首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the preparation of pure serum lipoproteins by means of ultracentrifugation techniques, it is necessary to perform consecutive centrifugations in order to reduce the content of contaminating serum albumin (1) impairing apolipoprotein determination and purification and turnover studies with 125I-labeled lipoproteins. Extensive centrifugation, however, may cause in vitro changes in the composition of the lipoprotein particles (1,2). The present report describes the use of matrix-bound anti-albumin for specific elimination of albumin in very low-density lipoprotein (VLDL), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) preparations from human serum.  相似文献   

2.
Counterimmunoelectrophoresis as a test method for making the diagnosis of plasmacytosis in mink demands the specific virus antigen. The method for preparation of the antigen according to Cho & Ingram (1972 a, b) with minor modifications is described in details, and results obtained at 62 antigen preparations are presented. In addition an ultrafiltration method is outlined which may be useful as a replacement for ultracentrifugation procedures used in the technique described by Cho & Ingram (1974).  相似文献   

3.
1. The method described by Elford for the preparation of graded collodion membranes suitable for ultrafiltration was found to give excellent results, and his findings are fully confirmed. 2. A formula is given for the preparation of collodion from which satisfactory membranes of graded porosity can be prepared. 3. The technique and apparatus used in the preparation, and standardization of membranes are described in detail. 4. The technique and apparatus required for ultrafiltration experiments are described, and some drawbacks encountered in the experiments are discussed. 5. The results of ultrafiltration experiments show that the pores of the membranes are remarkably uniform in size.  相似文献   

4.
Serum low-density lipoproteins (LDL)_and high-density lipoproteins (HDL) were prepared by gradient ultracentrifugation and dialysis from 12 healthy subjects and 15 patients with coronary heart disease and hyperlipoproteinemia. In both lipoprotein fractions cholesterol and lipid peroxides were determined. The effect of these lipoproteins on spontaneous prostacyclin biosynthesis in rat aortic slices was studied.Serum lipoproteins were susceptible to peroxidation during the preparation procedure. LDL were more prone to peroxidation than HDL. Little lipid peroxidase were formed in lipoproteins when calcium ions had been removed by EDTA, and when butylated hydroxytoluene (BHT) was present at all stages of their preparation. LDL when prepared without these precautions either from healthy subjects or from patients with coronary heart diseases markedly suppressed prostacyclin generation by rat aortic slices. This inhibition to LDL-lipid peroxides. Peroxide-low LDL prepared from most of the healthy subjects and patients with coronary heart disease and concomitant hyperlipoproteinemia, did not inhibit prostacyclin biosynthesis. However, in one quarter of the patients. LDL was inhibitory. Consequently, in some patients with coronary heart disease, there operate unknown mechanisms which are responsible for the inhbibitory activity of LDL on prosctacylin generation.  相似文献   

5.
1. Guinea-pig low-density lipoproteins were isolated by ultracentrifugation and iodinated either by the IC1 method or by the chloramine-T procedure. 2. The efficiency of labelling by both methods was essentially the same. 3. When the two products were compared by ultracentrifugation, gel chromatography and immunodiffusion analysis, no significant difference in their properties was detected. 4. When they were compared by gradient-gel electrophoresis, aggregates were found in the product of the IC1 method, but not in the lipoprotein iodinated by the chloramine-T process. 5. Both products were metabolized by the guinea pig with essentially the same fractional catabolic rate. 6. The fractional catabolic rate of lipoprotein iodinated by the chloramine-T method was not significantly different from that of lipoprotein biologically labelled in the protein moiety with [75Se]selenomethionine. 7. It is concluded that the products of both methods of iodination are almost equally acceptable, provided that the optimum conditions for the chloramine-T reaction are carefully established.  相似文献   

6.
An analytical method to improve the characterization of lipoprotein fractions is presented. Human plasma samples were treated with Sudan Black B to stain the lipid component in lipoproteins, then the stained lipoproteins were separated by frit inlet asymmetrical flow field-flow fractionation (FI-AFlFFF), according to the lipoprotein particle sizes, with the selective detection of eluting lipoprotein fractions, high-density lipoproteins (HDL), low-density lipoproteins (LDL) and very-low-density lipoproteins (VLDL), at 610 nm. The capability of this technique has been evaluated with plasma samples obtained from patients with coronary artery disease (CAD), and it showed that the retention profile of patients' lipoprotein samples was clearly distinct from those of healthy persons. The potential of this technique comes with the direct injection of a stained lipoprotein sample without a prior procedure such as ultracentrifugation for sample preparation, and the size calculation of lipoprotein particles from the experimental retention time by theory. Since sample relaxation was achieved hydrodynamically in an FI-AFlFFF channel, sample injection and separation processes were continuously made without stopping the separation flow. This study demonstrated the potential of the FI-AFlFFF technique to be utilized as a powerful tool for the determination of the LDL profiles of patients with CAD.  相似文献   

7.
Lipoprotein(a) is composed of low-density lipoprotein linked both covalently and noncovalently to apolipoprotein(a). The structure of lipoprotein(a) and the interactions between low-density lipoprotein and apolipoprotein(a) were investigated by electron microscopy and correlated with analytical ultracentrifugation. Electron microscopy of rotary-shadowed and unidirectionally shadowed lipoprotein(a) prepared without glycerol revealed that it is a nearly spherical particle with no large projections. After extraction of both lipoprotein(a) and low-density lipoprotein with glycerol prior to rotary shadowing, the protein components were observed to consist of a ring of density made up of nodules of different sizes, with apolipoprotein(a) and apolipoprotein B-100 closely associated with each other. However, when lipoprotein(a) was treated with a lysine analogue, 6-aminohexanoic acid, much of the apolipoprotein(a) separated from the apolipoprotein B-100. In 6-aminohexanoic acid-treated preparations without glycerol extraction, lipoprotein(a) particles had an irregular mass of density around the core. In contrast, lipoprotein(a) particles treated with 6-aminohexanoic acid in the presence of glycerol had a long tail, in which individual kringles could be distinguished, extending from the ring of apolipoprotein B-100. The length of the tail was dependent on the particular isoform of apolipoprotein(a). Dissociation of the noncovalent interactions between apolipoprotein(a) and low-density lipoprotein as a result of shear forces or changes in the microenvironment may contribute to selective retention of lipoprotein(a) in the vasculature.  相似文献   

8.
Ram spermatozoa were stored at 5 degrees C in diluents containing various fractions of egg yolk prepared by dialysis, ultrafiltration and ion-exchange chromatography. They survived storage best in the presence of components of egg yolk which were non-dialysable and were not filtered through membranes which retained substances of molecular weight greater than 100 000. The substances isolated in peak B of the ion-exchange chromatogram of whole egg yolk described by Seideman et al. (1969) gave greater protection than those from other fractions from this chromatographic system. These data indicate that the low-density lipoprotein fraction of egg yolk is the most likely source of protection to ram spermatozoa against the effects of storage at 5 degrees C.  相似文献   

9.
1. A simple method for isolation of individual human plasma lipoprotein classes is presented. In this technique, lipoproteins are removed from plasma at d1.225 by ultracentrifugation, after which they are separated and purified by agarose-column chromatography. 2. Three major classes are obtained after agarose-column chromatography. Separation between classes is excellent; more than 95% of the lipoproteins eluted from the column are recovered in the form of a purified lipoprotein class. 3. Each lipoprotein class was characterized immunologically, chemically, electrophoretically and by electron microscopy. A comparison of the properties of the column-isolated lipoproteins was made with very-low-density lipoproteins, low-density lipoproteins, and high-density lipoproteins separated by sequential ultracentrifugation at densities of 1.006, 1.063 and 1.21 respectively. 4. By each criterion, peak-I lipoproteins from the agarose column are the same as very-low-density lipoproteins, peak-II lipoproteins are the same as low-density lipoproteins, and peak-III lipoproteins are the same as high-density lipoproteins. Thus the lipoprotein classes isolated by both methods are similar if not identical. 5. The agarose-column separation technique offers the advantage of a two- to three-fold saving in time. In addition, the column-elution pattern serves as a recording of the size distribution of lipoproteins in plasma. 6. The most complete characterization is reported for human plasma lipoproteins. The results with rhesus-monkey and rabbit lipoproteins were identical.  相似文献   

10.
[14C]Cholesteryl ester was directly incorporated into human plasma low-density lipoproteins (LDL) for the purpose of preparing a tracer substrate for investigation of the cholesteryl ester transfer reaction between plasma lipoproteins. The radiolabeled cholesteryl oleate was sonicated with egg phosphatidylcholine to form cholesteryl ester-containing liposomes. The liposomes were incubated with plasma fraction of density greater than 1.006 at 37 degrees C in the presence of dithionitrobenzoic acid. When the distribution of the radiolabeled cholesteryl ester was equilibrated among liposomes and lipoprotein fractions, the mixture was applied to an affinity chromatography column of dextran sulfate-cellulose (LA01) (Arteriosclerosis 4, 276-282). LDL was eluted by increasing the NaCl concentration and was finally isolated as a floating fraction by ultracentrifugation at a solvent density of 1.063 (adjusted with NaCl). The chemical composition, electrophoretic mobility and density of the labeled LDL were consistent with those of the native LDL. Radioactivity in this preparation was present exclusively in cholesteryl ester. Apolipoprotein B100 was preserved intact throughout the procedure. When the rate of cholesteryl ester transfer was measured between LDL and high-density lipoproteins by using this labeled LDL, the kinetics was consistent with the equilibrium transfer model, but the apparent rate measured was slightly higher than that measured with the labeled LDL prepared by the method using the intrinsic cholesterol esterification reaction of plasma.  相似文献   

11.
Ligand-immunoblotting was used to detect distinct receptors for native low-density lipoprotein and for acetylated low-density lipoprotein on microvillous membranes from human term placentas. Antisera directed against native and modified low-density lipoproteins were prepared in rabbits and their specificities were assessed by immunodiffusion and immunoelectrophoresis. The receptor for low-density lipoprotein was detected as a 160 kDa protein and that for acetylated low-density lipoprotein as a 200 kDa protein. These receptors were compared with their counterparts in cultured human skin fibroblasts, bovine adrenal cortex and J774 macrophage-like cells. This is the first investigation that visualizes the presence of receptors for both native and modified low-density lipoproteins in a steroidogenic tissue.  相似文献   

12.
Abstract: We have previously described a thermostable inhibitor of the UDP-N-acetylgalactosamine:GM3,N-acetylgalactosaminyltransferase (GM2 synthase) purified from chicken blood serum. Some properties of the GM2 synthase inhibitory preparation (IP) resemble those of high-density lipoprotein (HDL), i.e., both have a MW of 200,000 in native conditions and are resistant to denaturation by heat. These and other facts prompted us to test the possibility that lipoproteins regulate ganglioside biosynthesis in the CNS. For this purpose, serum lipoprotein fractions were isolated from chicken serum by flotation and were assayed as inhibitors of GM2 synthase activity and of neuron differentiation in culture. HDL (in contrast to fractions containing very low-density or low-density lipoprotein) inhibited GM2 synthase with the same specific activity as IP and inhibited neuron cell differentiation in culture in a similar way. Furthermore, these two preparations also share several other characteristics; i.e., both have the same cholesterol content, the same floating behavior on KBr gradients, and the same polypeptide pattern as detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and staining with Coomassie Blue, or after western blot and revealing with an antibody prepared against IP, which is able to diminish the inhibitory effect of this preparation. The results described indicate identity between HDL and IP and suggest that HDL (particularly apolipoprotein A) could play an important role on ganglioside biosynthesis modulation during CNS development. The antineuritogenic effect of HDL described in this study could be of physiological relevance during CNS development and response to injury.  相似文献   

13.
An unusual lipoprotein was detected and purified from the blood of some members of a large colony of baboons, Papio sp. This lipoprotein was found to be similar to human lipoprotein a in all respects and is therefore termed lipoprotein a. Baboon lipoprotein a had a density of 1.052 g/ml and was located between low- and high-density lipoproteins in a density gradient ultracentrifugation. However, despite its greater density, baboon lipoprotein a was larger than low-density lipoprotein, based on gradient gel electrophoresis and gel filtration. The lipoprotein contained a very large apolipoprotein (apolipoprotein-lipoprotein a) which was found to consist of an apolipoprotein B linked to another protein called apolipoprotein a by a disulfide bridge(s). In all these characteristics, baboon lipoprotein a was similar to human lipoprotein a.  相似文献   

14.
Sequential flotation ultracentrifugation is commonly used in the preparation of plasma lipoproteins. However, protocols often require prolonged centrifugation time (48-72 h) and large plasma volumes (2-20 ml), which makes them unsuitable for studies on small laboratory animals. Although analytical techniques such as FPLC have often small sample requirements, further fraction analysis is often limited to the small fraction volume obtained. A sequential ultracentrifugation micromethod is described to obtain rat lipoprotein fractions from 400 microl of plasma in a cumulative centrifugation time of 7.5 h. Fraction volumes were determined and densities were adjusted to those of rat plasma lipoproteins. Polyacrylamide gel electrophoresis and enzymatic measurements of triglycerides, total cholesterol, and phospholipids were used to assess the purity of the lipoprotein fractions. The results were compared with those obtained from a classical sequential ultracentrifugation protocol. The micromethod presented here can be further adapted to other experimental animal species with little modifications.  相似文献   

15.
Preparations of low-density lipoproteins from healthy donor blood contain lipoprotein particles with different capacity for aggregation: upon stirring, some particles form aggregates significantly more quick than others. After stirring, lipoprotein particles are separated by ultracentrifugation into two fractions: a fraction of large aggregates and a fraction of small particles without intermediate forms. It is known that lipoprotein aggregates can accelerate intracellular accumulation of lipids. Therefore, it is supposed that particles of high aggregation ability are more atherogenic.  相似文献   

16.
A method for the preparation of purified suspensions of Coxiella burneti by Genetron extraction followed by continuous-flow density gradient ultracentrifugation is described. Both phases of the Henzerling strain of C. burneti were found in a zone between 53 and 65% (w/w) sucrose. Based on chemical assays, the Genetron zonal rickettsial suspensions were found to be as pure as the rickettsial suspensions which were prepared by the ether extraction method currently in use for producing Q fever vaccines for human use.  相似文献   

17.
The lipoproteins isolated from rat plasma by flotation in the density range 1.019-1.063 g/ml were further characterized. Using rate zonal ultracentrifugation, we isolated two lipoproteins in almost equal proportions from this density range. Similar isolations may be accomplished with density gradients in a swinging-bucket rotor. On isopycnic-density-gradient ultracentrifugation one component banded at rho = 1.031 g/ml and the other at rho = 1.054 g/ml. More that 98% of the apoprotein of the lighter component was B protein, and hence this particle is LD (low-density) lipoprotein. Of the apoproteins of the rho = 1.054 g/ml particles, designated lipoprotein HDL1, over 60% was arginine-rich peptide, and the remainder was A-I, A-IV and C peptides. The molecular weight of these lipoproteins determined by agarose column chromatography was 2.36 x 10(6) for LD lipoprotein and 1.30 x 10(6) for lipoprotein HDL1. On electron microscopy the radius of LD lipoprotein was 14.0 nm and that of lipoprotein HDL1 was 10.0 nm, in contrast with molecular radii of 10.4 nm and 8.4 nm respectively determined from the gel-permeation-chromatography data. The lipid and phospholipid composition of both particles was determined. Lipoprotein HDL1 was notable for both the concentration of its esterified cholesterol, which was similar to that of LD lipoprotein, and the low triacylglycerol content, resembling that of HD lipoprotein. The possible origin of lipoprotein HDL1 is discussed.  相似文献   

18.
Human plasma lipoproteins, fractionated by density gradient ultracentrifugation, and very low density lipoproteins, subfractionated by cumulative rate centrifugation, were subjected to agarose isoelectric focusing in small format thin gels prepared in the laboratory for the commercially available PhastSystem (Pharmacia). From preparation of the gels to their staining, the procedure took less than 3 h. The pH gradient was found reproducible and the apparent average pI of individual low density lipoproteins could be measured with a coefficient of variation of less than 5% between and less than 2% within the same run. The method appears especially suitable for the exploration of charge properties of multiple lipoprotein samples, or other large macromolecules as low density lipoproteins and very low density lipoproteins, with considerable economy of time and reagents.  相似文献   

19.
A procedure for large-scale preparation of a lectin from Crotalaria juncea seeds is described. The method involve fractionation by pH- and ammonium sulfate precipitation followed by biospecific affinity chromatography. The adsorbent used for the affinity chromatography was prepared by coupling galactose to Sepharose 6B activated with divinylsulfone. A comparison of different apparatus and techniques involved in the preparation is discussed. The yield and quality of the lectin prepared at a large scale were comparable with laboratory-scale preparation. From 50 kg Crotalaria juncea beans, 14.4 g Crotalaria lectin were obtained.  相似文献   

20.
Animals of various species are widely used as models with which to study atherosclerosis and the lipoprotein metabolism. The objective of this study was to investigate the lipoprotein profiles in Wistar rats and New Zealand white rabbits with experimentally induced hyperlipidemia by means of ultracentrifugation. The Schlieren curves were utilized to compare suckling and adult rat sera to determine whether aging causes alterations in lipoprotein profiles. A striking feature of the data is the high concentration of low-density lipoproteins (LDL), (>5.2 mmol/l cholesterol) in the 2-week old rat serum pool which was greatly decreased in the 3-weeks rat serum pool (<1.3 mmol/l cholesterol). Additional experiments were performed to permit a direct comparison of the amounts of lipoprotein present in rat sera in experimental hyperlipidemia post-Triton WR 1339 administration. Rapid changes in concentrations in very low-density lipoproteins (VLDL), LDL and high-density lipoproteins (HDL) were observed after Triton injection. The administration of Triton WR 1339 to fasted rats resulted in an elevation of serum cholesterol levels. Triton physically alters VLDL, rendering them refractive to the action of lipolytic enzymes in the blood and tissues, preventing or delaying their removal from the blood. Whereas the VLDL concentration was increased markedly, those of LDL and HDL were decreased at 20 h after Triton treatment. Rabbits were fed a diet containing 2% cholesterol for 60 days to develop hyperlipidemia and atheromatous aortic plaques. A combination of preparative and analytical ultracentrifugation was used to investigate of LDL aliquots, to prepare radioactive-labeled lipoproteins and to study induced hyperlipidemia in rabbits. Analytical ultracentrifugation was applied to investigate the LDL flotation peaks before and after cholesterol feeding of rabbits. Modified forms of LDL were detected in the plasma of rabbits with experimentally induced atherosclerosis. ApoB-containing particles, migrating as LDL, intermediate density lipoproteins and VLDL were the most abundant lipoproteins. Gamma camera in vivo scintigraphy on rabbits with radiolabeled lipoproteins revealed visible signals corresponding to atherosclerotic plaques of the aorta and carotid arteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号