首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
In hepatitis C Virus (HCV) high-risk groups, HCV-specific T cell responses have been detected in seronegative, aviremic persons who have no evidence of HCV infection. Herein, we investigated functional profiles of HCV-specific T-cell responses in seronegative, aviremic patients of a HCV high-risk group. Seventy seven hemodialysis patients with chronic renal disease were analyzed by IFN-γ ELISpot assays, and eight of 71 (11.3%) seronegative, aviremic patients displayed HCV-specific T-cell responses. Their HCV-specific memory T cells were characterized by assessing cytokine polyfunctionality, known to provide antiviral protection. By intracellular staining of IFN-γ, TNF-α, IL-2 and MIP-1β, we identified two distinct populations in the seronegative, aviremic patients: polyfunctional responders and TNF-α-predominant responders. In further analysis, occult HCV infection was excluded as a cause of the HCV-specific T cell response via secondary nested RT-PCR of HCV RNA in peripheral blood mononuclear cell samples. HCV-specific T cells targeted multiple epitopes including non-structural proteins in a single patient, implying that their T cells might have been primed by HCV proteins synthesized within the host. We conclude that HCV-specific memory T cells of seronegative, aviremic patients arise from authentic HCV replication in the host, but not from current occult HCV infection. By functional pattern of HCV-specific T cells, there are two distinct populations in these patients: polyfunctional responders and TNF-α-predominant responders.  相似文献   

2.
The activation state, differentiation state, and functions of liver lymphocytes and perihepatic lymph nodes during chronic hepatitis C virus (HCV) infection are not well understood. Here, we performed phenotypic and functional analyses of freshly prepared lymphocytes isolated from the livers, perihepatic lymph nodes, and peripheral blood compartments of chronic HCV-infected and disease control subjects with end-stage liver disease undergoing liver transplantation. We measured lymphocyte subset frequency and memory T-cell gamma interferon (IFN-γ) and proliferative responses to HCV peptide and control viral antigens in direct ex vivo assays. We found higher frequencies of CD4 cells in the lymph node compartment than in the other compartments for both HCV-infected and disease control subjects. Lymph node CD4 and CD8 cells less commonly expressed the terminal differentiation marker CD57, a finding consistent with an earlier differentiation state. In HCV-infected subjects, HCV-specific IFN-γ-producing and proliferative responses were commonly observed in the lymph node fraction, while they were uncommonly observed in the peripheral blood or liver fractions. In contrast, control viral CD4 protein antigen and CD8 peptide antigen-specific IFN-γ responses were commonly observed in the periphery and uncommonly observed in the lymph nodes of these same subjects. These findings are consistent with a selective defect in HCV-specific T-cell effector function or distribution in patients with advanced chronic HCV infection. The high frequency of HCV-reactive T cells in perihepatic lymph nodes indicates that a failure to generate or sustain T-lymphocyte HCV reactivity is not responsible for the paucity of functional cells even in end-stage liver disease.  相似文献   

3.
The majority of people infected with hepatitis C virus (HCV) fail to generate or maintain a T-cell response effective for viral clearance. Evidence from murine chronic viral infections shows that expression of the coinhibitory molecule PD-1 predicts CD8+ antiviral T-cell exhaustion and may contribute to inadequate pathogen control. To investigate whether human CD8+ T cells express PD-1 and demonstrate a dysfunctional phenotype during chronic HCV infection, peripheral and intrahepatic HCV-specific CD8+ T cells were examined. We found that in chronic HCV infection, peripheral HCV-specific T cells express high levels of PD-1 and that blockade of the PD-1/PD-L1 interaction led to an enhanced proliferative capacity. Importantly, intrahepatic HCV-specific T cells, in contrast to those in the periphery, express not only high levels of PD-1 but also decreased interleukin-7 receptor alpha (CD127), an exhausted phenotype that was HCV antigen specific and compartmentalized to the liver, the site of viral replication.  相似文献   

4.
5.
Broad immune responses, in particular specific for the NS3 protein and mediated by both CD8+ and CD4+T lymphocytes, are thought to play a critical role in the control of hepatitis C virus (HCV) infection. In this study, we searched for novel HLA-B*0702 NS3 restricted epitopes following an optimized NS3NS4 immunization protocol in transgenic mice expressing HLA-B*0702 molecule. Combining predicted and overlapping peptides, we identified two novel epitopes, WPA10 (aa 1111-1120) and LSP10 (aa 1153-1162), which triggered significant IFN-gamma-producing T cell frequencies and high CTL responses. Both epitopes were shown to be immunogenic when used as synthetic peptides to immunize mice. The relevance of these epitopes to humans was demonstrated, as both were able in vitro to recall specific IFN-gamma and IL10-producing cells from peripheral blood mononuclear cells of HCV infected patients. Such epitopes enlarge the pool of NS3-specific CD8+T cell epitopes available to perform immunomonitoring of HCV infection and to develop vaccines.  相似文献   

6.
Hepatitis C virus (HCV) infection is a major cause of morbidity and mortality in the HIV co-infected population. Interferon-alpha (IFN-α) remains a major component of anti-HCV therapy despite its deleterious effects on the immune system. Furthermore, IFN-α was recently shown to diminish the size of the latent HIV reservoir. The objectives of this study were to monitor the impact of IFN-α on T cell phenotype and proliferation of HIV and HCV-specific T cells during IFN therapy, and to identify immune markers that can predict the response to IFN in HICV/HIV co-infected patients. We performed longitudinal analyses of T cell numbers, phenotype and function in co-infected patients undergoing IFN-α therapy with different outcomes including IFN-α non-responders (NR) (n = 9) and patients who achieved sustained virologic response (SVR) (n = 19). We examined the expression of activation (CD38, HLA-DR), functional (CD127) and exhaustion markers (PD1, Tim-3, CD160 and CD244) on total CD4 and CD8 T cells before, during and after therapy. In addition, we examined the HIV- and HCV-specific proliferative responses against HIV-p24 and HCV-NS3 proteins. Frequencies of CD127+ CD4 T cells were higher in SVR than in NR patients at baseline. An increase in CD127 expression on CD8 T cells was observed after IFN-α therapy in all patients. In addition, CD8 T cells from NR patients expressed a higher exhaustion status at baseline. Finally, SVR patients exhibited higher proliferative response against both HIV and HCV antigens at baseline. Altogether, SVR correlated with higher expression of CD127, lower T cell exhaustion status and better HIV and HCV proliferative responses at baseline. Such factors might be used as non-invasive methods to predict the success of IFN–based therapies in co-infected individuals.  相似文献   

7.
BACKGROUND: Efficient vaccines against hepatitis C virus (HCV) infection are urgently needed. Vaccine development has been hampered by the lack of suitable small animal models to reliably test the protective capacity of immmunization. METHODS: We used recombinant murine gammaherpesvirus 68 (MHV-68) as a novel challenge virus in mice and tested the efficacy of heterologous candidate human vaccines based on modified vaccinia virus Ankara or adenovirus, both delivering HCV non-structural NS3 or core proteins. RESULTS: Recombinant MHV-68 expressing NS3 (MHV-68-NS3) or core (MHV-68-core) were constructed and characterized in vitro and in vivo. Mice immunized with NS3-specific vector vaccines and challenged with MHV-68-NS3 were infected but showed significantly reduced viral loads in the acute and latent phase of infection. NS3-specific CD8+ T cells were amplified in immunized mice after challenge with MHV-68-NS3. By contrast, we did neither detect a reduction of viral load nor an induction of core-specific CD8+ T cells after core-specific immunization. CONCLUSIONS: Our data suggest that the challenge system using recombinant MHV-68 is a highly suitable model to test the immunogenicity and protective capacity of HCV candidate vaccine antigens. Using this system, we demonstrated the usefulness of NS3-specific immunization. By contrast, our analysis rather discarded core as a vaccine antigen.  相似文献   

8.
Hepatitis C virus (HCV) infection is a leading cause of liver disease worldwide. The HCV RNA genome is translated into a single polyprotein. Most of the cleavage sites in the non-structural (NS) polyprotein region are processed by the NS3/NS4A serine protease. The vital NS2-NS3 cleavage is catalyzed by the NS2 autoprotease. For efficient processing at the NS2/NS3 site, the NS2 cysteine protease depends on the NS3 serine protease domain. Despite its importance for the viral life cycle, the molecular details of the NS2 autoprotease activation by NS3 are poorly understood. Here, we report the identification of a conserved hydrophobic NS3 surface patch that is essential for NS2 protease activation. One residue within this surface region is also critical for RNA replication and NS5A hyperphosphorylation, two processes known to depend on functional replicase assembly. This dual function of the NS3 surface patch prompted us to reinvestigate the impact of the NS2-NS3 cleavage on NS5A hyperphosphorylation. Interestingly, NS2-NS3 cleavage turned out to be a prerequisite for NS5A hyperphosphorylation, indicating that this cleavage has to occur prior to replicase assembly. Based on our data, we propose a sequential cascade of molecular events: in uncleaved NS2-NS3, the hydrophobic NS3 surface patch promotes NS2 protease stimulation; upon NS2-NS3 cleavage, this surface region becomes available for functional replicase assembly. This model explains why efficient NS2-3 cleavage is pivotal for HCV RNA replication. According to our model, the hydrophobic surface patch on NS3 represents a module critically involved in the temporal coordination of HCV replicase assembly.  相似文献   

9.
Clearance of hepatitis C virus (HCV) infection in humans and chimpanzees is thought to be associated with the induction of strong T-cell responses. We studied four chimpanzees infected with HCV derived from an infectious full-length HCV genotype 1b cDNA. Two of the chimpanzees cleared the infection to undetectable levels for more than 12 months of follow-up; the other two became persistently infected. Detailed analyses of HCV-specific immune responses were performed during the courses of infection in these chimpanzees. Only weak and transient T helper responses were detected during the acute phase in all four chimpanzees. A comparison of the frequency of gamma interferon (IFN-gamma)-producing CD4(+) and CD8(+) T cells in peripheral blood by ELISpot assay did not reveal any correlation between viral clearance and T-cell responses. In addition, analyses of IFN-gamma, IFN-alpha, and interleukin-4 mRNA levels in liver biopsies, presumably indicative of intrahepatic T-cell responses, revealed no distinct pattern in these chimpanzees with respect to infection outcome. The present study suggests that the outcome of HCV infection in chimpanzees is not necessarily attributable to HCV sequence variation and that chimpanzees may recover from HCV infection by mechanisms other than the induction of readily detectable HCV-specific T-cell responses.  相似文献   

10.
BACKGROUND: Hepatitis C virus (HCV)-derived lipopeptides can induce epitope-specific immune responses in lymphocytes from HCV-naive individuals. We analyzed whether such T cells generated by in vitro immunization with HCV core-derived lipopeptides exert HCV-specific cytolytic activity. METHODS: Using a sensitive flow cytometric cytotoxicity assay we characterized HCV-specific cytotoxicity in T cells generated in vitro with HCV core-derived 25-mer lipopeptides. In addition, we studied expressions of Fas ligand and perforin and interferon-gamma (IFN-gamma) secretion in HLA-A2-HCV(core_35-44) tetramer-positive T cells generated with lipopeptide amino acid 20-44 (LP20-44). RESULTS: CD8+ T cells induced in vitro with HCV core-derived lipopeptides only infrequently exerted HCV-specific cytotoxicity, irrespective of whether antigen-coated T2 cells or autologous B lymphoblasts were used as targets. Detailed analysis of HLA-A2-HCV(core_35-44) tetramer-positive T cells generated with LP20-44 revealed that in vitro immunization resulted in T cells that secreted IFN-gamma after antigen-specific restimulation and that upregulated expression of Fas ligand but not of perforin. CONCLUSIONS: Our data confirm at the functional level that HCV lipopeptides induce antigen-specific T lymphocytes that produce IFN-gamma but exert significant cytotoxicity in only a minority of experiments, probably because expression of cytolytic effector molecules is not enhanced in their granules.  相似文献   

11.
The cellular immune response contributes to clearance of hepatitis C virus (HCV) and persists for decades after recovery from infection. The immunological basis for the inefficiency of the cellular immune response in chronically infected persons is not known. Here, we used four HLA-A2 tetramers, specific for two HCV core and two HCV NS3 epitopes, to investigate at the single-cell level effector function and phenotype of HCV-specific CD8+ T cells in 20 chronically infected and 12 long-term recovered patients. Overall, HCV-specific, tetramer+ T cells were more frequently found in PBMCs of chronically infected patients than in those of recovered patients. However, when compared with HCV-tetramer+ T cells of recovered patients, they displayed an impaired proliferative capacity. As a result of the impaired proliferative capacity, HCV-specific T cell lines derived from chronically infected patients displayed less peptide-specific cytotoxicity than those from recovered patients. In addition, proliferation and ex vivo IFN-gamma production of HCV-tetramer+ cells, but not influenza-virus-specific T cells, were defective in chronically infected patients and could not be restored by in vitro stimulation with peptide and IL-2. At least three distinct phenotypes of HCV-specific CD8+ T cells were identified and associated with certain functional characteristics. In addition, impairment of proliferative, cytokine, and cytotoxic effector functions of tetramer+ T cells in viremic patients was associated with weak ex vivo HCV-specific CD4+ T cell responses. Thus, the defective functions of HCV-specific CD8+ T cells might contribute to viral persistence in chronically infected patients, and knowledge on their reversibility may facilitate the development of immunotherapeutic vaccines.  相似文献   

12.
Vigorous virus-specific CD4+ T-helper-cell responses are associated with successful control of hepatitis C virus (HCV) and other human viral infections, but the breadth and specificity of responses associated with viral containment have not been defined. To address this we evaluated the HCV-specific CD4+ T-helper-cell response in HCV antibody-positive persons who lack detectable plasma viremia, and compared this response to that in persons with chronic HCV infection. Peripheral blood mononuclear cells were stimulated with HCV proteins, followed by measurement of HCV-specific CD4+ T-cell responses to a comprehensive set of overlapping HCV peptides by intracellular gamma interferon production. In three persons with resolved HCV infection studied in detail, 13 to 14 epitopes were targeted, but none was recognized by all three. The 37 defined epitopes were predominantly distributed among the HCV proteins core, NS3, NS4, and NS5. In an expanded analysis of responses to these proteins in persons with resolved infection, an average of 10 epitopes was targeted, whereas in persons with chronic viremia never was more than one epitope targeted (P < 0.001). This comprehensive analysis of the breadth and specificity of HCV-specific T-helper-cell responses indicates that up to 14 viral epitopes can be simultaneously targeted by circulating virus-specific CD4+ T helper cells in a controlled human viral infection. Moreover, these data provide important parameters for evaluation of candidate HCV vaccines, and provide rationale for immunotherapy in chronic HCV infection.  相似文献   

13.
Occult hepatitis C virus (HCV) infection is a type of recently identified chronic infection that is evidenced only by detection of HCV RNA in liver; patients consistently test negative for antibodies to HCV and HCV RNA in serum. Using ex vivo and in vitro measures of T-cell responses, we have identified functional virus-specific memory CD4(+) and CD8(+) T cells in the peripheral blood of patients with occult HCV infection. The features of the virus-specific T cells were consistent with immune surveillance functions, supporting previous exposure to HCV. In addition, the magnitudes of CD4(+) and CD8(+) T-cell responses were in parallel and correlated inversely with the extent of liver HCV infection. The detection of HCV-specific T cells in individuals in whom HCV RNA can persist in the liver despite the absence of viremia and antibodies indicates that HCV replication is prolonged in the face of virus-specific CD4(+) and CD8(+) T-cell responses. These findings demonstrate that HCV-specific cellular immune responses are markers not only of previous exposure to and recovery from HCV but also of ongoing occult HCV infection.  相似文献   

14.
Specific inhibitory mechanisms suppress the T-cell response against the hepatitis C virus (HCV) in chronically infected patients. However, the relative importance of suppression by IL-10, TGF-β and regulatory T-cells and the impact of pegylated interferon-alpha and ribavirin (PegIFN-α/ribavirin) therapy on these inhibitory mechanisms are still unclear. We revealed that coregulation of the HCV-specific T-cell responses in blood of 43 chronic HCV patients showed a highly heterogeneous pattern before, during and after PegIFN-α/ribavirin. Prior to treatment, IL-10 mediated suppression of HCV-specific IFN-γ production in therapy-naive chronic HCV patients was associated with higher HCV-RNA loads, which suggests that protective antiviral immunity is controlled by IL-10. In addition, as a consequence of PegIFN-α/ribavirin therapy, negative regulation of especially HCV-specific IFN-γ production by TGF-β and IL-10 changed dramatically. Our findings emphasize the importance of negative regulation for the dysfunctional HCV-specific immunity, which should be considered in the design of future immunomodulatory therapies.  相似文献   

15.
Our previous study showed dominant proliferative response of peripheral mononuclear cells to hepatitis C virus (HCV) nonstructural (NS-3) (T9, from aa 1188 to 1493) in chronically infected patients. Six T9-specific T-cell clones derived in an HCV patient were established and studied for the antigen specificity and the ability of augmentation of in vitro antibody production. All these cloned T-cell lines responded exclusively to T9 antigen and could help autologous B cells in producing anti-T9 antibody in vitro. Cytokine mRNAs of these T cells was detected by polymerase chain reaction and predominant IL-2 and IFN- production was noted. In addition, further elucidation of T-cell antigenic determinant and MHC restriction suggested that these T-cell clones recognized at least two different T-cell antigenic determinants within the NS-3 region in an HLA DQ2-restricted manner. We believe characterization of HCV-specific T-cell responses, especially T-cell epitope mapping and cytokine production pattern, may shed light on further understanding the pathogenic mechanism and designing therapy for HCV infection.  相似文献   

16.
为了解HCV感染后细胞免疫在其中的作用,对31例慢丙肝及20例正常献血员以MTT法检测外周血单核细胞(PBMC)对HCVE2/NS1相对保守区多肽抗原及C22、NS5的增殖反应。结果表明与正常人相比,慢性丙型肝炎患者PBMC对HCVC22、E2/NS1抗原有明显的增殖反应(P<005),而对NS5无明显增殖,其中以C22抗原性最强。作者认为慢性丙型肝炎患者存在针对与HCV相关抗原的细胞免疫,这种细胞免疫不能消除HCV感染,而且与疾病的状态无关。  相似文献   

17.
BACKGROUND: Hepatitis C infection induces an acute and chronic liver inflammation that may lead to cirrhosis, liver failure, or hepatocarcinoma. Since the role of alphabeta T lymphocytes in hepatitis C virus (HCV) immunopathology has been analyzed extensively, we investigated the distribution and functional activation of gammadelta T cell subsets in chronically HCV-infected patients. MATERIALS AND METHODS: Blood samples and liver biopsies from 35 patients with compensated chronic HCV infection were compared in terms of T cell subset distribution, expression of activation markers, gammadelta T cell receptor (TCR) repertoire, and pattern of cytokine production. Moreover, we analyzed whether these immunological parameters were associated with other clinical observations (plasma viremia, ALT levels, Ishak index). RESULTS: Differing from peripheral blood distribution, a specific compartmentalization of Vdelta1 T cells (p < 0.001) was observed in the liver of HCV patients. These cells represented a relevant fraction of intrahepatic T lymphocytes (1.8-8.7%) and expressed the memory/effector phenotype (CD62-L- CD45-RO+CD95+). This phenotype was consistent with selective homing upon antigen recognition. Mitogenic stimulation of Vdelta1 + T lymphocytes recruited in the liver revealed the T helper cell type 1 (Th1) pattern of cytokine secretion. Interestingly, the frequency of interferon-gamma (IFN-gamma)-producing Vdelta1 T cells was associated with an higher degree of liver necroinflammation, measured by the Ishak index. Finally, the T-cell repertoire analysis revealed the absence of Vgamma selection in the TCR repertoire of intrahepatic Vdelta1 T cells. CONCLUSIONS: gammadelta T cell distribution in the peripheral blood differs from the Vdelta1 T cell subset because it is policlonally activated and recruited in the liver of chronic HCV-infected patients. During HCV-infection, this T cell subset may release Th1 cytokines and contribute to the necroinflammatory liver disease.  相似文献   

18.
The hepatitis C virus (HCV)-specific T cell response in patients with chronic HCV is dysfunctional. In this study, we aimed at restoring immunological function through therapeutic vaccination in a transgenic mouse model with impaired HCV-specific T cell responses due to a persistent presence of hepatic HCV nonstructural (NS)3/4A Ags. The HCV-specific T cells have an actively maintained dysfunction reflected in reduced frequency, impaired cytokine production, and impaired effector function in vivo, which can be partially restored by blocking regulatory T cells or programmed cell death ligand 1. We hypothesized that the impairment could be corrected by including sequences that created a normal priming environment by recruiting "healthy" heterologous T cells and by activating innate signaling. Endogenously expressed hepatitis B core Ag (HBcAg) can recruit heterologous T cells and activate TLR (TLR7) signaling. Hence, by combining HCV NS3/4A with different forms of HBcAg we found that heterologous sequences somewhat improved activation and expansion of NS3/4A-specific T cells in a wild-type host. Importantly, the signals provided by HBcAg effectively restored the activation of HCV-specific T cells in a tolerant NS3/4A-transgenic mouse model. The adjuvant effect could also be transferred to the priming of dysfunctional HLA-A2-restricted NS3-specific T cells in vivo. Thus, recruiting healthy heterologous T cells to the site of priming may also help restore HCV-specific responses present in a chronically infected host.  相似文献   

19.
Hepatitis C virus (HCV) infection results in the activation of numerous stress responses including oxidative stress, with the potential to induce an apoptotic state. Previously we have shown that HCV attenuates the stress-induced, p38MAPK-mediated up-regulation of the K+ channel Kv2.1, to maintain the survival of infected cells in the face of cellular stress. We demonstrated that this effect was mediated by HCV non-structural 5A (NS5A) protein, which impaired p38MAPK activity through a polyproline motif-dependent interaction, resulting in reduction of phosphorylation activation of Kv2.1. In this study, we investigated the host cell proteins targeted by NS5A to mediate Kv2.1 inhibition. We screened a phage-display library expressing the entire complement of human SH3 domains for novel NS5A-host cell interactions. This analysis identified mixed lineage kinase 3 (MLK3) as a putative NS5A interacting partner. MLK3 is a serine/threonine protein kinase that is a member of the MAPK kinase kinase (MAP3K) family and activates p38MAPK. An NS5A-MLK3 interaction was confirmed by co-immunoprecipitation and Western blot analysis. We further demonstrate a novel role of MLK3 in the modulation of Kv2.1 activity, whereby MLK3 overexpression leads to the up-regulation of channel activity. Accordingly, coexpression of NS5A suppressed this stimulation. Additionally we demonstrate that overexpression of MLK3 induced apoptosis, which was also counteracted by NS5A. We conclude that NS5A targets MLK3 with multiple downstream consequences for both apoptosis and K+ homeostasis.  相似文献   

20.
The differentiation and functional status of virus-specific CD8+ T cells is significantly influenced by specific and ongoing antigen recognition. Importantly, the expression profiles of the interleukin-7 receptor alpha chain (CD127) and the killer cell lectin-like receptor G1 (KLRG1) have been shown to be differentially influenced by repetitive T-cell receptor interactions. Indeed, antigen-specific CD8+ T cells targeting persistent viruses (e.g., human immunodeficiency virus and Epstein-Barr virus) have been shown to have low CD127 and high KLRG1 expressions, while CD8+ T cells targeting resolved viral antigens (e.g., FLU) typically display high CD127 and low KLRG1 expressions. Here, we analyzed the surface phenotype and function of hepatitis C virus (HCV)-specific CD8+ T cells. Surprisingly, despite viral persistence, we found that a large fraction of peripheral HCV-specific CD8+ T cells were CD127+ and KLRG1- and had good proliferative capacities, thus resembling memory cells that usually develop following acute resolving infection. Intrahepatic virus-specific CD8+ T cells displayed significantly reduced levels of CD127 expression but similar levels of KLRG1 expression compared to the peripheral blood. These results extend previous studies that demonstrated central memory (CCR7+) and early-differentiated phenotypes of HCV-specific CD8+ T cells and suggest that insufficient stimulation of virus-specific CD8+ T cells by viral antigen may be responsible for this alteration in HCV-specific CD8+ T-cell differentiation during chronic HCV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号