC enrichment of normal plasma resulted in the redistribution of apoA-I from alpha-HDL to prebeta-HDL, allowing for more efficient ABCA1-mediated cellular lipid release. Increasing the plasma prebeta(1)-LpA-I level by either pharmacological agents or direct infusions might prevent foam cell formation and reduce atherosclerotic vascular disease.  相似文献   

17.
Guha M  Gao X  Jayaraman S  Gursky O 《Biochemistry》2008,47(44):11393-11397
High-density lipoproteins (HDLs) are protein-lipid assemblies that remove excess cell cholesterol and prevent atherosclerosis. HDLs are stabilized by kinetic barriers that decelerate protein dissociation and lipoprotein fusion. We propose that similar barriers modulate metabolic remodeling of plasma HDLs; hence, changes in particle composition that destabilize HDLs and accelerate their denaturation may accelerate their metabolic remodeling. To test this notion, we correlate existing reports on HDL-mediated cell cholesterol efflux and esterification, which are obligatory early steps in cholesterol removal, with our kinetic studies of HDL stability. The results support our hypothesis and show that factors accelerating cholesterol efflux and esterification in model discoidal lipoproteins (including reduced protein size, reduced fatty acyl chain length, and/or increased level of cis unsaturation) destabilize lipoproteins and accelerate their fusion and apolipoprotein dissociation. Oxidation studies of plasma spherical HDLs show a similar trend: mild oxidation by Cu(2+) or OCl(-) accelerates cell cholesterol efflux, protein dissociation, and HDL fusion, while extensive oxidation inhibits these reactions. Consequently, moderate destabilization may be beneficial for HDL functions by facilitating insertion of cholesterol and lipophilic enzymes, promoting dissociation of lipid-poor apolipoproteins, which are primary acceptors of cell cholesterol, and thereby accelerating HDL metabolism. Therefore, HDL stability must be delicately balanced to maintain the structural integrity of the lipoprotein assembly and ensure structural specificity necessary for interactions of HDL with its metabolic partners, while facilitating rapid HDL remodeling and turnover at key junctures of cholesterol transport. The inverse correlation between HDL stability and remodeling illustrates the functional importance of structural disorder in macromolecular assemblies stabilized by kinetic barriers.  相似文献   

18.

Aims

Diabetes is associated with atherogenesis and macrophage-foam cell formation, due in part to a decrease in HDL-mediated cholesterol efflux from macrophages. This study examined the expression of proteins involved in cholesterol transport, i.e. ABCA1 and SR-BI, under diabetic conditions.

Methods and results

ABCA1 expression was similar, whereas SR-BI expression (mRNA and protein) was significantly increased in mouse peritoneal macrophages (MPM) harvested from C57Bl/6 diabetic mice, compared to MPM from control non-diabetic mice. Similar results were obtained in vitro in J-774A.1 macrophage-like cell line incubated with high (30 mM) vs. low (5 mM) glucose concentrations. Accordingly, association and internalization of HDL to MPM from diabetic mice, or to J-774A.1 macrophages grown under diabetic conditions was significantly higher compared to control cells. Unexpectedly, however, increased macrophage SR-BI expression was associated with a substantial reduction in HDL-mediated cholesterol efflux from the macrophages. Moreover, total cellular cholesterol content was increased by 28% in macrophages incubated with HDL under high glucose concentrations, compared to low glucose concentrations. This effect was abolished by a rabbit polyclonal anti-SR-BI, which blocks binding to the receptor, or alternatively by using BLT1, a specific inhibitor of lipid transport via the SR-BI.

Conclusions

Diabetes stimulates the expression of SR-BI in macrophages and leads to a shift in its activity from HDL-mediated cholesterol efflux to HDL-mediated cholesterol influx. These effects may lead to increased foam cell formation and atherosclerosis development.  相似文献   

19.
The ability of HDL to support macrophage cholesterol efflux is an integral part of its atheroprotective action. Augmenting this ability, especially when HDL cholesterol efflux capacity from macrophages is poor, represents a promising therapeutic strategy. One approach to enhancing macrophage cholesterol efflux is infusing blood with HDL mimics. Previously, we reported the synthesis of a functional mimic of HDL (fmHDL) that consists of a gold nanoparticle template, a phospholipid bilayer, and apo A-I. In this work, we characterize the ability of fmHDL to support the well-established pathways of cellular cholesterol efflux from model cell lines and primary macrophages. fmHDL received cell cholesterol by unmediated (aqueous) and ABCG1- and scavenger receptor class B type I (SR-BI)-mediated diffusion. Furthermore, the fmHDL holoparticle accepted cholesterol and phospholipid by the ABCA1 pathway. These results demonstrate that fmHDL supports all the cholesterol efflux pathways available to native HDL and thus, represents a promising infusible therapeutic for enhancing macrophage cholesterol efflux. fmHDL accepts cholesterol from cells by all known pathways of cholesterol efflux: unmediated, ABCG1- and SR-BI-mediated diffusion, and through ABCA1.  相似文献   

20.
Diet-induced weight loss in women may be associated with decreases not only in plasma levels of low-density lipoprotein cholesterol (LDL-C), but also in high-density lipoprotein cholesterol (HDL-C). Whether a decrease in HDL-C is associated with altered HDL function is unknown. One hundred overweight or obese women (age 46 ± 11 years, 60 black; 12 diabetic) were enrolled in the 6-month program of reduced fat and total energy diet and low-intensity exercise. Serum cholesterol efflux capacity was measured in (3)H-cholesterol-labeled BHK cells expressing ABCA1, ABCG1, or SR-B1 transporters and incubated with 1% apolipoprotein B (apoB)-depleted serum. Antioxidant properties of HDL were estimated by paraoxonase-1 (PON1) activity and oxygen radical absorbance capacity (ORAC). Endothelial nitric oxide synthase (eNOS) activation was measured by conversion of L-arginine to L-citrulline in endothelial cells incubated with HDL from 49 subjects. Participants achieved an average weight loss of 2.2 ± 3.9 kg (P < 0.001), associated with reductions in both LDL-C (-6 ± 21 mg/dl, P = 0.004) and HDL-C (-3 ± 9 mg/dl, P = 0.016). Cholesterol efflux capacity by the ABCA1 transporter decreased by 10% (P = 0.006); efflux capacities by the ABCG1 and SR-B1 transporters were not significantly altered. ORAC decreased by 15% (P = 0.018); neither PON1 activity nor eNOS activation was significantly altered by reduction in HDL-C. Findings were similar for diabetic and nondiabetic subjects. Diet-induced weight loss in overweight or obese women is associated with a decrease in HDL-C levels, but overall HDL function is relatively spared, suggesting that decrease in HDL-C in this setting is not deleterious to cardiovascular risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号