首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 707 毫秒
1.
Pore-forming protein (porin) was isolated from N,N-dimethyl-dodecylaminoxid (LDAO)-extracted outer membranes of Synechococcus PCC 6301 and purified by ion exchange chromatography on DEAE-Sephacel column. The apparent molecular mass on SDS-PAGE was determined to be about 52000. The native porin was reconstituted into black lipid bilayer membranes and showed a single-channel conductance of 5.5 nS in 1 M KCl. The porin was found to be N-terminally blocked. The C-terminal amino acid sequence was identified as Phe-Thr-Phe. Amino acid analysis suggested that the porin protein consists of about 420 amino acid residues, yielding a polarity of 43.6% and a molecular mass of 45000 in contrast to the mobility on SDS-PAGE.Abbreviations DEAE Diethylaminoethyl; M r, relative molecular mass - LDAO N,N-Dimethyl-dodecylaminoxid - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoretogram - PCC Pasteur Culture Collection - SDS sodium dodecyl sulfate - UTEX Culture Collection of Algae at the University of Texas  相似文献   

2.
Porin was isolated and purified from mitochondria of Paramecium tetraurelia. The protein showed a single band of apparent Mr 37,000 on sodium dodecyl sulfate polyacrylamide electrophoretograms. The reconstitution of the protein into artificial lipid bilayer membranes revealed it to be a porin giving pores with an average single-channel conductance of 0.26 nS in 0.1 M KCl. This conductance is about half of that of other eukaryotic porins studied to date. The pore formed by the mitochondrial porin of Paramecium was found to be voltage-dependent and switched to a defined substrate at membrane voltages larger than 20 mV. In the open state the pore exhibited the characteristics of a general diffusion pore because the mobility sequence of the ions inside the pore was similar to that in the bulk aqueous phase. The effective diameter was estimated to be about 1.3 nm. The properties of the low conductance state of the pore were studied in detail. In this state the pore favored the passage of cations, in contrast to the open state which favored anions slightly. The possible role of the low-conductance state in the regulation of transport processes across the outer mitochondrial membrane and in mitochondrial metabolism is discussed.  相似文献   

3.
Detergent-solubilized cell wall extracts of the gram-positive, strictly aerobic bacterium Nocardia asteroides contain channel-forming activity as judged from reconstitution experiments using lipid bilayer membranes. The cell wall porin was identified as a protein with an apparent molecular mass of about 84 kDa based on SDS-PAGE. The porin was purified to homogeneity using preparative SDS-PAGE. The 84-kDa protein was no longer observed after heating in SDS buffer. The presumed dissociation products were not observed on SDS-polyacrylamide gels. The cell wall porin increased the specific conductance of artificial lipid bilayer membranes from phosphatidylcholine/phosphatidylserine mixtures by the formation of cation-selective channels, which had an average single-channel conductance of 3.0 nS in 1 M KCl. The single-channel conductance was only moderately dependent on the bulk aqueous KCl concentration, which indicated negative point charge effects on the channel properties. The analysis of the concentration dependence of the single-channel conductance using the effect of negative charges on channel conductance suggested that the diameter of the cell wall channel is about 1.4 nm. Asymmetric addition of the cell wall porin to lipid bilayer membranes resulted in an asymmetric voltage dependence. The cell wall channel switched into substates, when the cis side of the membrane, the side of the addition of the protein, had negative polarity. Positive potentials at the cis side had no influence on the conductance of the cell wall channel. Received: 23 September 1998 / Accepted: 9 December 1998  相似文献   

4.
We have purified a major outer membrane protein from Aeromonas salmonicida. This 42-kilodalton protein shared several physical characteristics with enterobacterial porins in that it was noncovalently associated with the peptidoglycan, it was released from the peptidoglycan in the presence of 0.1 M NaCl and sodium dodecyl sulfate, and its mobility on sodium dodecyl sulfate-polyacrylamide gels was dependent on the solubilization temperature before electrophoresis. When added to the aqueous solution bathing a planar bilayer membrane it caused the conductance of the membrane to increase by several orders of magnitude. At lower protein concentrations, single channels with an average conductance of 1.6 nS in 1 M KCl were incorporated into the membrane in a stepwise fashion. Evidence that the protein formed a large, relatively nonselective, water-filled channel was obtained by performing single-channel experiments at different NaCl concentrations and in a variety of different salts. Current through the channel was a linear function of the applied voltage, and no evidence of voltage gating was observed. In addition, we obtained evidence for a 43-kilodalton channel-forming protein in the outer membrane of A. hydrophila with a similar single-channel conductance as the 42-kilodalton protein in 1 M NaCl.  相似文献   

5.
Outer membrane porin protein of Campylobacter jejuni   总被引:1,自引:0,他引:1  
Abstract Protein e, a 43-kDa protein from the outer membrane of Campylobacter jejuni UA580, was purified and reconstituted into lipid bilayer membranes. It was shown to form small channels with a single channel conductance of 8.82 nS in 1M KCl. Zero current potential measurements demonstrated that the channel was approx. 10-fold selective for K+ over Cl ions. A porin with a similar single channel conductance was observed in fractions from the outer membrane of Campylobacter fetus UA60.  相似文献   

6.
A channel-forming protein was identified in cell wall extracts of the Gram-positive, strictly aerobic bacterium Nocardia farcinica . The cell wall porin was purified to homogeneity and had an apparent molecular mass of about 87 kDa on tricine-containing SDS–PAGE. When the 87 kDa protein was boiled for a longer time in sodium dodecylsulphate (SDS) it dissociated into two subunits with molecular masses of about 19 and 23 kDa. The 87 kDa form of the protein was able to increase the specific conductance of artificial lipid bilayer membranes from phosphatidylcholine (PC) phosphatidylserine (PS) mixtures by the formation of ion-permeable channels. The channels had on average a single-channel conductance of 3.0 nS in 1 M KCl, 10 mM Tris-HCl, pH 8, and were found to be cation selective. Asymmetric addition of the cell wall porin to lipid bilayer membranes resulted in an asymmetric voltage dependence. The single-channel conductance was only moderately dependent on the bulk aqueous KCl concentration, which indicated point charge effects on the channel properties. The analysis of the single-channel conductance data in different salt solutions using the Renkin correction factor, and the effect of negative charges on channel conductance suggested that the diameter of the cell wall porin is about 1.4–1.6 nm. Channel-forming properties of the cell wall porin of N. farcinica were compared with those of mycobacteria and corynebacteria. The cell wall porins of these members of the order Actinomycetales share common features because they form large and water-filled channels that contain negative point charges.  相似文献   

7.
Oligomeric porin of the phototrophic bacterium Rhodopseudomonas blastica DSM 2131 was obtained from cell envelopes by differential temperature extraction in the presence of detergent and salt. The isolated porin exhibited strong porin activity after reconstitution into lipid bilayer membranes. The effective channel diameter for the trimer was estimated as 1.5 nm from single channel conductance measurements in the presence of 1 M KCl. Moderate cation-selectivity was observed. Oligomeric porin migrated as a single band (apparent molecular weight 81 kDa) on sodium dodecyl sulfate polyacrylamide gelelectrophoresis when solubilized below 70 °C. The oligomers were converted into monomers on heating to 70 °C or above forming two bands with apparent molecular weight of 36 kDa and 35 kDa. The oligomer was not sensitive to EDTA. Its molecular weight was determined to be 119.3 kDa by analytical ultracentrifugation. The isoelectric point was 5.7. Circular dichroism data indicated a high content of -sheet structure. Gasphase sequencing of the N-terminal residues revealed the sequence: NH2-Glu-Ile-Ser-Leu-Asn-Gly-Tyr-Gly-Arg-Phe. Crystals with a maximal side length of 300 m and diffracting to 0.32 nm resolution were obtained with the porin oligomer in the presence of C8E4 and 1,2,3-heptanetriol by using the vapor phase equilibration technique.Abbreviations C8E4 n-octyl tetraoxyethylene - Mr apparent molecular weight - Octyl-POE n-octyl polyoxyethylene - LDAO N,N-dimethyl dodecyl aminoxide - LPS lipopolysaccharide - PAGE polyacrylamide gel-electrophoresis - PEG polyethylene glycol  相似文献   

8.
Reconstitution experiments were performed on lipid bilayer membranes in the presence of detergent solubilized mitochondrial membranes of pea seedlings (Pisum sativum). The addition of the detergent-solubilized material to the membranes resulted in a strong increase of the membrane conductance. To identify the proteins responsible for membrane activity the detergent extracts were applied to a hydroxyapatite (HTP) column and the fractions were tested for channel formation. The eluate of the column contained a protein which migrated as a single band with an apparent molecular mass of 30 kDa on SDS-PAGE. This channel was identified as the porin of pea mitochondria since it formed voltage-dependent channels with single-channel conductances of 1.5 and 3.7 nS in 1 M KCl and an estimated effective diameter of about 1.7 nm. Further elution of the column with KCl containing solutions yielded fractions which resulted in the formation of transient channels in lipid bilayer membranes. These channels had a single-channel conductance of 2.2 nS in 1 M KCl and had also the characteristics of general diffusion pores with an estimated effective diameter of 1.2 nm. Zero-current membrane potential measurements suggested that pea porin was anion-selective in the open state. The selectivity of the second channel was investigated by the measurement of the reversal potential. It was also slightly anion-selective. Its possible role in the metabolism of mitochondria is discussed.  相似文献   

9.
The porin of the outer membrane of rat-brain mitochondria was isolated and purified. The protein showed a single band of apparent Mr 35,500 on dodecyl sulfate-containing polyacrylamide gels. The incorporation of rat-brain porin into artificial lipid bilayer membranes showed that it is able to form pores with an average single-channel conductance of 400 pS in 0.1 M KCI. The pores were found to be voltage-dependent and switched to substrates at higher transmembrane potentials. The voltage-dependence of the rat brain pore was considerably smaller than that of the other known eukaryotic porins. The possible role of the rat-brain porin in the regulation of transport process across the outer mitochondrial membrane is discussed.  相似文献   

10.
The major outer membrane protein of molecular weight 40,000 (the 40K protein) of a virulent isolate of Bordetella pertussis was purified to apparent homogeneity. The purified protein formed an oligomer band (of apparent molecular weight 90,000) on sodium dodecyl sulfate-polyacrylamide gels after solubilization at low temperatures. The porin function of this protein was characterized by the black lipid bilayer method. The 40K protein formed channels smaller than all other constitutive major outer membrane porins studied to date. The average single-channel conductance in 1 M KCl was 0.56 nS. This was less than a third of the conductance previously observed for Escherichia coli porins. Zero-current potential measurements made of the porin to determine its ion selectivity revealed the porin to be more than 100-fold selective for anions over cations. The single-channel conductance was measured as a function of salt concentration. The data could be fitted to a Lineweaver-Burk plot suggesting an anion binding site with a Kd of 1.17 M Cl- and a maximum possible conductance through the channel of 1.28 nS.  相似文献   

11.
The outer membrane of Spirochaeta aurantia was isolated after cells were extracted with sodium lauryl sarcosinate and was subsequently purified by differential centrifugation and KBr isopycnic gradient centrifugation. The purified outer membrane was obtained in the form of carotenoid-containing vesicles. Four protein species with apparent molecular weights of 26,000 (26K), 36.5K, 41K, and 48.5K were readily observed as components of the vesicles. The 36.5K protein was the major polypeptide and constituted approximately 90% of the outer membrane protein observed on sodium dodecyl sulfate-polyacrylamide gels. Under mild denaturing conditions the 36.5K major protein exhibited an apparent molecular weight of approximately 90,000. This, together with the results of protein cross-linking studies, indicates that the 36.5K polypeptide has an oligomeric conformation in the native state. Reconstitution of solubilized S. aurantia outer membrane into lipid bilayer membranes revealed the presence of a porin, presumably the 36.5K protein, with an estimated channel diameter of 2.3 nm based on the measured single channel conductance of 7.7 nS in 1 M KCl.  相似文献   

12.
Porin PhoE of the outer membrane of Escherichia coli was isolated and purified. Reconstitution experiments with lipid bilayer membranes showed that this protein formed pores which had a single channel conductance of 210 pS at 0.1 M KCl. The PhoE pores were obviously not voltage-controlled or regulated. In contrast to pores formed by the OmpF porin from E. coli the PhoE channel was found to be anion-selective at neutral pH. Chloride is about three to ten times more permeable through the pore than alkali ions. On the basis of the observed pH dependence of the permeability ratio of anions and cations, this anionic selectivity is explained by the assumption that the PhoE pore contains an excess of fixed positive charges.  相似文献   

13.
Reconstitution experiments were performed on lipid bilayer membranes in the presence of detergent-solubilized mitochondrial outer membranes of a porin-free yeast mutant and of its parent strain. The addition of the detergent-solubilized material resulted in a strong increase in the membrane conductance which was not observed if only the detergent was added to the aqueous phase. Surprisingly, the membrane conductance induced by the detergent extracts of the mutant membrane was only a factor of 20 less than that caused by the outer membrane of the parent strain under otherwise identical conditions. Single-channel recordings of lipid bilayer membranes in the presence of mitochondrial outer membranes of the yeast mutant suggested the presence of a transient pore. The reconstituted pores had a single-channel conductance of 0.21 nS in 0.1 M KCl and the characteristics of general diffusion pores with an estimated effective diameter of 1.2 nm. The pores present in the mitochondrial outer membranes of the yeast mutant shared some similarities with the pores formed by mitochondrial and bacterial porins although their effective diameter is much smaller than those of the 'normal' mitochondrial porins which have a single-channel conductance of about 0.4 nS in 0.1 M KCl, corresponding to an effective diameter of 1.7 nm. Zero-current membrane-potential measurements suggested that the second mitochondrial porin is slightly cation-selective. Its possible role in the metabolism of mitochondria is discussed.  相似文献   

14.
The PhoE porin of Escherichia coli is induced by phosphate deprivation and when purified, forms moderately anion-selective channels in lipid bilayer membranes. To further investigate the basis of anion selectivity, PhoE was chemically acetylated with acetic anhydride. Acetylation modified the mobility and staining characteristics of the PhoE porin on SDS-polyacrylamide gel electrophoresis but the acetylated protein was still found in its normal trimeric state after solubilization in SDS at low temperatures. Furthermore, the acetylated PhoE porin retained its ability to reconstitute into lipid bilayer membranes and the single channel conductance in 1 M KCl was unaltered. Zero-current potential measurements demonstrated that whereas the native PhoE porin was anion-selective, a 30-40-fold increase in preference for cations upon acetylation resulted in the acetylated PhoE porin being cation-selective. Increasing the pH of KCl solutions bathing lipid bilayer membranes from pH 3 to pH 6 caused symmetrical 4-fold increases in the selectivity of both the native and acetylated PhoE proteins for cations. In contrast, increasing the pH from 7 to 9 caused a 2.5-fold increase in selectivity only for the native PhoE porin. These results suggest that the basis of anion selectivity in the native PhoE porin is fixed protonated amino groups (possibly on lysines) in or near the channel, and furthermore indicate that deprotonated carboxyl groups have a strong influence on ion selectivity.  相似文献   

15.
Pseudomonas aeruginosa OprD is a specific porin which facilitates the uptake of basic amino acids and imipenem across the outer membrane. In this study, we examined the effects of deletions in six of the proposed eight surface loops of OprD on the in vivo and in vitro functions of this protein. Native OprD formed very small channels in planar lipid bilayers, with an average single-channel conductance in 1.0 M KCl of 20 pS. When large numbers of OprD channels were incorporated into lipid bilayer membranes, addition of increasing concentrations of imipenem to the bathing solutions resulted in a progressive blocking of the membrane conductance of KCl, indicating the presence of a specific binding site(s) for imipenem in the OprD channel. From these experiments, the concentration of imipenem value of resulting in 50% inhibition of the initial conductance was calculated as approximately 0.6 microM. In contrast, no decrease in channel conductance was observed for the OprDdeltaL2 channel upon addition of up to 2.4 microM imipenem, confirming that external loop 2 was involved in imipenem binding. Deletion of four to eight amino acids from loops 1 and 6 had no effect on antibiotic susceptibility, whereas deletion of eight amino acids from loops 5, 7, and 8 resulted in supersusceptibility to beta-lactams, quinolones, chloramphenicol, and tetracycline. Planar lipid bilayer analysis indicated that the OprDdeltaL5 channel had a 33-fold increase in single-channel conductance in 1 M KCl but had retained its imipenem binding site. The disposition of these loop regions in the interior of the OprD channel is discussed.  相似文献   

16.
Porin of Dictyostelium discoideum was extracted from mitochondria with Genapol X-80 and was purified by hydroxyapatite and CM-cellulose chromatography. The purified protein displayed a single band of 30 kDa in SDS-polyacrylamide gel electrophoresis. The formation of channels in artificial lipid bilayer membranes defined its function as a channel-forming component. Its average single-channel conductance was 3.9 nanosiemens in 1 M KCl, which suggested that the effective diameter of the channel is approximately 1.7 nm at small transmembrane potentials. The channel displayed a characteristic voltage dependence for potentials higher than 20 mV. It switched to substates of smaller conductance and a selectivity different to that of the open state. The closed state was stabilized at low ionic strength. The cDNA sequence of mitochondrial porin from D. discoideum was determined. It showed little sequence similarities to other known mitochondrial porins. The functional similarity, however, was striking. Localization of the porin in the mitochondrial outer membrane was confirmed by immunogold labeling of cryosections of fixed cells.  相似文献   

17.
Protein P, an anion-specific channel-forming protein from the outer membrane of Pseudomonas aeruginosa was chemically modified by acetylation and syccinylation of its accessible amino groups. The chemically modified protein retained its ability to form oligomers on sodium dodecyl sulfate polyacrylamide gels, whereas only the acetylated protein formed channels in reconstitution experiments with lipid bilayers. Acetylated protein P demonstrated a substantially reduced mean single channel conductance (25 pS at 1 M KCl) compared to the native protein P channels (250 pS at 1 M KCl) when reconstituted into black lipid bilayer membranes. The homogeneous size distribution of single-channel conductances suggested that all of the protein P molecules had been acetylated. Zero-current potential measurements demonstrated that the acetylated protein P channel was only weakly selective for anions and allowed the permeation of cations, in contrast to the native protein P channels, which were more than 100-fold selective for anions over cations. The dependence of conductance on salt concentration was changed upon acetylation, in that acetylated protein P demonstrated a linear concentration-conductance relationship, whereas native protein P channels became saturated at high salt concentrations. These data strongly suggested that the basis of anion selectivity for native protein P channels is fixed amino groups. In agreement with this, we could demonstrate a 2.5-fold decrease in single-channel conductance between pH 7 and pH 9, between which pH values the ?-amino groups of amino acids would start to become deprotonated. Two alternative schemes for the topography of the protein P channel and localization of the fixed amino groups are presented and discussed.  相似文献   

18.
Phosphate starvation induced oligomeric proteins from the outer membranes of Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas aureofaciens, and Pseudomonas chlororaphis were purified to homogeneity. The incorporation of the purified proteins into planar lipid bilayer membranes resulted in stepwise increases in membrane conductance. Single channel conductance experiments demonstrated that these proteins were all capable of forming small channels, similar to the Pseudomonas aeruginosa phospsate porin protein P, with average single channel conductances in 1 M KCl of between 233 and 252 pS. Single channel conductance measurements made in salts of varying cation or anion size indicated that the channels were uniformly anion selective. The measurement of single channel conductance as a function of KCl concentration revealed that all channels saturated at higher salt concentrations, consistent with the presence of an anion-binding site in the channel. Apparent Kd values for Cl- binding were calculated and shown to vary only twofold (180-297 mM) among all channels, including protein P channels. Phosphate competitively inhibited chloride conductance through these channels with apparent I50 values of between 0.59 and 2.5 mM phosphate at 40 mM Cl- and between 9.7 and 27 mM phosphate at 1 m Cl-. These data were consistent with the presence of a phosphate-binding site in the channels of these phosphate-regulated proteins. Furthermore, they indicated that these channels exhibit at least a 20- to 80-fold higher affinity for phosphate than for chloride.  相似文献   

19.
Protein P from Pseudomonas aeruginosa outer membrane was reconstituted in lipid bilayer membranes from diphytanoylphosphatidylcholine. The reconstitution resulted in the formation of anion-selective channels with a conductance of 160 pS for 0.1 M chloride solution. The channels were at least 100-times more selective for anions than for cations as judged from zero-current membrane potentials. The single-channel conductance was dependent on the size of the different anions and saturated at higher salt concentrations suggesting single ion occupancy of the protein P channel.  相似文献   

20.
Protein P, an anion-specific channel-forming protein from the outer membrane of Pseudomonas aeruginosa was chemically modified by acetylation and syccinylation of its accessible amino groups. The chemically modified protein retained its ability to form oligomers on sodium dodecyl sulfate polyacrylamide gels, whereas only the acetylated protein formed channels in reconstitution experiments with lipid bilayers. Acetylated protein P demonstrated a substantially reduced mean single channel conductance (25 pS at 1 M KCl) compared to the native protein P channels (250 pS at 1 M KCl) when reconstituted into black lipid bilayer membranes. The homogeneous size distribution of single-channel conductances suggested that all of the protein P molecules had been acetylated. Zero-current potential measurements demonstrated that the acetylated protein P channel was only weakly selective for anions and allowed the permeation of cations, in contrast to the native protein P channels, which were more than 100-fold selective for anions over cations. The dependence of conductance on salt concentration was changed upon acetylation, in that acetylated protein P demonstrated a linear concentration-conductance relationship, whereas native protein P channels became saturated at high salt concentrations. These data strongly suggested that the basis of anion selectivity for native protein P channels is fixed amino groups. In agreement with this, we could demonstrate a 2.5-fold decrease in single-channel conductance between pH 7 and pH 9, between which pH values the epsilon-amino groups of amino acids would start to become deprotonated. Two alternative schemes for the topography of the protein P channel and localization of the fixed amino groups are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号