首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of the present study was to develop once-daily sustained-release matrix tablets of nicorandil, a novel potassium channel opener used in cardiovascular diseases. The tablets were prepared by the wet granulation method. Ethanolic solutions of ethylcellulose (EC), Eudragit RL-100, Eudragit RS-100, and polyvinylpyrrolidone were used as granulating agents along with hydrophilic matrix materials like hydroxypropyl methylcellulose (HPMC), sodium carboxymethylcellulose, and sodium alginate. The granules were evaluated for angle of repose, bulk density, compressibility index, total porosity, and drug content. The tablets were subjected to thickness, diameter, weight variation test, drug content, hardness, friability, and in vitro release studies. The granules showed satisfactory flow properties, compressibility, and drug content. All the tablet formulations showed acceptable pharmacotechnical properties and complied with in-house specifications for tested parameters. According to the theoretical release profile calculation, a oncedaily sustained-release formulation should release 5.92 mg of nicorandil in 1 hour, like conventional tablets, and 3.21 mg per hour up to 24 hours. The results of dissolution studies indicated that formulation F-I (drug-to-HPMC, 1∶4; ethanol as granulating agent) could extend the drug release up to 24 hours. In the further formulation development process, F-IX (drug-to-HPMC, 1∶4; EC 4% wt/vol as granulating agent), the most successful formulation of the study, exhibited satisfactory drug release in the initial hours, and the total release pattern was very close to the theoretical release profile. All the formulations (except F-IX) exhibited diffusion-dominated drug release. The mechanism of drug release from F-IX was diffusion coupled with erosion.  相似文献   

2.
The objectives of this study were to investigate the effects of manufacturing parameters on the moisture sorption isotherms of some tablet formulations and to predict the moisture isotherms of the final formulations using polynomial equations. Three tablet formulations including a placebo and 2 drug products were prepared through wet granulation, drying, compression, and coating processes. Equilibrium moisture content of excipients and granules at 25°C with different relative humidities were determined using a dynamic moisture sorption microbalance, while such data for tablets were determined using desiccators. Moisture sorption isotherms were expressed in polynomial equations. Excipient isotherms were used to predict the moisture sorption isotherms of the 3 tablet products. Results showed that different physical properties of granules and tablets, such as particle size distribution, density, and porosity resulting from different granulation and compression conditions did not have significant effect on the moisture isotherms of the materials. Changing coating materials from a powder mixture to a film also did not change the moisture sorption characteristics significantly. The predicted moisture sorption isotherms of the formulations agreed well with the experimental results. These results show that moisture isotherms of solid pharmaceutical products manufactured with conventional processes may be predicted using the isotherms of excipients, and polynomial equations may be used as a tool for the prediction of moisture isotherms.  相似文献   

3.
The purpose of this paper was to evaluate the compressional behavior of granules containing high load of a Phyllanthus niruri spray-dried extract in eccentric (ETM) and rotary (RTM) tablet presses. Tablets were constituted by spray-dried extract granules (SDEG, 92%), excipient granules (EXCG, 7.92%), and magnesium stearate (0.08%). SDEG was obtained by dry granulation and EXCG, composed of microcrystalline cellulose (62.9%) and sodium starch glycolate (37.1%), by wet granulation. Particle size distribution was fixed between 0.250 and 0.850 mm. Tablets did not evidence any mechanical failures, such as lamination or capping, or anomalous weight variation in either tablet machine types. Upper and lower tablet surface photomicrographs from ETM and RTM tablets showed differences in porosity and texture. Different RTM speeds suggested the visco-plastic behavior of the formulation, since, by slowing down rotation speeds, the tensile strength of the tablets increased significantly, but the porosity and disintegration time were not affected. Tablets produced in RTM showed lower friability and porosity than ETM tablets, which did not reflect on higher tensile strength. The EXCG distribution at upper and lower surfaces from ETM and RTM tablets was quantified by image analysis and evaluated through statistical methods. Spray-dried extract release was not influenced by the type of equipment or operational conditions to which the compacts were submitted. Construction and operation differences between both tablet presses influenced the final product, since tablets with similar tensile strength, made by distinct tablet machines, exhibited different quality parameters.  相似文献   

4.
The purpose of this study was to design a 'Traveller Friendly Drug Delivery System' for PM-HCl. Conventional promethazine (PM-HCl) tablets are bitter, need to be taken 1 h before symptoms and water is also needed. Taste-masked granules were produced with Eudragit E100 by extrusion, and analyzed with FTIR, DSC, and XRD. Tablets formulated from granules by direct compression using Ac-Di-Sol, Polyplasdone-XL, Primojel and ion-exchanger Tulsion339 and evaluated for mass uniformity, friability, tensile strength, drug content uniformity, water absorption ratio, in-vitro and in-vivo disintegration time and in-vitro dissolution studies. The observed drug-polymer interactions and reduced crystallinity may be reasons for increased dissolution rates. The formulated tablets were disintegrated within 15 s. Tablets (25 mg PM-HCl) with Ac-Di-Sol (4%) showed complete release within 1 min, while marketed conventional tablets (Phenergan; Rhone-Poulec) release 25% during the same period. A preliminary stability studies for the prepared tablets carried at 30 +/- 2 degrees C/60 +/- 5% RH, and 40 +/- 2 degrees C/75 +/- 5%RH for 3 months showed no significant changes in the tablets quality at 30 +/- 2 degrees C/60 +/- 5% RH. However, at 40 +/- 2 degrees C/75 +/- 5%RH marked increase in in-vitro disintegration time, tensile strength and decrease in friability and water absorption ratio was found. The present studies indicate the abilities of Eudragit E 100 for taste masking and improving the dissolution profile of PM-HCl after complexation. In addition, by employing cost effective direct compression method, fast-dissolving tablets of 400 mg total weight with an acceptable quality could be prepared.  相似文献   

5.
Sustained-release matrix tablets based on Eudragit RL and RS were manufactured by injection moulding. The influence of process temperature; matrix composition; drug load, plasticizer level; and salt form of metoprolol: tartrate (MPT), fumarate (MPF) and succinate (MPS) on ease of processing and drug release were evaluated. Formulations composed of 70/30% Eudragit RL/MPT showed the fastest drug release, substituting part of Eudragit RL by RS resulted in slower drug release, all following first-order release kinetics. Drug load only affected drug release of matrices composed of Eudragit RS: a higher MPT concentration yielded faster release rates. Adding triethyl citrate enhanced the processability, but was detrimental to long-term stability. The process temperature and plasticizer level had no effect on drug release, whereas metoprolol salt form significantly influenced release properties. The moulded tablets had a low porosity and a smooth surface morphology. A plasticizing effect of MPT, MPS and MPF on Eudragit RS and Eudragit RL was observed via DSC and DMA. Solubility parameter assessment, thermal analysis and X-ray diffraction demonstrated the formation of a solid solution immediately after production, in which H-bonds were formed between metoprolol and Eudragit as evidenced by near-infrared spectroscopy. However, high drug loadings of MPS and MPF showed a tendency to recrystallise during storage. The in vivo performance of injection-moulded tablets was strongly dependent upon drug loading.  相似文献   

6.
The purpose of the present study was to model the effects of the concentration of Eudragit L 100 and compression pressure as the most important process and formulation variables on the in vitro release profile of aspirin from matrix tables formulated with Eudragit L 100 as matrix substance and to optimize the formulation by artificial neural network. As model formulations, 10 kinds of aspirin matrix tablets were prepared. The amount of Eudragit L 100 and the compression pressure were selected as causal factors. In vitro dissolution time profiles at 4 different sampling times were chosen as responses. A set of release parameters and causal factors were used as tutorial data for the generalized regression neural, network (GRNN) and analyzed using a computer. Observed results of drug release studies indicate that drug release rates vary widely between investigated formulations, with a range of 5 hours to more than 10 hours to complete dissolution. The GRNN model was optimized. The root mean square value for the trained network was 1.12%, which indicated that the optimal GRNN model was reached. Applying the generalized distance function method, the optimal tablet formulation predicted by GRNN was with 5% of Eudragit L 100 and tablet hardness 60N. Calculated difference (f 1 2.465) and similarity (f 2 85.61) factors indicate that there is no difference between predicted and experimentally observed drug release profiles for the optimal formulation. This work illustrates the potential for an artificial neural network, GRNN, to assist in development of extended release dosage forms.  相似文献   

7.
The objective of this study was to investigate the effect of lipophilic (Compritol 888 ATO) and hydrophilic components (combination of HPMC and Avicel) on the release of carbamazepine from granules and corresponding tablet. Wet granulation followed by compression was employed for preparation of granules and tablets. The matrix swelling behavior was investigated. The dissolution profiles of each formulation were compared to those of Tegretol CR tablets and the mean dissolution time (MDT), dissolution efficiency (DE %) and similarity factor (f(2) factor) were calculated. It was found that increase in the concentration of HPMC results in reduction in the release rate from granules and achievement of zero-order is difficult from the granules. The amount of HPMC plays a dominant role for the drug release. The release mechanism of CBZ from matrix tablet formulations follows non-Fickian diffusion shifting to case II by the increase of HPMC content, indicating significant contribution of erosion. Increasing in drug loading resulted in acceleration of the drug release and in anomalous controlled-release mechanism due to delayed hydration of the tablets. These results suggest that wet granulation followed by compression could be a suitable method to formulate sustained release CBZ tablets.  相似文献   

8.
The purpose of this study was to evaluate the potential of cellulose nanofibers (also referred as microfibrillated cellulose, nanocellulose, nanofibrillated, or nanofibrillar cellulose) as novel tabletting material. For this purpose, physical and mechanical properties of spray-dried cellulose nanofibers (CNF) were examined, and results were compared to those of two commercial grades of microcrystalline cellulose (MCC), Avicel PH101 and Avicel PH102, which are the most commonly and widely used direct compression excipients. Chemically, MCC and CNF are almost identical, but their physical characteristics, like mechanical properties and surface-to-volume ratio, differ remarkably. The novel material was characterized with respect to bulk and tapped as well as true density, moisture content, and flow properties. Tablets made of CNF powder and its mixtures with MCC with or without paracetamol as model compound were produced by direct compression and after wet granulation. The tensile strength of the tablets made in a series of applied pressures was determined, and yield pressure values were calculated from the measurements. With CNF, both wet granulation and direct compression were successful. During tablet compression, CNF particles were less prone to permanent deformation and had less pronounced ductile characteristics. Disintegration and dissolution studies showed slightly faster drug release from direct compression tablets with CNF, while wet granulated systems did not have any significant difference.  相似文献   

9.
Waxy maize starch (100% amylopectin) granules were modified by reaction of the granules with glucoamylase in a minimum amount of water to give 29% (w/w) d-glucose inside the granules [Kim, Y.-K.; Robyt, J. F. Carbohydr. Res.1999, 318, 129−134]. These granules were made into beads by dropping an ethanol slurry of starch and different amounts of Eudragit L100-55 in a constant ratio of 100:1 from a pipette onto Whatman 3MM filter paper. The starch beads were air dried and then repeatedly sprayed 0-12 times with 2.0% (w/v) Eudragit L100-55 in ethanol, with drying between each spraying, to coat the surface of the starch beads, giving different amounts of Eudragit L100-55 coating. Seven different kinds of beads, with different amounts of Eudragit L100-55 binding and coating agent, were obtained. The rates of release of d-glucose into water from the seven kinds of beads were inversely proportional to the amount of binding and coating agent. Bead type I, which was without any binding and coating gave a fast 100% release of d-glucose in 30 min. Beads II and III also gave a fast 100% release in 60 min and 90 min, respectively. Bead IV gave a near linear release of 97% d-glucose in 150 min; Bead V gave a 50% release in 120 min followed by the remaining 50% in 60 min; and Beads VI and VII gave a slow release of 10% and 4%, respectively, from 0 to 120 min, followed by a rapid 100% release from 120 to 180 min.  相似文献   

10.
The purpose of this research was to evaluate the influence of dry granulation parameters on granule and tablet properties of spray-dried extract (SDE) fromMaytenus ilicifolia, which is widely used in Brazil in the treatment of gastric disorders. The compressional behavior of the SDE and granules of the SDE was characterized by Heckel plots. The tablet properties of powders, granules, and formulations containing a high extract dose were compared. The SDE was blended with 2% magnesium stearate and 1% colloidal silicon dioxide and compacted to produce granules after slugging or roll compaction. The influences of the granulation process and the roll compaction force on the technological properties of the granules were studied. The flowability and density of spray-dried particles were improved after granulation. Tablets produced by direct compression of granules showed lower crushing strength than the ones obtained from nongranulated material. The compressional analysis by Heckel plots revealed that the SDE undergoes plastic deformation with a very low tendency to rearrangement at an early stage of compression. On the other hand, the granules showed an intensive rearrangement as a consequence of fragmentation and rebounding. However, when the compaction pressure was increased, the granules showed plastic deformation. The mean yield pressure values showed that both granulation techniques and the roll compaction force were able to reduce the material's ability to undergo plastic deformation. Finally, the tablet containing a high dose of granules showed a close dependence between crushing strength and the densification degree of the granules (ie, roll compaction force). Published: October 14, 2005  相似文献   

11.
Interpolyelectrolyte (IPE) complexation between carrageenan (CG) and Eudragit E (EE) was studied in 0.1 M HCl and was used to develop floating matrix tablets aimed to prolong gastric-residence time and sustain delivery of the loaded drug. The optimum EE/CG IPE complexation weight ratio (0.6) was determined in 0.1 M HCl using apparent viscosity measurements. The IPE complex was characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. Metronidazole matrix tablets were prepared by direct compression using EE, CG, or hybrid EE/CG with ratio optimal for IPE complexation. Corresponding effervescent tablets were prepared by including Na bicarbonate as an effervescent agent. Tablets were evaluated for in vitro buoyancy and drug release in 0.1 M HCl. Both CG and EE–CG effervescent matrices (1:2 drug to polymer weight ratio, 60 mg Na bicarbonate) achieved fast and prolonged floating with floating lag times less than 30 s and floating duration of more than 10 h. The corresponding EE effervescent matrices showed delayed floating and rapid drug release, and completely dissolved after 3 h of dissolution. CG matrices showed an initial burst drug release (48.3 ± 5.0% at 1 h) followed by slow drug release over 8 h. EE–CG matrices exhibited sustained drug release in almost zero-order manner for 10 h (68.2 ± 6.6%). The dissolution data of these matrices were fitted to different dissolution models. It was found that drug release followed zero-order kinetics and was controlled by the superposition of the diffusion and erosion.  相似文献   

12.
Antiadherents are used to decrease tackiness of a polymer coating during both processing and subsequent storage. Despite being a common excipient in coating formulae, antiadherents may affect mechanical properties of the coating film as well as drug release from film-coated tablets, but how could addition of antiadherents affect these properties and to what extent and is there a relation between the physical characteristics of the tablet coat and the drug release mechanisms? The aim of this study was to evaluate physical characteristics of films containing different amounts of the antiadherents talc, glyceryl monostearate, and PlasACRYLTM T20. Eudragit RL30D and Eudragit RS30D as sustained release polymers and Eudragit FS30D as a delayed release material were used. Polymer films were characterized by tensile testing, differential scanning calorimetry (DSC), microscopic examination, and water content as calculated from loss on drying. The effect of antiadherents on in vitro drug release for the model acetylsalicylic acid tablets coated with Eudragit FS30D was also determined. Increasing talc concentration was found to decrease the ability of the polymer films to resist mechanical stress. In contrast, glyceryl monostearate (GMS) and PlasACRYL produced more elastic films. Talc at concentrations higher than 25% caused negative effects, which make 25% concentration recommended to be used with acrylic polymers. All antiadherents delayed the drug release at all coating levels; hence, different tailoring of drug release may be achieved by adjusting antiadherent concentration with coating level.  相似文献   

13.
The purpose of this research was to evaluate beta-cyclodextrin (beta-CD) as a vehicle, either singly or in blends with lactose (spray-dried or monohydrate), for preparing a meloxicam tablet. Aqueous solubility of meloxicam in presence of beta-CD was investigated. The tablets were prepared by direct compression and wet granulation techniques. The powder blends and the granules were evaluated for angle of repose, bulk density, compressibility index, total porosity, and drug content. The tablets were subjected to thickness, diameter, weight variation test, drug content, hardness, friability, disintegration time, and in vitro dissolution studies. The effect of beta-CD on the bioavailability of meloxicam was also investigated in human volunteers using a balanced 2-way crossover study. Phase-solubility studies indicated an A(L)-type diagram with inclusion complex of 1:1 molar ratio. The powder blends and granules of all formulations showed satisfactory flow properties, compressibility, and drug content. All tablet formulations prepared by direct compression or wet granulation showed acceptable mechanical properties. The dissolution rate of meloxicam was significantly enhanced by inclusion of beta-CD in the formulations up to 30%. The mean pharmacokinetic parameters (C(max), K(e), and area under the curve [AUC](0-infinity)) were significantly increased in presence of beta-CD. These results suggest that beta-CD would facilitate the preparation of meloxicam tablets with acceptable mechanical properties using the direct compression technique as there is no important difference between tablets prepared by direct compression and those prepared by wet granulation. Also, beta-CD is particularly useful for improving the oral bioavailablity of meloxicam.  相似文献   

14.
The release of verapamil hydrochloride from tablets with Eudragit RLPO or Kollidon®SR with different drug-to-polymer ratios were investigated with a view to develop twice-daily sustained-release dosage form by solid dispersion (SD) technique. The SDs containing Eudragit RLPO or Kollidon®SR at drug-polymer ratios of 1:1, 1:2, and 1:3 with verapamil hydrochloride were developed using solvent evaporation technique. The physical mixtures of drug and both polymers were prepared by using simple mixing technique at the same ratio as solid dispersion. The physicochemical properties of solid dispersion were evaluated by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The study of DSC, XRD, and FTIR could not show significant interaction between verapamil HCl and Kollidon®SR or Eudragit RLPO. The solid dispersions or physical mixtures were compressed to tablets. The tablets were prepared with solid dispersions containing Eudragit RLPO or Kollidon®SR, with all the official requirements of tablet dosage forms fulfilled. Tablets prepared were evaluated for the release of verapamil hydrochloride over a period of 12 h in pH 6.8 phosphate buffer using US Pharmacopoeia type II dissolution apparatus. The in vitro drug release study revealed that the tablet containing Eudragit has extended the release rate for 12 h whereas the tablet containing Kollidon®SR at the same concentration has extended the release rate up to 8 h. The in vitro release profile and the mathematical models indicate that release of verapamil hydrochloride can be effectively controlled from a tablet containing solid dispersions of Eudragit RLPO. The reduction of size fraction of the SD system from 200–250 to 75–125 μm had a great effect on the drug release.  相似文献   

15.
The purpose of this work was to investigate the effect of different polysulfonate resins and direct compression fillers on physical properties of multiple-unit sustained-release dextromethorphan (DMP) tablets. DMP resinates were formed by a complexation of DMP and strong cation exchange resins, Dowex 50 W and Amberlite IRP69. The tablets consisted of the DMP resinates and direct compression fillers, such as microcrystalline cellulose (MCC), dicalcium phosphate dihydrate (DCP), and spray-dried rice starch (SDRS). Physical properties of tablets, such as hardness, disintegration time, and in vitro release, were investigated. A good performance of the tablets was obtained when MCC or SDRS was used. The use of rod-like and plate-like particles of Amberlite IRP69 caused a statistical decrease in tablet hardness, whereas good tablet hardness was obtained when spherical particle of Dowex 50 W was used. The plastic deformation of the fillers, such as MCC and SDRS, caused a little change in the release of DMP. A higher release rate constant was found in the tablets containing DCP and Dowex 50 W, indicating the fracture of the resinates under compression, which was attributable to the fragmentation of DCP. However, the release of DMP from the tablets using Amberlite IRP69 was not significantly changed because of the higher degree of cross-linking of the resinates, which exhibited more resistance to deformation under compression. In conclusion, the properties of polysulfonate resin, such as particle shape and degree of cross-linking, and the deformation under compaction of fillers affect the physical properties and the drug release of the resinate tablets. Published: September 30, 2005.  相似文献   

16.
The aim of this work was to understand the influence of different formulation variables on the optimization of pH-dependent, colon-targeted, sustained-release mesalamine microspheres prepared by O/O emulsion solvent evaporation method, employing pH-dependent Eudragit S and hydrophobic pH-independent ethylcellulose polymers. Formulation variables studied included concentration of Eudragit S in the internal phase and the ratios between; internal to external phase, drug to Eudragit S and Eudragit S to ethylcellulose to mesalamine. Prepared microspheres were evaluated by carrying out in vitro release studies and determination of particle size, production yield, and encapsulation efficiency. In addition, morphology of microspheres was examined using optical and scanning electron microscopy. Emulsion solvent evaporation method was found to be sensitive to the studied formulation variables. Particle size and encapsulation efficiency increased by increasing Eudragit S concentration in the internal phase, ratio of internal to external phase, and ratio of Eudragit S to the drug. Employing Eudragit S alone in preparation of the microspheres is only successful in forming acid-resistant microspheres with pulsatile release pattern at high pH. Eudragit S and ethylcellulose blend microspheres were able to control release under acidic condition and to extend drug release at high pH. The stability studies carried out at 40°C/75% RH for 6 months proved the stability of the optimized formulation. From the results of this investigation, microencapsulation of mesalamine in microspheres using blend of Eudragit S and ethylcellulose could constitute a promising approach for site-specific and controlled delivery of drug in colon.  相似文献   

17.
The purpose of this research was to prepare a floating drug delivery system of diltiazem hydrochloride (DTZ). Floating matrix tablets of DTZ were developed to prolong gastric residence time and increase its bioavailability. Rapid gastrointestinal transit could result in incomplete drug release from the drug delivery system above the absorption zone leading to diminished efficacy of the administered dose. The tablets were prepared by direct compression technique, using polymers such as hydroxypropylmethylcellulose (HPMC, Methocel K100M CR), Compritol 888 ATO, alone or in combination and other standard excipients. Sodium bicarbonate was incorporated as a gas-generating agent. The effects of sodium bicarbonate and succinic acid on drug release profile and floating properties were investigated. A 32 factorial design was applied to systematically optimize the drug release profile. The amounts of Methocel K100M CR (X1) and Compritol 888 ATO (X2) were selected as independent variables. The time required for 50% (t50) and 85% (t85) drug dissolution were selected as dependent variables. The results of factorial design indicated that a high level of both Methocel K100M CR (X1) and Compritol 888 ATO (X2) favors the preparation of floating controlled release of DTZ tablets. Comparable release profiles between the commercial product and the designed system were obtained. The linear regression analysis and model fitting showed that all these formulations followed Korsmeyer and Peppas model, which had a higher value of correlation coefficient (r). While tablet hardness had little or no effect on the release kinetics and was found to be a determining factor with regards to the buoyancy of the tablets. Published: September 7, 2007  相似文献   

18.
BackgroundAllergen immunotherapy (AIT) involves the regimen of gradually incrementing doses of the allergen, thereby inducing desensitization and tolerance. Sublingual Immunotherapy tablets (SLIT-tablets) have been formulated for several allergies and had manifested efficacy for allergic rhinitis and allergic asthma. SLIT promises an alternative method to other routes of AIT enabling patients to self-administer AIT.ObjectiveThe study aimed to formulate fast disintegrating SLIT containing crude peanut extract for peanut-induced allergic asthma.MethodsThe crude peanut extract was prepared by a simple extraction method and was subjected to quantitative and qualitative analysis. The extract was also characterised for its physical properties. The preformulation study for the extract and excipients of the tablet was performed using FT-IR spectroscopy and Differential scanning calorimetry. The tablet powder blends were characterised for pre-compression properties. The SLIT tablets were developed by direct compression and the post-compression evaluation was performed.ResultsThe results of the quantitative and qualitative analysis of extract confirmed the presence of peanut proteins in the extract. The preformulation studies using FT-IR spectroscopy and Differential Scanning Calorimetry revealed that there is no significant interaction between the CPE and excipients. The pre-compression characterisation showed that the powder blends had good flowproperties. Three doses of SLIT tablets were formulated with each dose containing four batches and the tablet of each dose was optimized by studying the effect of varying concentrations of super disintegrants on disintegration time and dissolution rate. The post compression characterization of the tablets was performed and the optimized batch of the three doses with the concentration of 5% crospovidone and 2% croscarmellose sodium showed less wetting time and high-water absorption ratio, shorter disintegration time of 14secs and maximum drug release of >90% within 2–3 min.ConclusionThe results indicated the suitability of formulated SLIT tablets for peanut induced allergic asthma.  相似文献   

19.
The aim of the present study was to prepare and characterize extended-release matrix tablets of zidovudine using hydrophilic Eudragit RLPO and RSPO alone or their combination with hydrophobic ethyl cellulose. Release kinetics was evaluated by using United States Pharmacopeia (USP)-22 type I dissolution apparatus. Scanning electron microscopy was used to visualize the effect of dissolution medium on matrix tablet surface. Furthermore, the in vitro and in vivo newly formulated sustained-release zidovudine tablets were compared with conventional marketed tablet (Zidovir, Cipla Ltd, Mumbai, India). The in-vitro drug release study revealed that either Eudragit preparation was able to sustain the drug release only for 6 hours (94.3%±4.5% release). Combining Eudragit with ethyl cellulose sustained the drug release for 12 hours (88.1%±4.1% release). Fitting the in vitro drug release data to Korsmeyer equation indicated that diffusion along with erosion could be the mechanism of drug release. In vivo investigation in rabbits showed sustained-release pharmacokinetic profile of zidovudine from the matrix tablets formulated using combination of Eudragits and ethylcellulose. In conclusion, the results suggest that the developed sustained-release tablets of zidovudine could perform therapeutically better than conventional dosage forms, leading to improve efficacy and better patient compliance. Published: January 3, 2006  相似文献   

20.
The aim of this study was to investigate the influence of different processing methods on the profiles of 5-aminosalicylic acid dissolution from controlled-release matrix systems based on Eudragit® RL and Eudragit® RS water-insoluble polymers. The pure polymers and their mixtures were studied as matrix formers using different processing methods, i.e., direct compression, wet granulation of the active ingredient with the addition of polymer(s) to the external phase, wet granulation with water, and wet granulation with aqueous dispersions. In comparison with the directly compressed tablets, tablets made by wet granulation with water demonstrated a 6–19% increase in final drug dissolution, whereas when polymers were applied in the external phase during compression, a 0–13% decrease was observed in the amount of drug released. Wet granulation with aqueous polymer dispersions delayed the release of the drug; this was especially marked (a 54–56% decrease in drug release) in compositions, which contained a high amount of Eudragit RL 30D. The release profiles were mostly described by the Korsmeyer–Peppas model or the Hopfenberg model.KEY WORDS: controlled release, matrix tablet, polymethacrylates, release kinetics  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号