首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two insect cell lines that had been maintained in both serum-free (SFM) and serum-containing (SCM) media for over 5 years were each tested for their ability to replicate baculovirus. The gypsy moth cell line, IPLB-LdEIta (Ld), produced similar (not statistically different) amounts of gypsy moth nucleopolyhedrovirus (LdMNPV) occlusion bodies (OBs) in the two media (serum-free Ex-Cell 400 and TC-100 with 9% (v/v) fetal bovine serum, SCM(1)) but produced more of the Autographa californica nucleopolyhedrovirus (AcMNPV) OBs in SFM than in SCM(1). When Ld cells normally grown in SCM(1) were switched to SFM, production of OBs from both viruses improved and, after three passages, reached higher levels of AcMNPV production than in cells normally maintained in that medium. Alternatively, cells switched from SFM to SCM(1) initially produced as much (in the case of LdMNPV) or higher (in the case of AcMNPV) levels of virus OBs than cells normally maintained in SCM(1) but productivity dropped off over subsequent passages such that after five passages in SCM(1), cells produced substantially fewer OBs of both viruses. A fall armyworm cell line (IPLB-SF21AE; Sf) showed slightly different effects from long- and short-term passage in SFM (Ex-Cell 400) or SCM(2) (TMN-FH). Cells maintained in SFM produced about 20 times more AcMNPV OBs than cells maintained long-term in SCM. Sf cells switched from SFM to SCM maintained the level of production of that seen in SFM at the first passage, but quickly dropped off OB production levels to that normally seen in SCM. Alternatively, SCM-maintained Sf cells produced higher levels at the first passage in SFM and, within five passages in SFM, reached levels found in cells maintained for long term in this medium. Under the conditions in which these two cell lines were infected, the highest levels of AcMNPV OB production in Ld cells were about five times that of Sf cells. In a separate series of experiments, cells normally grown in SFM were passaged over five times in Ex-Cell 400 to which serum was added; both cell lines produced as much virus as that in SFM. These results suggest that it is not the serum per se but rather some other components which differ between the SFM and the SCM formulations that are responsible for the varied virus production obtained in these studies. The results of these studies suggest that a maintenance and virus production protocol can be developed with Ld cells which could improve overall efficiency of virus production. These studies also suggest that long-term maintenance of cells in SFM was not detrimental to their ability to produce baculoviruses.  相似文献   

2.
Several gypsy moth cell lines have been previously described as nonpermissive for the multiple-embedded nuclear polyhedrosis virus of Autographa californica (AcMNPV). In this report, we demonstrate the semipermissive infection of a gypsy moth cell line, IPLB-LD-652Y, with AcMNPV. IPLB-LD-652Y cells infected with AcMNPV produced classic cytopathic effects but failed to yield infectious progeny virus. Results of experiments employing DNA-DNA dot hybridization suggested that AcMNPV DNA synthesis was initiated from 8 to 12 h postinfection (p.i.), continued at a maximum rate from 12 to 20 h p.i., and declined from 20 to 36 h p.i. The rate of AcMNPV DNA synthesis approximated that observed in the permissive TN-368 cell line. AcMNPV-infected IPLB-LD-652Y cells, pulse-labeled with [(35)S]methionine at various time intervals p.i. and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, revealed four virus-induced proteins, one novel to the semipermissive system and three early alpha proteins, synthesized from 1 to 20 h p.i. Thereafter, both host and viral protein synthesis was completely suppressed. These results suggest that AcMNPV adsorbed, penetrated, and initiated limited macromolecular synthesis in the semipermissive gypsy moth cell line. However, the infection cycle was restricted during the early phase of AcMNPV replication.  相似文献   

3.
4.
Proteolytic processing of viral membrane proteins is common among enveloped viruses and facilitates virus entry. The Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) occlusion-derived virus (ODV) protein P74 is part of a complex of essential peroral infectivity factors (PIFs). Here we report that P74 is efficiently cleaved into two fragments of about equal size by an occlusion body (OB) endogenous alkaline protease during ODV release when AcMNPV OBs are derived from larvae. The cleavage is specific for P74, since the other known peroral infectivity factors in the same complex (PIF1, PIF2, and PIF3) were not cleaved under the same conditions. P74 cleavage was not observed in OBs produced in three different insect cell lines, suggesting a larval host origin of the responsible protease. P74 in OBs produced in larvae of two different host species was cleaved into fragments with the same apparent molecular mass, indicating that the virus incorporates a similar alkaline protease from different hosts. Coimmunoprecipitation analysis revealed that the two P74 subunit fragments remain associated with the recently discovered PIF complex. We propose that under in vivo ODV infection conditions, P74 undergoes two sequential cleavage events, the first one being performed by an ODV-associated host alkaline protease and the second carried out by trypsin in the host midgut.  相似文献   

5.
James R. Reilly  Ann E. Hajek 《Oikos》2012,121(8):1311-1316
The Lymantria dispar nucleopolyhedrovirus (LdNPV) is one of the most important regulators of gypsy moth populations, but some aspects of its transmission remain poorly understood, particularly its high rate of spatial spread and ability to persist in low‐density populations. We tested the role of predatory birds in the transmission of this virus using experimental gypsy moth populations in an aviary. Predatory birds captured virus‐infected caterpillars and facilitated viral dispersal via two processes: 1) by ingesting infected caterpillars and passing viral occlusion bodies (OBs) through their guts, and 2) by scattering OBs during predator‐specific processing behaviors, a mechanism documented here for the first time. The relative importance of both pathways differed by predator species. After eating virus‐infected gypsy moth larvae, red‐eyed vireos and black‐capped chickadees passed more gypsy moth nucleopolyhedrovirus in feces than did gray catbirds. During prey‐processing, the repetitive beating of caterpillars by red‐eyed vireos, a behavior that was rarely utilized by chickadees and catbirds, resulted in the scattering of infectious virus. Due to the combination of efficient gut passage and virus spread from prey beating, higher rates of transmission occurred in experimental gypsy moth populations exposed to red‐eyed vireos than those exposed to catbirds or chickadees. Our results show that effective virus transmission was achieved when virus was vectored by predatory birds through a combination of both behavioral and physiological traits.  相似文献   

6.
7.
We compared the replication of the gypsy moth (Lymantria dispar) nuclear polyhedrosis virus in two new cell lines, from embryos and fat body of L. dispar, and in a previously available ovarian cell line. Three virus isolates (the Hamden strain [LDP-67] used commercially as GYPCHEK, a plaque-purified clone of Hamden [5-7d], and an isolate from Abington, Mass. [Ab]) were each tested on the three cell lines. The fat-body-derived cell line proved best in terms of occlusion body production for all three virus strains, with the highest yield produced by the Abington strain. On the basis of these results, we conclude that a more efficient in vitro production of gypsy moth virus can be obtained by using the fat body cell line in conjunction with the Abington strain of the virus.  相似文献   

8.
Summary One key to the in vitro mass production of baculoviruses is the development of insect cell lines capable of producing high levels of extracellular virus (ECV) and/or occlusion bodies (OBs). For this study, 34 newly established cell lines from 10 lepidopteran species were screened for their ability to produce ECV and OBs from a variety of baculoviruses. The selected baculoviruses included: the alfalfa looper virus (AcMNPV); the celery looper virus (AfMNPV); the velvetbean caterpillar virus (AgMNPV), the bollworm virus (HzSNPV), the diamondback moth virus (PxMNPV), and the beet armyworm virus (SeMNPV). ECV titers were determined using TCID50 assays (50% tissue culture infectivity dose), with the presence or absence of OBs being noted. For AcMNPV, 28 new cell lines were tested, with eight producing AcMNPV ECV titers of 1.1–47.3×106 TCID50/ml and 11 producing OBs. For AgMNPV, six new cell lines were tested, with all producing AgMNPV ECV titers of 3.5–62.3×106 TCID50/ml and generating OBs. For HzSNPV, four new cell lines were tested with three lines producing HzSNPV ECV titers of 1.4–5.0×106TCID50/ml, but none generating OBs. For PxMNPV, 10 new cell lines were tested with seven generating PxMNPV ECV titers of 4.7–232.6×106TCID50/ml and eight producing OBs. Lastly, using qualitative or semiquantitative methods, homologous cell lines were tested for AfMNPV and SeMNPV production, all of which produced OBs. Overall, many of the cell lines tested were found to produce OBs and generate moderate to high levels of ECVs of one or more baculoviruses. All programs and services of the USDA Department of Agriculture are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, age, marital status or handicap.  相似文献   

9.
舞毒蛾Lymantria dispar L.是源于欧亚大陆的多食性叶部害虫,取食300多种乔灌木,现已分布于北美、北非,成为世界性危险害虫之一,给林业生产带来了巨大损失。舞毒蛾核型多角体病毒(LdMNPV)是控制舞毒蛾种群动态的重要生物因素,可引起舞毒蛾种群急剧下降。在室内采用青杨枝条饲养的方法,测定了来自中国、北美和日本的3个LdMNPV品系(分别为LdMNPV-H,LdMNPV-D和LdMNPV-J)对危害青杨的亚洲型舞毒蛾幼虫的毒力,并测定了荧光素Tinopal LPW对它们的增效和光保护作用。结果表明Tinopal LPW对LdMNPV 3个地理品系均有增效和光保护作用,而且随着Tinopal LPW浓度的增加,增效作用增强,1%Tinopal LPW的增效作用最好。添加1%Tinopal LPW的LdMNPV-D品系、LdMNPV-H品系和LdMNPV-J品系对取食青杨的舞毒蛾幼虫的致死中浓度(LC50)分别为1.0、1.6、17.6 OBs/μL,不添加1%Tinopal LPW时,它们的LC50分别为32.9、39.0、1076.4 OBs/μL,分别降低了33、24、61倍。不添加1%Tinopal LPW时,D、H和J品系对舞毒蛾二龄幼虫的致LC95分别是2125.5、1275.8、303540.0 OBs/μL,添加1%Tinopal LPW后LC95分别为73.0、285.4、2360.8OBs/μL,分别降低了26、4.5、128.6倍。此外,1%Tinopal LPW的荧光素使3个品系的致死中时间(LT50)分别缩短了2.9d、5.3d、1.2d。LdMNPV-D和LdMNPV-H品系对亚洲型舞毒蛾表现出低致死中浓度、较短的致死中时间和较大的斜率,二者的毒力较LdMNPV-J品系高,在生产实践中应选择LdMNPV-D添加1%Tinopal LPW。Tinopal LPW对LdMNPV-D、LdMNPV-H和LdMNPV-J 3个品系均有光保护作用,添加1%Tinopal LPW后在距离30W紫外灯40cm下照射16h后,它们毒力保持系数比未添加Tinopal LPW分别高1.8、2.6、1.8倍。  相似文献   

10.
The unintentional introduction of the cactus moth, Cactoblastis cactorum, a successful biological control agent formerly employed in the control of invasive prickly pear cactus species (Opuntia spp.) in Australia, Hawaii, South Africa, and various Caribbean islands, has posed great concern as to the possible threat to native, endangered species of cactus in the southeastern USA as well as with the potential to cause a major infestation of commercial and agricultural cactus crops in Mexico. A number of control measures have been investigated with varying degrees of success including, field exploration for cactus moth-specific parasitoids, insecticides, fungal, bacterial, and nematode agents. Current tactics used by the USA-Mexico binational program to eradicate cactus moth from Mexico and mitigate its westward movement in the USA include host plant removal, the manual removal and destruction of egg sticks and infected cacti stems, and the Sterile Insect Technique. One other approach not taken until now is the development of a cactus moth cell line as a tool to facilitate the investigation of baculoviruses as an alternative biocontrol method for the cactus moth. Consequently, we established C. cactorum cell lines derived from adult ovarian tissue designated as BCIRL-Cc-AM and BCIRL-Cc-JG. The mean cell population doubling time was 204.3 and 112 h for BCIRL-Cc-AM and BCIRL-Cc-JG, respectively, with weekly medium change, while the doubling time was 176.6 and 192.6 h for BCIRL-Cc-AM and BCIRL-Cc-JG, respectively, with a daily change of medium. In addition, the daily versus weekly change in medium was reflected in the percentage viability with both cell lines showing higher levels with a daily medium change. Of the three baculoviruses tested, only the recombinant AcMNPV-hsp70Red and GmMNPV at a multiplicity of infection (MOI) of 1.0 were able to demonstrate significant production of extracellular virus (ECV) in each of the cell lines, whereas both cell lines were refractive to an HzSNPV challenge at an MOI of 10. In this study, we have demonstrated both the successful development of a C. cactorum cell line and its ability to support a complete baculovirus infection. The potential is also there to pursue further investigations to determine the susceptibility of the cactus moth cell line to other viruses. Additionally, the availability of a cactus moth cell line will facilitate the analysis of viruses prior to using the more expensive bioassay test. Finally, it is hoped with the knowledge presented here that baculoviruses may also be considered as an alternative biocontrol method for the cactus moth.  相似文献   

11.
Investment in host defences against pathogens may lead to trade‐offs with host fecundity. When such trade‐offs arise from genetic correlations, rates of phenotypic change by natural selection may be affected. However, genetic correlations between host survival and fecundity are rarely quantified. To understand trade‐offs between immune responses to baculovirus exposure and fecundity in the gypsy moth (Lymantria dispar), we estimated genetic correlations between survival probability and traits related to fecundity, such as pupal weight. In addition, we tested whether different virus isolates have different effects on male and female pupal weight. To estimate genetic correlations, we exposed individuals of known relatedness to a single baculovirus isolate. To then evaluate the effect of virus isolate on pupal weight, we exposed a single gypsy moth strain to 16 baculovirus isolates. We found a negative genetic correlation between survival and pupal weight. In addition, virus exposure caused late‐pupating females to be identical in weight to males, whereas unexposed females were 2–3 times as large as unexposed males. Finally, we found that female pupal weight is a quadratic function of host mortality across virus isolates, which is likely due to trade‐offs and compensatory growth processes acting at high and low mortality levels, respectively. Overall, our results suggest that fecundity costs may strongly affect the response to selection for disease resistance. In nature, baculoviruses contribute to the regulation of gypsy moth outbreaks, as pathogens often do in forest‐defoliating insects. We therefore argue that trade‐offs between host life‐history traits may help explain outbreak dynamics.  相似文献   

12.
Genotype‐by‐genotype (G×G) interactions are an essential requirement for the coevolution of hosts and parasites, but have only been documented in a small number of animal model systems. G×G effects arise from interactions between host and pathogen genotypes, such that some pathogen strains are more infectious in certain hosts and some hosts are more susceptible to certain pathogen strains. We tested for G×G interactions in the gypsy moth (Lymantria dispar) and its baculovirus. We infected 21 full‐sib families of gypsy moths with each of 16 isolates of baculovirus and measured the between‐isolate correlations of infection rate across host families for all pairwise combinations of isolates. Mean infectiousness varied among isolates and disease susceptibility varied among host families. Between‐isolate correlations of infection rate were generally less than one, indicating nonadditive effects of host and pathogen type consistent with G×G interactions. Our results support the presence of G×G effects in the gypsy moth–baculovirus interaction and provide empirical evidence that correlations in infection rates between field‐collected isolates are consistent with values that mathematical models have previously shown to increase the likelihood of pathogen polymorphism.  相似文献   

13.
Summary A gypsy moth cell line, IPLB-LdEIta, maintained under various conditions was tested for susceptibility to and productivity of two baculoviruses, the Autographa californica nucleopolyhedrovirus (AcMNPV) and Lymantria dispar nucleopolyhedrovirus (LdMNPV). The results suggest that cells maintained in serum-containing medium (modified TC100) were more susceptible (on the basis of titers in an endpoint assay) to LdMNPV than cells maintained in a serum-free medium (ExCell™ 400). Such a difference was not apparent with AcMNPV. Similarly, little difference existed in the proportion of cells containing occlusion bodies (OBs) a wk after inoculation with AcMNPV (i.e., the percent infected) in any LdEIta strains, although one combination of cells and medium (cells maintained in ExCell 400 but infected in TC100) showed a lower percent infection with LdMNPV. Even though the percentage of cells infected varied little, the number of OBs produced varied by 3 logs with AcMNPV and 11/2 logs with LdMNPV. In each case, cells normally grown in ExCell 400 and infected in the same medium produced the lowest number of OBs. However, productivity was improved when cells normally grown in ExCell 400 were infected in TC100. Even more interesting was that cells normally grown in TC100 produced more AcMNPV OBs when infected in ExCell 400 medium. This suggests that changing culture medium (regardless of the normal maintenance medium) can stimulate virus production. In addition to examining virus productivity in LdEIta cells in both serum-containing and serum-free media, I also tested a strain maintained at low temperature (17° C) for over a yr. This maintenance protocol was not detrimental for LdMNPV productivity and was slightly stimulatory for production of AcMNPV.  相似文献   

14.
A series of cell lines unique in insect virus susceptibility pattern have been isolated from the ovaries of the gypsy moth (Lymantria dispar: Lepidoptera: Lymantriidae) on a synthetic medium with mammalian and avian serum supplementation. Growth curves showed the poorest growth occurring on peptone-based media with somewhat better growth on amino-acid-based media. The best growth was obtained with combined media. Serological study distinguished the present cell lines from one another and from cell lines derived from other insect species grown routinely in the same laboratory. Baculovirus susceptibility among the new lines varied from no response to a specific complete replication response upon challenge by the homologous (gypsy moth) nuclear polyhedrosis virus.  相似文献   

15.
Several baculvirusus of nuclear polyhedrosis virus (NPV) have been produced and tested for microbial control of various Lepidoptera spp. To date, there are three registered preparations of NPV that are exempt from the requirement of tolerance by the Environmental Protection Agency (EPA) in the United States (US). The first and only commercially available viral preparation used in agriculture was developed by Sandoz, Inc. under the name of Elcar® for control of Heliothis spp. on cotton. The other two baculovirus preparations were developed and registered by the US Department of Agriculture (USDA) for control of Douglas-fir tussock moth and gypsy moth on forests. Several methods are being used for production of NPV viruses: (1) field collection of diseased larvae, (2) laboratory rearing of insects followed by infection with viral inoculum, (3) tissue culture. and (4) tissue culture and mass rearing larvae. Recent progress in mass production of insect virus points toward the adoption of tissue culture with the whole organism technology for production of a standardized viral product. The practical usefulness of various baculovirus preparations has been demonstrated for protection of forests from defoliation by various lepidopterous species. In agriculture, Elcar® has been successfully marketed and has been very well received for use in integrated pest management on cotton. Recent development also demonstrated that use of adjuvants further increase the efficacy of Elcar® against Heliothis spp. on cotton.  相似文献   

16.
Summary A series of cell lines unique in insect virus susceptibility pattern have been isolated from the ovaries of the gypsy moth (Lymantria dispar: Lepidoptera: Lymantriidae) on a synthetic medium with mammalian and avian serum supplementation. Growth curves showed the poorest growth occurring on peptone-based media with somewhat better growth on amino-acid-based media. The best growth was obtained with combined media. Serological study distinguished the present cell lines from one another and from cell lines derived from other insect species grown routinely in the same laboratory. Baculovirus susceptibility among the new lines varied from no response to a specific complete replication response upon challenge by the homologous (gypsy moth) nuclear polyhedrosis virus. This research was funded in part through a reimbursable agreement with the U.S. Forest Service.  相似文献   

17.
The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) GP64 protein is an essential virion protein that is involved in both receptor binding and membrane fusion during viral entry. Genetic studies have shown that GP64-null viruses are unable to move from cell to cell and this results from a defect in the assembly and production of budded virions (BV). To further examine requirements for virion budding, we asked whether a GP64-null baculovirus, vAc(64-), could be pseudotyped by introducing a heterologous viral envelope protein (vesicular stomatitis virus G protein [VSV-G]) into its membrane and whether the resulting virus was infectious. To address this question, we generated a stably transfected insect Sf9 cell line (Sf9(VSV-G)) that inducibly expresses the VSV-G protein upon infection with AcMNPV Sf9(VSV-G) and Sf9 cells were infected with vAc(64-), and cells were monitored for infection and for movement of infection from cell to cell. vAc(64-) formed plaques on Sf9(VSV-G) cells but not on Sf9 cells, and plaques formed on Sf9(VSV-G) cells were observed only after prolonged intervals. Passage and amplification of vAc(64-) on Sf9(VSV-G) cells resulted in pseudotyped virus particles that contained the VSV-G protein. Cell-to-cell propagation of vAc(64-) in the G-expressing cells was delayed in comparison to wild-type (wt) AcMNPV, and growth curves showed that pseudotyped vAc(64-) was generated at titers of approximately 10(6) to 10(7) infectious units (IU)/ml, compared with titers of approximately 10(8) IU/ml for wt AcMNPV. Propagation and amplification of pseudotyped vAc(64-) virions in Sf9(VSV-G) cells suggests that the VSV-G protein may either possess the signals necessary for baculovirus BV assembly and budding at the cell surface or may otherwise facilitate production of infectious baculovirus virions. The functional complementation of GP64-null viruses by VSV-G protein was further demonstrated by identification of a vAc(64-)-derived virus that had acquired the G gene through recombination with Sf9(VSV-G) cellular DNA. GP64-null viruses expressing the VSV-G gene were capable of productive infection, replication, and propagation in Sf9 cells.  相似文献   

18.
A suspended cell line from Trichoplusia ni embryos was established, and its susceptibility to Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) infection was investigated. This cell line had characteristics distinct from the BTI‐Tn5Bl‐4 cell line (Tn5Bl‐4) from T. ni in growth, and showed approximately the same responses to AcMNPV infection, production of occlusion bodies, and levels of recombinant protein expression. No clumps were observed at maximum cell density at late‐log phase in shake‐flask or T‐flask cultures, and thus the cells represent a useful new contribution for baculovirus research. The cells consist of two major morphological types: approximately 70% spindle‐shaped cells and 30% round cells. The cell line was highly susceptible to virus infection and produced around 107 AcMNPV occlusion bodies per cell, on average. Production of β‐galactosidase and secreted alkaline phosphatase was high with 3.97 ± 0.13 × 104IU/mL and 3.48 ± 0.40 IU/mL, respectively. This cell line may be applicable for studies of scale‐up production of viruses or baculovirus‐insect cell expression. We also believe the new line can be a source for cell clones with higher production of virus and recombinant proteins compared to the parent or other existing cell lines such as Tn5Bl‐4.  相似文献   

19.
It is well known that the characteristics of cell lines possibly alter when cell lines are at high-passage number because of the environmental selection. We do not know whether non-permissive or low-permissive cell lines could become permissive or more permissive to virus infection after over-high passage. In the present studies, the alteration of the permissiveness of Spodoptera litura cell line Sl-zsu-1 to three baculovirus infection was investigated after over-high passage, and the possible mechanisms are also investigated. Vigorous apoptosis in Sl-zsu-1 cells was induced by both the recombinant Autographa californica multiple nucleopolyhedrovirus AcMNPV-GFP-actin and the celery looper Anagrapha falcifera multiple nucleopolyhedrovirus AfMNPV, suggesting the replication of the two viruses was blocked by apoptosis. However, the cells infected by S. litura multicapsid nucleopolyhedrovirus SpltMNPV did not undergo apoptosis, but the SpltMNPV titre of the supernatant was not detectable, suggesting this cell line was low-permissive for this virus infection and other factor(s) involved in blockage of the virus replication except apoptosis. However, when Sl-zsu-1 cells had been subcultured continuously for more than 4 years (high-passage cell), which was named as Sl-HP cell line afterwards, no significant apoptosis was induced by the three baculovirus in Sl-HP cells, and many replicated virions or nucleocapsids were observed in the cells. But the permissiveness of Sl-HP cells to the three viruses was very different according to the titre of viruses in the cell cultures. Interestingly, the DNA extracted from SpltMNPV could induce vigorous apoptosis of Sl-HP cells. Altogether, Sl-zsu-1 cell line becomes more permissive to baculovirus infection after over-high passage and multiple paths can block the baculovirus infectivity.  相似文献   

20.
LLC-MK2, GMK AH-1, BSC-1, and Vero cells were compared in titrations of recent isolates and laboratory strains of influenza A and B and parainfluenza types 1, 2, and 3 viruses. About the same titres, as determined by haemadsorption in cell cultures, were obtained in LLC-MK2, GMK AH-1, and BSC-1 cells when trypsin had been added to the medium, whereas the Vero cells were less sensitive to the influenza virus strains tested. Virus titres were usually low in the absence of trypsin. A laboratory strain of parainfluenza 2 virus reached about the same titres in medium without as in medium with trypsin, possibly owing to prior adaptation by passages in Vero cells. Comparative titrations of influenza A, and parainfluenza 1 and 3 viruses suggested the same susceptibility of LLC-MK2 cells with trypsin as of primary monkey kidney cells. Re-isolation experiments from 38 clinical specimens showed LLC-MK2 cells to be as efficient as primary monkey kidney cells for isolation of influenza and parainfluenza viruses, whereas the susceptibility of the other cell lines to clinical material has not yet been tested on a larger scale. It is concluded that a continuous line of monkey kidney cell culture may be acceptable as an alternative to primary monkey kidney cells for the isolation of influenza and parainfluenza viruses from patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号