首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deep microbial biofilms are a major problem in many industrial, environmental, and medical settings. Novel approaches are needed to understand the structure and metabolism of these biofilms. Two-photon excitation microscopy (TPE) and conventional confocal laser scanning microscopy (CLSM) were compared quantitatively for the ability to visualize bacteria within deep in vitro biofilms. pH gradients within these biofilms were determined by fluorescence lifetime imaging, together with TPE. A constant-depth film fermentor (CDFF) was inoculated for 8 h at 50 ml · h−1 with a defined mixed culture of 10 species of bacteria grown in continuous culture. Biofilms of fixed depths were developed in the CDFF for 10 or 11 days. The microbial compositions of the biofilms were determined by using viable counts on selective and nonselective agar media; diverse mixed-culture biofilms developed, including aerobic, facultative, and anaerobic species. TPE was able to record images four times deeper than CLSM. Importantly, in contrast to CLSM images, TPE images recorded deep within the biofilm showed no loss of contrast. The pH within the biofilms was measured directly by means of fluorescence lifetime imaging; the fluorescence decay of carboxyfluorescein was correlated with biofilm pH and was used to construct a calibration curve. pH gradients were detectable, in both the lateral and axial directions, in steady-state biofilms. When biofilms were overlaid with 14 mM sucrose for 1 h, distinct pH gradients developed. Microcolonies with pH values of below pH 3.0 were visible, in some cases adjacent to areas with a much higher pH (>5.0). TPE allowed resolution of images at significantly greater depths (as deep as 140 μm) than were possible with CLSM. Fluorescence lifetime imaging allowed the in situ, real-time imaging of pH and the detection of sharp gradients of pH within microbial biofilms.  相似文献   

2.
AIMS: The aim of this study was to use confocal laser scanning microscopy (CLSM) to examine the spatial distribution of both viable and nonviable bacteria within microcosm dental plaques grown in vitro. Previous in vivo studies have reported upon the distribution of viable bacteria only. METHODS AND RESULTS: Oral biofilms were grown on hydroxyapatite (HA) discs in a constant-depth film fermenter (CDFF) from a saliva inoculum. The biofilms were stained with the BacLight LIVE/DEAD system and examined by CLSM. Fluorescence intensity profiles through the depth of the biofilm showed an offset between the maximum viable intensity and the maximum nonviable intensity. Topographical differences between the surface properties of the viable and nonviable biofilm virtual surfaces were also measured. CONCLUSIONS: The profile of fluorescence intensity from viable and nonviable staining suggested that the upper layers of the biofilm contain proportionally more viable bacteria than the lower regions of the biofilm. SIGNIFICANCE AND IMPACT OF STUDY: Viability profiling records the transition from predominantly viable to nonviable bacteria through biofilms suggesting that this technique may be of use for quantifying the effects of antimicrobial compounds upon biofilms. The distribution of viable bacteria was similar to that found in dental plaque in vivo suggesting that the CDFF produces in vitro biofilms which are comparable to their in vivo counterparts in terms of the spatial distribution of viable bacteria.  相似文献   

3.
pH in the extracellular matrix of bacterial biofilms is of central importance for microbial metabolism. Biofilms possess a complex three-dimensional architecture characterized by chemically different microenvironments in close proximity. For decades, pH measurements in biofilms have been limited to monitoring bulk pH with electrodes. Although pH microelectrodes with a better spatial resolution have been developed, they do not permit the monitoring of horizontal pH gradients in biofilms in real time. Quantitative fluorescence microscopy can overcome these problems, but none of the hitherto employed methods differentiated accurately between extracellular and intracellular microbial pH and visualized extracellular pH in all areas of the biofilms. Here, we developed a method to reliably monitor extracellular biofilm pH microscopically with the ratiometric pH-sensitive dye C-SNARF-4, choosing dental biofilms as an example. Fluorescent emissions of C-SNARF-4 can be used to calculate extracellular pH irrespective of the dye concentration. We showed that at pH values of <6, C-SNARF-4 stained 15 bacterial species frequently isolated from dental biofilm and visualized the entire bacterial biomass in in vivo-grown dental biofilms with unknown species composition. We then employed digital image analysis to remove the bacterial biomass from the microscopic images and adequately calculate extracellular pH values. As a proof of concept, we monitored the extracellular pH drop in in vivo-grown dental biofilms fermenting glucose. The combination of pH ratiometry with C-SNARF-4 and digital image analysis allows the accurate monitoring of extracellular pH in bacterial biofilms in three dimensions in real time and represents a significant improvement to previously employed methods of biofilm pH measurement.  相似文献   

4.
Confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and soft X-ray scanning transmission X-ray microscopy (STXM) were used to map the distribution of macromolecular subcomponents (e.g., polysaccharides, proteins, lipids, and nucleic acids) of biofilm cells and matrix. The biofilms were developed from river water supplemented with methanol, and although they comprised a complex microbial community, the biofilms were dominated by heterotrophic bacteria. TEM provided the highest-resolution structural imaging, CLSM provided detailed compositional information when used in conjunction with molecular probes, and STXM provided compositional mapping of macromolecule distributions without the addition of probes. By examining exactly the same region of a sample with combinations of these techniques (STXM with CLSM and STXM with TEM), we demonstrate that this combination of multimicroscopy analysis can be used to create a detailed correlative map of biofilm structure and composition. We are using these correlative techniques to improve our understanding of the biochemical basis for biofilm organization and to assist studies intended to investigate and optimize biofilms for environmental remediation applications.  相似文献   

5.
The pH in bacterial biofilms on teeth is of central importance for dental caries, a disease with a high worldwide prevalence. Nutrients and metabolites are not distributed evenly in dental biofilms. A complex interplay of sorption to and reaction with organic matter in the biofilm reduces the diffusion paths of solutes and creates steep gradients of reactive molecules, including organic acids, across the biofilm. Quantitative fluorescent microscopic methods, such as fluorescence life time imaging or pH ratiometry, can be employed to visualize pH in different microenvironments of dental biofilms. pH ratiometry exploits a pH-dependent shift in the fluorescent emission of pH-sensitive dyes. Calculation of the emission ratio at two different wavelengths allows determining local pH in microscopic images, irrespective of the concentration of the dye. Contrary to microelectrodes the technique allows monitoring both vertical and horizontal pH gradients in real-time without mechanically disturbing the biofilm. However, care must be taken to differentiate accurately between extra- and intracellular compartments of the biofilm. Here, the ratiometric dye, seminaphthorhodafluor-4F 5-(and-6) carboxylic acid (C-SNARF-4) is employed to monitor extracellular pH in in vivo grown dental biofilms of unknown species composition. Upon exposure to glucose the dye is up-concentrated inside all bacterial cells in the biofilms; it is thus used both as a universal bacterial stain and as a marker of extracellular pH. After confocal microscopic image acquisition, the bacterial biomass is removed from all pictures using digital image analysis software, which permits to exclusively calculate extracellular pH. pH ratiometry with the ratiometric dye is well-suited to study extracellular pH in thin biofilms of up to 75 µm thickness, but is limited to the pH range between 4.5 and 7.0.  相似文献   

6.
Confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and soft X-ray scanning transmission X-ray microscopy (STXM) were used to map the distribution of macromolecular subcomponents (e.g., polysaccharides, proteins, lipids, and nucleic acids) of biofilm cells and matrix. The biofilms were developed from river water supplemented with methanol, and although they comprised a complex microbial community, the biofilms were dominated by heterotrophic bacteria. TEM provided the highest-resolution structural imaging, CLSM provided detailed compositional information when used in conjunction with molecular probes, and STXM provided compositional mapping of macromolecule distributions without the addition of probes. By examining exactly the same region of a sample with combinations of these techniques (STXM with CLSM and STXM with TEM), we demonstrate that this combination of multimicroscopy analysis can be used to create a detailed correlative map of biofilm structure and composition. We are using these correlative techniques to improve our understanding of the biochemical basis for biofilm organization and to assist studies intended to investigate and optimize biofilms for environmental remediation applications.  相似文献   

7.
Bacterial biofilms have been reported to contain distinct regions of viable and nonviable bacteria. The purpose of this study was to identify such regions in biofilms of oral bacteria and to determine their dimensions. Oral biofilms were grown aerobically in a constant-depth film fermenter (CDFF) and studied using confocal laser scanning microscopy (CLSM) incorporating viability staining with water immersion lenses. A variety of viability distributions were observed, including biofilm "stacks" possessing an outer layer of viable bacteria surrounding an internal core of nonviable bacteria. Using image analysis tools, we measured the thickness of this outer viable region, in the x-y plane, from single confocal optical sections, and determined the mean angle (theta) of these portions of the biofilm stack (10.93 degrees ). x-y plane thickness data in conjunction with the data on the angle of the stack returned the thickness of the outer viable layer perpendicular to the bulk medium flow as 36.62 microm (31.61-42.21 microm accounting for 95% confidence for variation in both the x-y plane thickness and theta). We have shown that CLSM, in conjunction with vital stains and image analysis techniques, can reveal viability patterns in biofilms and where appropriate can be used to measure the dimensions of these structures.  相似文献   

8.
Proia  Lorenzo  Romaní  Anna M.  Sabater  Sergi 《Hydrobiologia》2012,695(1):281-291

Nutrients and light are the most determinant factors for microbial benthic assemblages in oligotrophic forested streams. We investigated the importance of nutrients and light availability on the structure and the function of epilithic biofilms in a Mediterranean forested stream (Fuirosos, Spain). Biofilms grew on artificial substrata in both enriched and unenriched reaches where shade conditions were simulated. Four different treatments were generated: higher light unenriched, lower light unenriched, higher light enriched (HL-E) and lower light enriched. Chlorophyll a, bacterial density, extracellular polymeric substances (EPS), extracellular leucine aminopeptidase (LAmP) and alkaline phosphatase (APase) activities were analysed during the colonisation at days 4, 9, 16, 22 and 52. At day 52, confocal laser scanning microscopy (CLSM) was used to determine differences in biofilm architecture. CLSM evidenced differences in thickness and structural complexity of biofilms grown in different conditions. Biofilms in HL-E were the thickest and had the most complex structure. The CLSM highlighted that the EPS was agglomerated in the upper layer of enriched-grown biofilms, but evenly distributed through the biofilm in unenriched biofilms. CLSM 3D images suggested that cyanobacteria increased under higher nutrient conditions. Nutrient enrichment caused the decrease of APase activity. Interaction between the two factors affected LAmP activity. HL-E had the highest LAmP and the lowest APase activities, an indication that biofilm responses to nutrients mostly occurred with high-light availability. Our results revealed that the conjoint availability of light and nutrients caused the highest changes in biofilm spatial organisation, microbial structure and functioning in oligotrophic forested streams.

  相似文献   

9.
The aim of the study was to establish an in vitro model of Staphylococcus epidermidis biofilms on polyvinyl chloride (PVC) material, and to investigate bacterial biofilm formation and its structure using the combined approach of confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM). Staphylococcus epidermidis bacteria (stain RP62A) were incubated with PVC pieces in Tris buffered saline to form biofilms. Biofilm formation was examined at 6, 12, 18, 24, 30, and 48 h. Thicknesses of these biofilms and the number, and percentage of viable cells in biofilms were measured. CT scan images of biofilms were obtained using CLSM and environmental SEM. The results of this study showed that Staphylococcus epidermidis biofilm is a highly organized multi-cellular structure. The biofilm is constituted of large number of viable and dead bacterial cells. Bacterial biofilm formation on the surface of PVC material was found to be a dynamic process with maximal thickness being attained at 12–18 h. These biofilms became mature by 24 h. There was significant difference in the percentage of viable cells along with interior, middle, and outer layers of biofilms (P < 0.05). Staphylococcus epidermidis biofilm is sophisticated in structure and the combination method involving CLSM and SEM was ideal for investigation of biofilms on PVC material.  相似文献   

10.
Microbes frequently live within multicellular, solid surface-attached assemblages termed biofilms. These microbial communities have architectural features that contribute to population heterogeneity and consequently to emergent cell functions. Therefore, three-dimensional (3D) features of biofilm structure are important for understanding the physiology and ecology of these microbial systems. This paper details several protocols for scanning electron microscopy and confocal laser scanning microscopy (CLSM) of biofilms grown on polystyrene pegs in the Calgary Biofilm Device (CBD). Furthermore, a procedure is described for image processing of CLSM data stacks using amira™, a virtual reality tool, to create surface and/or volume rendered 3D visualizations of biofilm microorganisms. The combination of microscopy with microbial cultivation in the CBD — an apparatus that was designed for highthroughput susceptibility testing — allows for structure-function analysis of biofilms under multivariate growth and exposure conditions.  相似文献   

11.
Bacterial biofilms are imaged by various kinds of microscopy including confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). One limitation of CLSM is its restricted magnification, which is resolved by the use of SEM that provides high-magnification spatial images of how the single bacteria are located and interact within the biofilm. However, conventional SEM is limited by the requirement of dehydration of the samples during preparation. As biofilms consist mainly of water, the specimen dehydration might alter its morphology. High magnification yet authentic images are important to understand the physiology of biofilms. We compared conventional SEM, Focused Ion Beam (FIB)-SEM and CLSM with SEM techniques [cryo-SEM and environmental-SEM (ESEM)] that do not require dehydration. In the case of cryo-SEM, the biofilm is not dehydrated but kept frozen to obtain high-magnification images closer to the native state of the sample. Using the ESEM technique, no preparation is needed. Applying these methods to biofilms of Pseudomonas aeruginosa showed us that the dehydration of biofilms substantially influences its appearance and that a more authentic biofilm image emerges when combining all methods.  相似文献   

12.
Scanning confocal laser microscopy (SCLM) and fluorescent molecular probes were used to evaluate the effect of the fluoroquinolone fleroxacin on the architecture of established Pseudomonas fluorescens biofilms. Control P. fluorescens biofilms were heterogeneous, consisting of cell aggregates extending from the attachment surface to maximum measured depths of ~90 μm (mean biofilm depth at 72 h, 42 ± 28 μm) and penetrated by an array of channels. In contrast, fleroxacin-treated biofilms were less deep (mean biofilm depth at 72 h, 29 ± 8 μm), varied little in depth over large areas, and consisted of a homogeneous distribution of cells. Fleroxacin also caused cells to elongate, with cells located near the biofilm-liquid interface lengthening significantly more than cells located at the attachment surface. By using SCLM, acridine orange, and image analysis it was found that ~59% of cells within fleroxacin-treated biofilms emitted red fluorescence whereas >99% of cells from control biofilms emitted green fluorescence. The fleroxacin-treated cells which emitted red fluorescence were observed to be the population of cells which elongated.  相似文献   

13.
A constant-depth film fermenter (CDFF) was used to culture a steady-state multispecies biofilm consisting of one strain each of Listeria monocytogenes, Pseudomonas fragi and Staphylococcus xylosus. These bacteria were initially grown together in a conventional chemostat to achieve a steady state before being inoculated into the CDFF over an 18-h period. A dilute tryptone soya broth (TSB) medium was supplied to the CDFF and the biofilm allowed to develop over a 28-d period. This mature biofilm was then subjected to increasing levels of sodium hypochlorite solution to measure any antimicrobial effect. The three organisms were seen to reach a steady state after 6 d in the chemostat before being transferred to the CDFF where the mature multispecies biofilm reached steady state at 17 d. Listeria monocytogenes in both planktonic and biofilm growth stabilized at 1. 8 and 1.5%, respectively, of the total plate counts, while Ps. fragi and Staph. xylosus were the predominant organisms in the biofilm at 59% and 39.5%, respectively, of the total microbial population. Steady-state biofilms in the CDFF were exposed to increasing strengths of sodium hypochlorite; 200, 500 and 1000 p.p.m. free chlorine, but a substantial two-log cycle drop in bacterial numbers was only achieved at 1000 p.p.m. free chlorine. In planktonic culture all three organisms were completely eliminated when exposed to 10 p.p.m. free chlorine for a 30-s period.  相似文献   

14.
Two non-destructive techniques, confocal laser scanning microscopy (CLSM) and planar optode (VisiSens imaging), were combined to relate the fine-scale spatial structure of biofilm components to real-time images of oxygen decay in aquatic biofilms. Both techniques were applied to biofilms grown for seven days at contrasting light and temperature (10/20°C) conditions. The geo-statistical analyses of CLSM images indicated that biofilm structures consisted of small (~100 μm) and middle sized (~101 μm) irregular aggregates. Cyanobacteria and EPS (extracellular polymeric substances) showed larger aggregate sizes in dark grown biofilms while, for algae, aggregates were larger in light-20°C conditions. Light-20°C biofilms were most dense while 10°C biofilms showed a sparser structure and lower respiration rates. There was a positive relationship between the number of pixels occupied and the oxygen decay rate. The combination of optodes and CLMS, taking advantage of geo-statistics, is a promising way to relate biofilm architecture and metabolism at the micrometric scale.  相似文献   

15.
Fluorescent stains in conjunction with cryoembedding and image analysis were applied to demonstrate spatial gradients in respiratory activity within bacterial biofilms during disinfection with monochloramine. Biofilms of Klebsiella pneumoniae and Pseudomonas aeruginosa grown together on stainless steel surfaces in continuous-flow annular reactors were treated with 2 mg of monochloramine per liter (influent concentration) for 2 h. Relatively little biofilm removal occurred as evidenced by total cell direct counts. Plate counts (of both species summed) indicated an average 1.3-log decrease after exposure to 2 mg of monochloramine per liter. The fluorogenic redox indicator 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) and the DNA stain 4',6-diamidino-2-phenylindole (DAPI) were used to differentiate respiring and nonrespiring cells in biofilms. Epifluorescence micrographs of frozen biofilm cross sections clearly revealed gradients of respiratory activity within biofilms in response to monochloramine treatment. These gradients in specific respiratory activity were quantified by calculating the ratio of CTC and DAPI intensities measured by image analysis. Cells near the biofilm-bulk fluid interface lost respiratory activity first. After 2 h of biocide treatment, greater respiratory activity persisted deep in the biofilm than near the biofilm-bulk fluid interface.  相似文献   

16.
An important feature of microbial biofilms is the development of four-dimensional physical and chemical gradients in space and time. There is need for novel approaches to probe these so-called microenvironments to determine their effect on biofilm-specific processes. In this study, we describe the use of seminaphthorhodafluor-4F 5-(and-6) carboxylic acid (C-SNARF-4) for pH microenvironment analysis in Pseudomonas aeruginosa biofilms. C-SNARF-4 is a fluorescent ratiometric probe that allows pH quantification independent of probe concentration and/or laser intensity. By confocal scanning laser microscopy, C-SNARF-4 revealed pH heterogeneity throughout the biofilm in both the x,y and x,z planes, with values ranging from pH 5.6 (within the biofilm) to pH 7.0 (bulk fluid). pH values were typically remarkably different than those just a few micrometers away. Although this probe has been successfully used in a number of eukaryotic systems, problems have been reported which describe spectral emission changes as a result of macromolecular interactions with the fluorophore. To assess how the biofilm environment may influence fluorescent properties of the dye, fluorescence of C-SNARF-4 was quantified via spectrofluorometry while the probe was suspended in various concentrations of representative biofilm matrix components (i.e., proteins, polysaccharides, and bacterial cells) and growth medium. Surprisingly, our data demonstrate that few changes in emission spectra occur as a result of matrix interactions below pH 7. These studies suggest that C-SNARF-4 can be used as a reliable indicator of pH microenvironments, which may help elucidate their influence on the medical and geobiological roles of natural biofilms.  相似文献   

17.
Quantitative parameters for describing the morphology of biofilms are crucial towards establishing the influence of growing conditions on biofilm structure. Parameters used in earlier studies generally fail to differentiate complex three-dimensional structures. This article presents a novel approach of defining a parameter vector based on the energy signature of multi-resolution analysis, which was applied to differentiating biofilm structures from confocal laser scanning microscopy (CLSM) biofilm images. The parameter vector distinguished differences in the spatial arrangements of synthetic images. For real CLSM images, this parameter vector detected subtle differences in biofilm structure for three sample cases: (1) two adjacent images of a CLSM stack; (2) two partial stacks from the same CLSM stack with equal numbers of images but spatially offset by one image; and (3) three complete CLSM stacks from different bacterial strains. It was also observed that filtering the noise in CLSM images enhanced the sensitivity of the differentiation using our parameter vector.  相似文献   

18.
Yerly J  Hu Y  Martinuzzi RJ 《Biofouling》2008,24(5):323-337
Quantitative parameters for describing the morphology of biofilms are crucial towards establishing the influence of growing conditions on biofilm structure. Parameters used in earlier studies generally fail to differentiate complex three-dimensional structures. This article presents a novel approach of defining a parameter vector based on the energy signature of multi-resolution analysis, which was applied to differentiating biofilm structures from confocal laser scanning microscopy (CLSM) biofilm images. The parameter vector distinguished differences in the spatial arrangements of synthetic images. For real CLSM images, this parameter vector detected subtle differences in biofilm structure for three sample cases: (1) two adjacent images of a CLSM stack; (2) two partial stacks from the same CLSM stack with equal numbers of images but spatially offset by one image; and (3) three complete CLSM stacks from different bacterial strains. It was also observed that filtering the noise in CLSM images enhanced the sensitivity of the differentiation using our parameter vector.  相似文献   

19.
Aufwuchs chamber slides were constructed by attaching a silicone rubber gasket to a glass slide with epoxy cement. For biofilm growth, the slides were suspended in Cayuga Lake near Ithaca, NY, for 27 days. Biofilms in the chamber were stained with 0.05% acridine orange. After rinsing, the chamber was filled with molten 1% agarose to stabilize filaments and delicate polymer structures at the biofilm surface. Areas of biofilm ~0.5 mm thick on the inner face of the wall of the chamber were selected for side-on optical sectioning in a confocal laser scanning microscope (CLSM). Stacks of high-resolution optical images captured by the CLSM z-sectioning software, were used to create left-right stereo image pairs. At low magnification the stereo pairs showed 3-D details of the microbial landscape in the mature biofilms. Channels, pores, and other structural features of the biofilm matrix were observed in peripheral regions. Higher magnification images revealed the 3-D distribution of specific biofilm components such as filaments of sheathed bacteria projecting outward into the liquid milieu, and organic coatings, including bacterial cells on the surfaces of mineral particles.  相似文献   

20.
The determination of volumes and interface areas from confocal laser scanning microscopy (CLSM) images requires the identification of component objects by segmentation. An automated method for the determination of segmentation thresholds for CLSM imaging of biofilms was developed. The procedure, named objective threshold selection (OTS), is a three-dimensional development of the approach introduced by the popular robust automatic threshold selection (RATS) method. OTS is based on the statistical properties of local gray-values and gradients in the image. By characterizing the dependence between a volumetric feature and the intensity threshold used for image segmentation, the former can be determined with an arbitrary confidence level, with no need for user intervention. The identification of an objective segmentation procedure renders the possibility for the full automation of volume and interfacial area measurement. Images from two distinct biofilm systems, acquired using different experimental techniques and instrumental setups were segmented by OTS to determine biofilm volume and interfacial area. The reliability of measurements for each case was analyzed to identify optimal procedure for image acquisition. The automated OTS method was shown to reproduce values obtained manually by an experienced operator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号